ConcepTest on the Mole Concept

Suppose we have 5 dozens of people. How many arms would we have? Assume everyone has two arms.

1. 2 dozens
2. 5 dozens
3. 10 dozens
4. None of the above.

Correct Answer: \#3. 10 dozens
Comment to Instructor: Students are unlikely to choose a wrong answer. Go on to the next question.

Suppose we have 7 dozens of CO_{2} molecules. How many oxygen atoms would we have?

1. 3 dozens
2. 7 dozens
3. 14 dozens
4. I am confused.

Correct Answer: \#3. 14 dozens
Comment to Instructor: Don't be surprised if students hang back and are afraid to give an answer. Choice \#1 may indicate students figured there are 3 atoms in one CO_{2} and cannot see how to work "dozens" into it. Point out that there are twice as many oxygen atoms as there are CO_{2} molecules, so there would be 2×7 dozens $=14$ dozens.
Choice \#2 may indicate students think the oxygen in CO_{2} is O_{2} (having been told that oxygen "always" exists as O_{2}). You can point out that oxygen does not exist as an O_{2} molecule inside CO_{2}.

Go on to the next question.

After having presented what a mole stands for, the collective number 6.02×10^{23}, just as a dozen stands for the collective number 12, present the following ConcepTest question:

Suppose we have 9 moles of CO_{2} molecules. How many oxygen atoms would we have?

1. 3 moles
2. 9 moles
3. 18 moles
4. I need more time to think this over.

Correct Answer: \#3. 18 moles

Comment to Instructor: If students have trouble, remind them that there are twice as many oxygen atoms as CO_{2} molecules, so there should be 2×9 moles $=18$ moles. Go on to the next question.

Suppose we have 0.3 moles of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. How many moles of atoms are there?

1. 0.9 moles
2. $\quad 1.5$ moles
3. $\quad 3.6$ moles
4. $\quad 3.9$ moles

Correct Answer: \#4 3.9 moles
Comment to Instructor: \#1 indicates that students may think there are 3 atoms $(M g+P+O)$.
\#2 indicates that students may think there are 5 atoms $\left(3 \mathrm{Mg}+2 \mathrm{PO}_{4}\right)$
\#3 indicates that students may think there are 12 atoms $(3 M g+P+8 O)$.
The number 0.3 is used because students panic when they see a decimal point.
Go on to the next question.

Suppose we have 0.14 moles of KClO_{2}, how many moles of Cl atoms do we have?

1. 0.14 mole
2. 0.28 mole
3. 0.56 mole
4. 0.84 mole

Correct Answer: \#1 0.14 mole

There is only one Cl in one KClO_{2} formula unit.

Comment to Instructor: \#2 indicates students may think the subscript 2 applies to Cl as well. \#3 indicates students did not read the question carefully and think you asked "atoms" instead of "Cl atoms". They are thinking 4 atoms per formula unit ($\mathrm{K}+\mathrm{Cl}+2 \mathrm{O}$) \#4 indicates students are thinking $(\mathrm{KClO})_{2}$ giving them 6 atoms per formula unit.

Go on to the next question.

Instead of looking at the atoms in $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, let us now consider the ions it has. In 0.050 moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ how many moles of negative ions does it have?

1. 0.10 mole
2. 0.15 mole
3. 0.50 mole
4. none of the above

Correct Answer: \#1 0.10 mole
There are 2 phosphate ions per formula unit. 2×0.050 mole $=0.10$ mole
Comment to Instructor: \#2 indicates students are considering 3 calcium ions, not remembering they are positive ions. \#3 indicates students may be thinking there are 10 ions (one $P+$ four O) x $2=10$

