The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$is $2.6 \times 10^{-3} \mathrm{M}$ in Pepsi. What is the concentration of OH^{-}in the soft drink?

1. 2.6×10^{-3}
2. 3.8×10^{-12}
3. 2.6×10^{-17}
4. 3.8×10^{-10}

Correct Answer: 2.

Comments to the instructor: Some students think hydronium ion and hydroxide ion concentrations in all solutions are always the same (Choice 1). Choice 3 is obtained if the K_{w} of water is multiplied by the hydronium ion concentration given. Choice 3 is obtained if the exponents are not handled properly.

The concentration of $\mathrm{OH}^{-} 2.0 \times 10^{-2} \mathrm{M}$ in household ammonia. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in the solution?

1. 5.0×10^{-13}
2. 2.0×10^{-2}
3. 5.0×10^{-11}
4. 1.0×10^{-14}

Correct Answer: 1.

Comments to the instructor: Some students think hydronium ion and hydroxide ion concentrations in all solutions are always the same (Choice 2). Choice 4 is obtained if the K_{w} of water is thought to be the hydronium ion concentration. Choice 3 is obtained if the exponents are not handled properly.

