NOTES ON GROUPS, MATH 369.101

[First we should discuss the Prep about Exercise 1 from before. To what is $\left(\mathbb{Z}_{16}\right)^{\times} /\langle 9\rangle$ isomorphic? How about $\left.\left(\mathbb{Z}_{16}\right)^{\times} /\langle 7\rangle\right]$

2-dimensional Complexes

Before we introduce complexes, we need to introduce vertices (plural of vertex), edges and triangular faces which, for our purposes, will be defined as follows.

Definition 1. A vertex (or 0-simplex) is a point in \mathbb{R}^{n} for some $n, n \geq 2$. If v_{0} and v_{1} are two vertices, an edge (or 1 -simplex) corresponding to v_{0} and v_{1} is simply the straight line segment between the points. If v_{0}, v_{1} and v_{2} are three vertices, a triangular face (or 2 -simplex) corresponding to the three vertices is the triangular region in the plane containing v_{0}, v_{1}, v_{2} which has corners at the vertices.

Remark 1: If we think of the vertices as vectors in \mathbb{R}^{n}, then the points on edges and triangular faces are linear combinations of the vectors. For example, say $v_{0}=(1,2)$ and $v_{1}=(3,0)$. Then the edge between v_{0}, v_{1} is the set of all endpoints of vectors written as

$$
\begin{equation*}
t_{0} v_{0}+t_{1} v_{1}, \text { where } t_{0}, t_{1} \geq 0 \text { and } t_{0}+t_{1}=1 . \tag{1}
\end{equation*}
$$

(For example, the midpoint of the edge would be where $t_{0}=1 / 2=t_{1}$. Indeed, $\frac{1}{2}(1,2)+\frac{1}{2}(3,0)=(2,1)$, which is the midpoint.)

Similarly, the triangular face corresponding to v_{0}, v_{1}, v_{2} is the (endpoints of vectors in the) set of all linear combinations of the form

$$
\begin{equation*}
t_{0} v_{0}+t_{1} v_{1}+t_{2} v_{2}, \text { where } t_{0}, t_{1}, t_{2} \geq 0 \text { and } t_{0}+t_{1}+t_{2}=1 \tag{2}
\end{equation*}
$$

Date: Dec. 5 - Dec. 12.

Figure 1. Some simplices in \mathbb{R}^{2}
(In the above, note that the corners correspond to $t_{0}=1 ; t_{1}=0 ; t_{2}=0$, $t_{0}=0 ; t_{1}=1 ; t_{2}=0, t_{0}=0 ; t_{1}=0 ; t_{2}=1$. Also note, it is not generally the case that $t_{0}=t_{1}=t_{2}=\frac{1}{3}$ is the point that is equi-distant from the three corners (this depends on the shape of the triangular region).

Remark 2: We stopped after considering triples v_{0}, v_{1}, v_{2} of vertices, and because of this Definition 1 makes sense (in most cases) for vertices in \mathbb{R}^{2} (or \mathbb{R}^{n}, for $n \geq 2$).

The reason to specify most cases: What if v_{0}, v_{1} were the same point, what does the edge between them mean? Similarly, what if v_{0}, v_{1}, v_{2} were on the same line; what does the triangular face mean? We typically think of the more generic situation where Definition 1 works, but by using the linear combination description in Remark 1 we have a definition even in these degenerate cases. So, if v_{0}, v_{1}, v_{2} are collinear, then the triangular face for them is the set of linear combinations in (2).

Using this linear combination description we could also continue with tuples of vertices $v_{0}, v_{1}, \ldots, v_{k}$ where $k \geq 3$. We would get a higherdimensional version of the triangular face (for $k=3$ we get a tetrahedron). In general, the object is called the k-simplex for the vertices $v_{0}, v_{1}, \ldots, v_{k}$. We will stick to $k \leq 2$.

If an edge corresponds to v_{i}, v_{j}, then we say that v_{i} is a border of the edge, and v_{j} is also a border.

If a triangular face has corners v_{i}, v_{j}, v_{k}, then we say that the three edges (one for v_{i}, v_{j}, one for v_{i}, v_{k} and one for v_{j}, v_{k}) are each a border of this triangular face.

Definition 2. A (simplicial) complex X (with dimension ≤ 2) is a collection of vertices, a collection of edges, and a collection of triangular faces where if a simplex is in X then its borders are in X. That is,
(1) if an edge is in X then its two borders are in X;
(2) if a triangular face is in X then its three borders are in X.

When we start to talk about a complex X made up of simplices, we need to make a mental division between the points in \mathbb{R}^{n} that make up a simplex and the simplex itself. That is, X is a collection of simplices, not a subset of \mathbb{R}^{n}. So a 2-simplex in X is one, indivisible, thing in X, and each of its border edges (which will be three 1-simplices) is something else on its own as an element of X.

In some of our pictures we will try to represent this separation as done in Figure 2. Despite how it is depicted, the 1-simplices (edges) in Figure 2 come from the same points in \mathbb{R}^{2} that make up the boundary line segments of the triangle that the pictured 2-simplex comes from.

Figure 2. A complex consisting of one 2-simplex, its three 1 -simplex borders and the three 0 -simplices (corners).

1. The chain group, ∂ and homology

1.1. The chain group. Given a complex X, we can form an abelian group, the chain group $C_{*}(X)$, as follows. In fact, $C_{*}(X)$ will be a vector space over the field \mathbb{Z}_{2}.
$C_{0}(X)$: Think of each vertex v_{i} as a vector with \mathbb{Z}_{2} scalars. So there is $0 v_{i}=0$ and $1 v_{i}=v_{i}$. We get the property that $v_{i}+v_{i}=0$. (Despite this, $v_{i} \neq 0$. We are thinking of "working over \mathbb{Z}_{2} " where 2 is 0 , so you cannot divide by 2.)

If $i \neq j$ then $v_{i}+v_{j} \neq 0$ is a new non-zero vector. But $\left(v_{0}+v_{1}\right)+\left(v_{1}+v_{2}\right)=$ $v_{0}+v_{2}$.
$C_{1}(X)$: Also think of each edge $e_{i, j}$ (the edge with borders v_{i} and v_{j}) as a vector with \mathbb{Z}_{2} scalars.
$C_{2}(X)$: Also think of each triangular face $t_{i, j, k}$ (the triangle with borders $e_{i, j}, e_{i, k}$ and $e_{j, k}$) as a vector with \mathbb{Z}_{2} scalars.

Exercise: If X has m vertices, how many vectors are in $C_{0}(X)$? (Each element is a vector $\sum_{i=0}^{m-1} c_{i} v_{i}$ where c_{i} is 0 or 1.)

Does the set of vertices form a basis of $C_{0}(X)$?
What is a basis for $C_{1}(X)$ and for $C_{2}(X)$?

Definition 3. Define $C_{*}(X)=C_{0}(X) \oplus C_{1}(X) \oplus C_{2}(X)$.
$C_{*}(X)$ is a group under vector addition. The identity is 0 , and the inverse of every vector is itself.

Exercise: If there are m simplices in X (0 -simplices, 1 -simplices and 2simplices), then show that $C_{*}(X)$ is isomorphic to $\underbrace{\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \ldots \oplus \mathbb{Z}_{2}}_{m \text { times }}$

So far, the group is just encoding formal sums of vertices, edges and triangular faces.

Since we used \mathbb{Z}_{2} for our coefficients, each element of $C_{*}(X)$ is just an algebraic way to record a union of vertices, edges and triangular faces in X. Note that the element $\left(v_{0}+v_{1}, e_{0,1}, 0\right)$ is the union of v_{0}, v_{1} and the edge between v_{0}, v_{1} (so it is a subcomplex of X). But $\left(0, e_{0,1}, 0\right)$ is also in $C_{*}(X)$ and, pointedly, does not contain v_{0} or v_{1}, so is not a subcomplex.

Figure 3. A visualization of the boundary map ∂.
1.2. The "boundary" homomorphism ∂. We want to introduce a homomorphism $\partial: C_{*}(X) \rightarrow C_{*}(X)$. First, we define it on each vertex, edge or triangular face x by:

$$
\partial(x) \text { is the sum representing the union of borders of } x
$$

(a vertex is understood to have no border, so the sum would equal zero in that case).

Now force ∂ to be a homomorphism by saying that $\partial(x+y)=\partial(x)+\partial(y)$ for any x and any y in $C_{*}(X)$ (think about how this is well-defined, since the set of simplices make a basis).

We can split $\partial: C_{*}(X) \rightarrow C_{*}(X)$ into dimensions by $\partial((v, e, f))=$ $\left(\partial_{1}(e), \partial_{2}(f), 0\right)$.

So $\partial_{1}: C_{1}(X) \rightarrow C_{0}(X)$ and $\partial_{2}: C_{2}(X) \rightarrow C_{1}(X)$.
Exercise: For the complex shown in Figure 4 (each simplex shown is in the complex), determine $\partial_{1}\left(e_{0,1}+e_{1,3}\right), \partial_{1}\left(e_{1,3}+e_{2,3}+e_{1,2}\right)$ and $\partial_{2}\left(t_{0,1,2}+\right.$ $\left.t_{1,3,2}\right)$.

Exercise: If x is in $C_{*}(X)$, then $\partial(x)$ is the sum representing the boundary of the union of simplices represented by x.

The kernel of ∂. Note that if $x \in C_{i}(X)$ for $i=1,2$, then $\partial(x)=0$ means, in a certain sense, that the union of edges (if $i=1$) or triangular faces (if $i=2$) corresponding to x doesn't have a boundary.

Because of the border condition on the complex X, if $x=\partial_{2}(y)$, then x has no boundary (the boundary of a union of triangles doesn't itself have any boundary vertices - vertices that are "at an end by themselves," and so $\partial_{1}\left(\partial_{2}(y)\right)=0$.

Proposition 1. For any $x \in C_{*}(X), \partial(\partial(x))=0$.
The image of ∂. If $\partial_{i}(x)=y$ for some y then y represents a union of edges when $i=2$ (or union of vertices when $i=1$), that are the boundary of a union of triangular faces (or of edges).

Exercise: Show that if $y=\sum_{i=1}^{m} c_{i} v_{i} \in C_{0}(X)$ and $y=\partial_{1}(x)$ for some $x \in C_{1}(X)$, then the number of coefficients c_{i} that are non-zero must be even.

Figure 4. Example complex in \mathbb{R}^{2}

For the case $i=1$, say that x is one sequence of edges connected by endpoints. Then $y=\partial_{1}(x)$ is the pair of vertices at the extremes of this sequence, and is in the image of ∂.

Exercise: Name all the elements of $C_{0}(X)$ which are in the image of $\partial_{1}: C_{1}(X) \rightarrow C_{0}(X)$, where X is the complex in Figure 4.

Proposition 1 means that the image of ∂ is contained in its kernel. Since ∂ is a homomorphism, $\partial\left(C_{*}(X)\right) \subset C_{*}(X)$ is a subgroup of ker ∂. It is a normal subgroup since $C_{*}(X)$ is an abelian group.

Definition 4. We write $H_{*}(X)$ for the factor group ker $\partial / \partial\left(C_{*}(X)\right)$. For a fixed $i=0,1,2$, the factor group ker $\partial_{i} / \partial_{i+1}\left(C_{i+1}(X)\right)$ is denoted $H_{i}(X)$.

Exercise: Using the complex X in Figure 4, write out the cosets in $H_{0}(X)$. What group is isomorphic to $H_{0}(X)$?

Solution: Let N_{1} be equal to the normal subgroup $\partial_{1}\left(C_{1}(X)\right)$.
$H_{0}(X)$ is defined to be ker ∂_{0} / N_{1}.
ker $\partial_{0}=C_{0}(X): \partial((v, 0,0))=(0,0,0)$; that is, every vertex is sent to zero by ∂, so each element in $C_{0}(X) \cong \mathbb{Z}_{2}^{5}$ will be in a coset in $H_{0}(X)$. Note that if $i \neq j$, then v_{i} and v_{j} are independent in $C_{0}(X)$: the only way for $c_{i} v_{i}+c_{j} v_{j}=0$ is if $c_{i}=0=c_{j}$.

If $i=1,2,3$, then $v_{0}+v_{i}$ is in the $N_{1}=\partial_{1}\left(C_{1}(X)\right)$ since there is a union of edges connecting v_{i} to v_{0} : e.g. $\partial_{1}\left(e_{0,1}+e_{1,3}\right)=v_{0}+v_{3}$.

Since v_{i} is its own inverse, this means that v_{0} and v_{i} are in the same coset (for $i=1,2,3$). Note that $v_{0} \notin \partial_{1}\left(C_{1}(X)\right)$ (an exercise above was that the number of non-zero coefficients had to be even), so the coset $\overline{v_{0}}=N_{1}+v_{0}$ is not the identity in $H_{0}(X)$.

Thus, for $i=1,2,3, N_{1}+v_{i}=\overline{v_{i}}=\overline{v_{0}}$ (not only are these now linearly dependent in $H_{0}(X)$, they are equal).
v_{4} is not in the same coset as v_{0} : in order for $v_{0}+v_{4}$ to be in N_{1}, we would need an element of $C_{1}(X)$ (a union of edges) so that $v_{0}+v_{4}$ is its boundary. This doesn't happen.

So none of $\overline{v_{0}}, \overline{v_{4}}, \overline{v_{0}+v_{4}}$ are the identity in $H_{0}(X)$, but they each have order 2 . The coset of anything else is either equal to one of these, or to the
identity: for example,

$$
\begin{aligned}
\overline{v_{1}}+\overline{v_{4}} & =\overline{v_{0}+v_{4}} \\
\overline{v_{0}+v_{4}}+\overline{v_{3}} & =\overline{v_{0}+v_{0}+v_{4}}=\overline{v_{4}}
\end{aligned}
$$

So $\left\{\overline{v_{0}}, \overline{v_{4}}\right\}$ is a basis of cosets for $H_{0}(X)$, and $H_{0}(X)=\left\langle\overline{v_{0}}\right\rangle \oplus\left\langle\overline{v_{4}}\right\rangle \cong$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

Exercise: For the same complex:
(1) $e_{0,1}+e_{1,2}+e_{0,2}$ is in ker ∂_{1}. Find a different element in ker ∂_{1} and convince yourself that these two elements are a basis for $\operatorname{ker} \partial_{1}$.
(2) Let $N_{2}=\partial_{2}\left(C_{2}(X)\right)$. There are only two 2-simplices (triangular faces). What is their image under ∂_{2} ? What is a basis for N_{2} ?
(3) What is $H_{1}(X)$?

Exercise: A basis of $H_{0}(X)$ represents the connected components of X. A basis of $H_{1}(X)$ represents a set of loops in X which are not "filled" by triangular faces.

Exercise (extra): Figure out $H_{1}(X)$ for the X in Figure 5.

Figure 5. Another complex in \mathbb{R}^{2}

