WRITTEN 4, MATH 369.101

Due: 10/05/2016

(1) Assume that $\phi: \mathbb{E} \rightarrow \mathbb{F}$ is an isomorphism between fields \mathbb{E} and \mathbb{F}. For a polynomial $p(x) \in \mathbb{E}[x]$, suppose that $p(x)=p_{0}+p_{1} x+$ $\ldots+p_{n} x^{n}$ (so $p_{i} \in \mathbb{E}$ for all $\left.0 \leq i \leq n\right)$. Let's use $\phi(p)(x)$ for the polynomial $\phi\left(p_{0}\right)+\phi\left(p_{1}\right) x+\ldots+\phi\left(p_{n}\right) x^{n} \in \mathbb{F}[x]$. Show that if $p(x)$ has a root in \mathbb{E} then $\phi(p)(x)$ has a root in \mathbb{F}.
(2) Do problem \#15 on page 210.
(3) Do problem \#20 on page 210.
(4) Do problems \#5(a) and \#5(b) on page 219.

