The concentration of H_3O^+ is 2.6 x 10^{-3} M in Pepsi. What is the concentration of OH⁻ in the soft drink?

- 1. 2.6×10^{-3}
- 2. 3.8 x 10⁻¹²
- 3. 2.6×10^{-17}
- 4. 3.8×10^{-10}

Correct Answer: 2.

Comments to the instructor: Some students think hydronium ion and hydroxide ion concentrations in all solutions are always the same (Choice 1). Choice 3 is obtained if the K_w of water is multiplied by the hydronium ion concentration given. Choice 3 is obtained if the exponents are not handled properly.

The concentration of OH^{-} 2.0 x 10⁻² M in household ammonia. What is the concentration of H_3O^{+} in the solution?

- 1. 5.0×10^{-13}
- 2. 2.0×10^{-2}
- 3. 5.0×10^{-11}
- 4. $1.0 \ge 10^{-14}$

Correct Answer: 1.

Comments to the instructor: Some students think hydronium ion and hydroxide ion concentrations in all solutions are always the same (Choice 2). Choice 4 is obtained if the K_w of water is thought to be the hydronium ion concentration. Choice 3 is obtained if the exponents are not handled properly.