WRITTEN 2, MATH 369.101

(1) Let $f(x)=2 x^{4}-x^{2}$ and $g(x)=2 x^{2}-x+1$ in $\mathbb{Q}[x]$.
(a) Find the quotient and remainder when dividing $f(x)$ by $g(x)$.
(b) Find the greatest common divisor of $f(x)$ and $g(x)$.
(2) Choose some proof you know that there exists an infinite number of prime numbers. Using that proof as a model, prove that there are infinitely many irreducible polynomials over a field \mathbb{F}.
(3) The authors state that Theorem 4.2.9 is analogous to Theorem 1.2.7. Read these two theorems in the text and the proof of Theorem 1.2.7. Then write out a proof of Theorem 4.2.9, modeling it after the proof of Theorem 1.2.7 given in the book.
(4) How many irreducible polynomials of degree 2 are there in $\mathbb{Z}_{7}[x]$? Please state the number of irreducible polynomials and give a proof that you have counted all degree 2 polynomials in $\mathbb{Z}_{7}[x]$ that are irreducible.
[Hint: If a degree 2 polynomial is not irreducible, then how can you write it?]

[^0]
[^0]: Date: Due: 09/14/2016.

