WRITTEN 5, MATH 369.101

Due: 10/26/2016
(1) Suppose R is a commutative ring and that $r_{1}, r_{2} \in R$. Show that the set

$$
\left\{r_{1} s_{1}+r_{2} s_{2} \mid s_{1}, s_{2} \in R\right\}
$$

is an ideal of R.
(2) Recall that $\langle r\rangle$ is the set of all multiples of r in R (which is an ideal). Let $R=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$.
(a) Write all the elements in the ideal $\langle(1,2)\rangle$.
(b) Show that every element in $\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ is either in the $\operatorname{coset}\langle(1,2)\rangle$ or in $(0,1)+\langle(1,2)\rangle$.
(3) Consider the ring T of 2×2 matrices $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$ with entries $a, b \in \mathbb{Z}$. Note that T is commutative.
(a) Show that $\psi: \mathbb{Z}[x] \rightarrow T$ defined by

$$
\psi\left(a_{0}+a_{1} x+\ldots+a_{n} x^{n}\right)=\left(\begin{array}{cc}
a_{0} & a_{1} \\
0 & a_{0}
\end{array}\right)
$$

is a ring homomorphism.
(b) Determine the kernel of ψ.
(c) What factor ring is isomorphic to T ?

