WRITTEN 8, MATH 369.101

Due: 12/12/2016
(1) Problem 3.8.13.
(2) Problems 3.8.20 and 3.8.21 from text. In these problems, $\mathbb{Z} \times \mathbb{Z}$ means the direct sum of \mathbb{Z} (as a group under addition) with itself. The operation on the group is component-wise, so $(a, b)+(c, d)=(a+c, b+d)$. [Hint: For \#20, look to use the Fundamental Theorem on Homomorphisms. For \#21, consider adding an element in $\langle(2,2)\rangle$ to (a, b). What happens to the parity (being even,odd) of each component? Does this put a restriction on the kinds of elements in the coset for $(a, b) ?]$
(3) Problem 3.8.25. [Hint: If N is any normal subgroup of a finite group G and the index $|G| /|N|$ is a prime number p, then $G / N \cong \mathbb{Z}_{p}$, regardless of any property that the group N may have had.]
(4) Consider the complex X shown below. Use the labels given for the vertices. For edges write $e_{i, j}$ for an edge between v_{i} and v_{j}, and for triangular faces write $f_{i, j, k}$ for a face that has vertices v_{i}, v_{j} and v_{k}.
(a) Find three distinct elements of $C_{0}(X)$, all of which become equal (in the same coset) in the factor group $H_{0}(X)$.
(b) Find three elements of $C_{0}(X)$ so that no non-zero combination of them is in the image of $\partial_{1}: C_{1}(X) \rightarrow C_{0}(X)$.
(c) Show that $H_{0}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
(d) Find three independent elements of $C_{1}(X)$ which are in the kernel of $\partial_{1}: C_{1}(X) \rightarrow C_{0}(X)$.
(e) Show that $H_{1}(X) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and find a basis for it.

Figure 1. The complex X

