
NOTES ON GROUPS, MATH 369.101

[First we should discuss the Prep about Exercise 1 from before. To what
is (Z16)

×/〈9〉 isomorphic? How about (Z16)
×/〈7〉]

2-dimensional Complexes

Before we introduce complexes, we need to introduce vertices (plural of
vertex ), edges and triangular faces which, for our purposes, will be defined
as follows.

Definition 1. A vertex (or 0-simplex) is a point in Rn for some n, n ≥ 2.
If v0 and v1 are two vertices, an edge (or 1-simplex) corresponding to v0
and v1 is simply the straight line segment between the points. If v0, v1 and
v2 are three vertices, a triangular face (or 2-simplex) corresponding to
the three vertices is the triangular region in the plane containing v0, v1, v2
which has corners at the vertices.

Remark 1: If we think of the vertices as vectors in Rn, then the points
on edges and triangular faces are linear combinations of the vectors. For
example, say v0 = (1, 2) and v1 = (3, 0). Then the edge between v0, v1 is
the set of all endpoints of vectors written as

(1) t0v0 + t1v1, where t0, t1 ≥ 0 and t0 + t1 = 1.

(For example, the midpoint of the edge would be where t0 = 1/2 = t1.
Indeed, 1

2(1, 2) + 1
2(3, 0) = (2, 1), which is the midpoint.)

Similarly, the triangular face corresponding to v0, v1, v2 is the (endpoints
of vectors in the) set of all linear combinations of the form

(2) t0v0 + t1v1 + t2v2, where t0, t1, t2 ≥ 0 and t0 + t1 + t2 = 1.
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Figure 1. Some simplices in R2
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(In the above, note that the corners correspond to t0 = 1; t1 = 0; t2 = 0,
t0 = 0; t1 = 1; t2 = 0, t0 = 0; t1 = 0; t2 = 1. Also note, it is not generally the

case that t0 = t1 = t2 = 1
3 is the point that is equi-distant from the three

corners (this depends on the shape of the triangular region).

Remark 2: We stopped after considering triples v0, v1, v2 of vertices, and
because of this Definition 1 makes sense (in most cases) for vertices in R2

(or Rn, for n ≥ 2).
The reason to specify most cases: What if v0, v1 were the same point,

what does the edge between them mean? Similarly, what if v0, v1, v2 were
on the same line; what does the triangular face mean? We typically think
of the more generic situation where Definition 1 works, but by using the
linear combination description in Remark 1 we have a definition even in
these degenerate cases. So, if v0, v1, v2 are collinear, then the triangular face
for them is the set of linear combinations in (2).

Using this linear combination description we could also continue with
tuples of vertices v0, v1, . . . , vk where k ≥ 3. We would get a higher-
dimensional version of the triangular face (for k = 3 we get a tetrahedron).
In general, the object is called the k-simplex for the vertices v0, v1, . . . , vk.
We will stick to k ≤ 2.

If an edge corresponds to vi, vj , then we say that vi is a border of the
edge, and vj is also a border.

If a triangular face has corners vi, vj , vk, then we say that the three edges
(one for vi, vj , one for vi, vk and one for vj , vk) are each a border of this
triangular face.

Definition 2. A (simplicial) complex X (with dimension ≤ 2) is a col-
lection of vertices, a collection of edges, and a collection of triangular faces
where if a simplex is in X then its borders are in X. That is,

(1) if an edge is in X then its two borders are in X;
(2) if a triangular face is in X then its three borders are in X.

When we start to talk about a complex X made up of simplices, we need
to make a mental division between the points in Rn that make up a simplex
and the simplex itself. That is, X is a collection of simplices, not a subset
of Rn. So a 2-simplex in X is one, indivisible, thing in X, and each of its
border edges (which will be three 1-simplices) is something else on its own
as an element of X.

In some of our pictures we will try to represent this separation as done
in Figure 2. Despite how it is depicted, the 1-simplices (edges) in Figure 2
come from the same points in R2 that make up the boundary line segments
of the triangle that the pictured 2-simplex comes from.
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Figure 2. A complex consisting of one 2-simplex, its three
1-simplex borders and the three 0-simplices (corners).

1. The chain group, ∂ and homology

1.1. The chain group. Given a complex X, we can form an abelian group,
the chain group C∗(X), as follows. In fact, C∗(X) will be a vector space
over the field Z2.

C0(X): Think of each vertex vi as a vector with Z2 scalars. So there is
0vi = 0 and 1vi = vi. We get the property that vi + vi = 0. (Despite this,
vi 6= 0. We are thinking of “working over Z2” where 2 is 0, so you cannot
divide by 2.)

If i 6= j then vi+vj 6= 0 is a new non-zero vector. But (v0+v1)+(v1+v2) =
v0 + v2.

C1(X): Also think of each edge ei,j (the edge with borders vi and vj) as
a vector with Z2 scalars.

C2(X): Also think of each triangular face ti,j,k (the triangle with borders
ei,j , ei,k and ej,k) as a vector with Z2 scalars.

Exercise: If X has m vertices, how many vectors are in C0(X)? (Each

element is a vector
∑m−1

i=0 civi where ci is 0 or 1.)
Does the set of vertices form a basis of C0(X)?
What is a basis for C1(X) and for C2(X)?

Definition 3. Define C∗(X) = C0(X)⊕ C1(X)⊕ C2(X).

C∗(X) is a group under vector addition. The identity is 0, and the inverse
of every vector is itself.

Exercise: If there are m simplices in X (0-simplices,1-simplices and 2-
simplices), then show that C∗(X) is isomorphic to Z2 ⊕ Z2 ⊕ . . .⊕ Z2︸ ︷︷ ︸

m times

So far, the group is just encoding formal sums of vertices, edges and
triangular faces.

Since we used Z2 for our coefficients, each element of C∗(X) is just an
algebraic way to record a union of vertices, edges and triangular faces in X.
Note that the element (v0 + v1, e0,1, 0) is the union of v0, v1 and the edge
between v0, v1 (so it is a subcomplex of X). But (0, e0,1, 0) is also in C∗(X)
and, pointedly, does not contain v0 or v1, so is not a subcomplex.
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Figure 3. A visualization of the boundary map ∂.

1.2. The “boundary” homomorphism ∂. We want to introduce a ho-
momorphism ∂ : C∗(X) → C∗(X). First, we define it on each vertex, edge
or triangular face x by:

∂(x) is the sum representing the union of borders of x

(a vertex is understood to have no border, so the sum would equal zero in
that case).

Now force ∂ to be a homomorphism by saying that ∂(x+y) = ∂(x)+∂(y)
for any x and any y in C∗(X) (think about how this is well-defined, since
the set of simplices make a basis).

We can split ∂ : C∗(X) → C∗(X) into dimensions by ∂((v, e, f)) =
(∂1(e), ∂2(f), 0).

So ∂1 : C1(X)→ C0(X) and ∂2 : C2(X)→ C1(X).

Exercise: For the complex shown in Figure 4 (each simplex shown is in
the complex), determine ∂1(e0,1 + e1,3), ∂1(e1,3 + e2,3 + e1,2) and ∂2(t0,1,2 +
t1,3,2).

Exercise: If x is in C∗(X), then ∂(x) is the sum representing the bound-
ary of the union of simplices represented by x.

The kernel of ∂. Note that if x ∈ Ci(X) for i = 1, 2, then ∂(x) = 0
means, in a certain sense, that the union of edges (if i = 1) or triangular
faces (if i = 2) corresponding to x doesn’t have a boundary.

Because of the border condition on the complex X, if x = ∂2(y), then x
has no boundary (the boundary of a union of triangles doesn’t itself have
any boundary vertices – vertices that are “at an end by themselves,” and so
∂1(∂2(y)) = 0.

Proposition 1. For any x ∈ C∗(X), ∂(∂(x)) = 0.

The image of ∂. If ∂i(x) = y for some y then y represents a union of
edges when i = 2 (or union of vertices when i = 1), that are the boundary
of a union of triangular faces (or of edges).

Exercise: Show that if y =
∑m

i=1 civi ∈ C0(X) and y = ∂1(x) for some
x ∈ C1(X), then the number of coefficients ci that are non-zero must be
even.
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Figure 4. Example complex in R2

For the case i = 1, say that x is one sequence of edges connected by
endpoints. Then y = ∂1(x) is the pair of vertices at the extremes of this
sequence, and is in the image of ∂.

Exercise: Name all the elements of C0(X) which are in the image of
∂1 : C1(X)→ C0(X), where X is the complex in Figure 4.

Proposition 1 means that the image of ∂ is contained in its kernel. Since
∂ is a homomorphism, ∂(C∗(X)) ⊂ C∗(X) is a subgroup of ker ∂. It is a
normal subgroup since C∗(X) is an abelian group.

Definition 4. We write H∗(X) for the factor group ker ∂/∂(C∗(X)). For a
fixed i = 0, 1, 2, the factor group ker ∂i/∂i+1(Ci+1(X)) is denoted Hi(X).

Exercise: Using the complex X in Figure 4, write out the cosets in
H0(X). What group is isomorphic to H0(X)?

Solution: Let N1 be equal to the normal subgroup ∂1(C1(X)).
H0(X) is defined to be ker ∂0/N1.
ker ∂0 = C0(X): ∂((v, 0, 0)) = (0, 0, 0); that is, every vertex is sent to

zero by ∂, so each element in C0(X) ∼= Z5
2 will be in a coset in H0(X). Note

that if i 6= j, then vi and vj are independent in C0(X): the only way for
civi + cjvj = 0 is if ci = 0 = cj .

If i = 1, 2, 3, then v0 + vi is in the N1 = ∂1(C1(X)) since there is a union
of edges connecting vi to v0: e.g. ∂1(e0,1 + e1,3) = v0 + v3.

Since vi is its own inverse, this means that v0 and vi are in the same coset
(for i = 1, 2, 3). Note that v0 6∈ ∂1(C1(X)) (an exercise above was that the
number of non-zero coefficients had to be even), so the coset v0 = N1 + v0
is not the identity in H0(X).

Thus, for i = 1, 2, 3, N1 + vi = vi = v0 (not only are these now linearly
dependent in H0(X), they are equal).

v4 is not in the same coset as v0: in order for v0 + v4 to be in N1, we
would need an element of C1(X) (a union of edges) so that v0 + v4 is its
boundary. This doesn’t happen.

So none of v0, v4, v0 + v4 are the identity in H0(X), but they each have
order 2. The coset of anything else is either equal to one of these, or to the
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identity: for example,

v1 + v4 = v0 + v4

v0 + v4 + v3 = v0 + v0 + v4 = v4

So {v0, v4} is a basis of cosets for H0(X), and H0(X) = 〈v0〉 ⊕ 〈v4〉 ∼=
Z2 ⊕ Z2.

Exercise: For the same complex:

(1) e0,1 + e1,2 + e0,2 is in ker ∂1. Find a different element in ker ∂1 and
convince yourself that these two elements are a basis for ker ∂1.

(2) Let N2 = ∂2(C2(X)). There are only two 2-simplices (triangular
faces). What is their image under ∂2? What is a basis for N2?

(3) What is H1(X)?

Exercise: A basis of H0(X) represents the connected components of X.
A basis of H1(X) represents a set of loops in X which are not “filled” by
triangular faces.

Exercise (extra): Figure out H1(X) for the X in Figure 5.

Figure 5. Another complex in R2


