Consider the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
The rate of the reaction can be expressed:
Rate $=-\left(\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}\right)=-\mathrm{A}(\Delta[\mathrm{NO}] / \Delta \mathrm{t})=\mathrm{B}\left(\Delta\left[\mathrm{NO}_{2}\right] / \Delta \mathrm{t}\right)$
For nitric oxide

1. $\mathrm{A}=1 / 2$
2. $\mathrm{A}=1$
3. $\mathrm{A}=2$
4. $\mathrm{A}=1.5$

Correct Answer: 1.

Comments to the instructor: It is difficult for some students to realize the difference between an instantaneous rate and the rate law.

Consider the reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
The rate of the reaction can be expressed:
Rate $=-\left(\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}\right)=-\mathrm{A}(\Delta[\mathrm{NO}] / \Delta \mathrm{t})=\mathrm{B}\left(\Delta\left[\mathrm{NO}_{2}\right] / \Delta \mathrm{t}\right)$
For nitrogen dioxide

1. $\mathrm{B}=1 / 2$
2. $\mathrm{B}=1$
3. $\mathrm{B}=2$
4. $\mathrm{B}=1.5$

Correct Answer: 1.

Comments to the instructor: It is difficult for some students to realize the difference between an instantaneous rate and the rate law.

