A series of ConcepTest questions to test the concept of limiting reactants.

Suppose you are going to make sandwiches that contain specifically 2 slices of bread and 1 slice of ham. If you have a total of 23 slices of ham and 50 slices of bread, how many sandwiches can you make?

1. 50 sandwiches
2. 25 sandwiches
3. 23 sandwiches
4. none of the above

Correct Answer: 3. 23 sandwiches

Comment to Instructor: 50 slices of bread would require 25 slices of ham and you have only 23 slices of ham, so the ham is the limiting factor. Students probably don't have a problem with this unless they did not read the question carefully. This is just a lead-in to the next set of questions. Go on to the next question.

Suppose you are going to make sandwiches that contain specifically 2 pieces of bread, 1 slice of ham and 3 slices of pickles. If you have a total of 31 pieces of bread, 17 slices of ham and 42 slices of pickles, how many sandwiches can you make?

1. 14 sandwiches
2. 15 sandwiches
3. 17 sandwiches
4. none of the above

Correct Answer: 1. 14 sandwiches

Comment to Instructor: The pickles are the limiting factor. 42 slices can make only 14 sandwiches. Choice 2 indicates they are focusing the first item they come to, the bread. They probably realize they can make only 15 sandwiches based on the bread, and that 17 slices of ham would be sufficient, but they don't know what to do with the pickles. Or, they can't multiple 15 by 3 correctly and ended up with something like 35 slices of pickles for 15 sandwiches, so they erroneously think pickles are in excess. Choice 3 indicates they can't divide 31 by 2 or who knows? Perhaps they think 17 is the smallest number and so the ham is the limiting factor.

Consider the reaction stated below:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

Suppose you have 4 moles of N_{2} and 6 moles of H_{2}, which is the limiting reactant?

1. N_{2}
2. H_{2}
3. NH_{3}
4. none of the above

Correct Answer: 2. $\mathbf{H}_{\mathbf{2}}$

Comment to Instructor: Choice 1 indicates students may be thinking that 4 is a smaller number than 6 so N_{2} would be the limiting reactant. Go on to the next question.

Consider the reaction stated below:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

Suppose you have 4 moles of N_{2} and 6 moles of H_{2}, how much NH_{3} would be expected to be produced?

1. 8 moles NH_{3}
2. 4 moles NH_{3}
3. 12 moles NH_{3}
4. 6 moles NH_{3}

Correct Answer: 2. $\mathbf{4}$ moles $\mathbf{N H}_{3}$
Comment to Instructor: Having decided in the previous question that H_{2} is the limiting reactant, 6 moles of H_{2} should produce 4 moles NH_{3}. Choice 1 indicates students for some reason are considering N_{2} as the limiting reactant.

Consider the reaction stated below:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

Suppose you have 4.0 g of N_{2} and 6.0 g of H_{2}, how much NH_{3} would be expected to be produced?

1. $4.0 \mathrm{~g} \mathrm{NH}_{3}$
2. $4.9 \mathrm{~g} \mathrm{NH}_{3}$
3. $8.0 \mathrm{~g} \mathrm{NH}_{3}$
4. $34 \mathrm{~g} \mathrm{NH}_{3}$

Correct Answer: 2. 4.9 g NH3

Comment to Instructor: You may wish to save them time and give them this information: $M M$ of N_{2} is $28 \mathrm{~g} / \mathrm{mol}$; MM of H_{2} is $2.0 \mathrm{~g} / \mathrm{mol}$; MM of NH_{3} is $17 \mathrm{~g} /$ mole.
The limiting reactant is N_{2} this time.

