WRITTEN 3, MATH 369.101

- (1) Let $\mathbb{F} = \mathbb{Z}_5$ and let $p(x) = x^3 + x + 1$. Verify that p(x) is an irreducible polynomial in $\mathbb{F}[x]$ and find the multiplicative inverse of [x + 1] in $\mathbb{F}[x]/\langle p(x) \rangle$.
- (2) Prove that $\mathbb{Q}[x]/\langle x^2+1\rangle$ is a field. (Does a recent result help?)
- (3) For some field \mathbb{F} and $c \in \mathbb{F}$, consider the set of congruence classes $\mathbb{F}[x]/\langle x-c\rangle$. Prove that, given two polynomials f(x), g(x) the equality [f(x)] = [g(x)] occurs if and only if f(c) and g(c) are equal.
- (4) (a) Write the congruence classes in $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$. Compute the addition and multiplication tables for these classes.
 - (b) Is there a bijective function from $\mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ to the set of matrices in Example 4.1.3 that preserves the addition and multiplication? (If so, write what the bijection is; if not, explain why one doesn't exist.)

Date: Due: 09/26/2016.