
NOTES ON GROUPS, MATH 369.101

Factor groups

We begin with our motivation for the term normal subgroup.

Theorem 1. Suppose that H is a normal subgroup of G. Then the set of
(right) cosets {Ha | a ∈ G} forms a group under the operation Ha ∗Hb =
H(ab). This factor group is written G/H.

Proof. As we saw before, we need to know that the operation ∗ is well-
defined. That is, if Ha = Hb then for any c ∈ G we need to know both that
Ha ∗Hc = Hb ∗Hc, and that Hc ∗Ha = Hc ∗Hb.

To see the former: by definition, Ha ∗Hc = H(ac) and Hb ∗Hc = H(bc).
So it is enough to check that H(ac) = H(bc). Since Ha = Hb we know that
a ∈ Hb, so a = h1b for some h1 ∈ H. Then ac = h1bc ∈ H(bc). Using the
same proposition again (but this time with the cosets H(ac) and H(bc)),
this implies that H(ac) = H(bc).

For the latter, we want that Hc ∗ Ha = Hc ∗ Hb. By the definition of
∗ we need H(ca) = H(cb) and, just as in the previous paragraph, we know
that a = h1b for some h1 ∈ H. Unlike in the previous paragraph, this
does not immediately tell us that ca ∈ H(cb), it only says that ca = ch1b.

Here we use the fact that H is normal. Recall, this means that for any
x ∈ G, and any h ∈ H we have xhx−1 ∈ H. In particular, there exists some
h2 ∈ H so that ch1c

−1 = h2, which means that ch1 = h2c.
From this we have that ca = ch1b = h2(cb) which is an element of H(cb).

So ca ∈ H(cb) and by that same proposition H(ca) = H(cb).
The above has shown that ∗ is a well-defined operation.

To see that we have a group:

(1) (Associativity): for a, b, c ∈ G, since the operation ofG is associative,

(Ha∗Hb)∗Hc = H(ab)∗Hc = H((ab)c) = H(a(bc)) = Ha∗H(bc) = Ha∗(Hb∗Hc).
(2) (Identity): let e be the identity in G. Since H is a subgroup, e ∈ H,

so H = He, and so for any a ∈ G,

Ha ∗H = H(ae) = Ha, and H ∗Ha = H(ea) = Ha.

(3) (Inverses): for any a ∈ G,

Ha ∗H(a−1) = H(aa−1) = He = H,

which is the identity of the operation. Similarly, H(a−1) ∗Ha = H.
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The idea of the factor group G/H is that you are collapsing the subgroup
H to one element (the new identity), and each other coset to one element of
the new group, like we do with congruence classes where there are infinitely
many elements all representing one thing.

Note that if |G| is finite then the number of elements in G/H is the index
of H in G, equaling |G|/|H|. One can have G/H be a finite group even if
G is infinite, e.g. Z/nZ.

Example 1: Recall our example from last class: K = {e, (1, 2, 3), (1, 3, 2)} ⊂
S3 is a normal subgroup. Let’s understand S3/K.

The only elements of S3 not in K are (1, 2), (1, 3) and (2, 3). As these are
transpositions, they are their own inverses.

Now, (1, 2)(1, 3), (1, 2)(2, 3), (1, 3)(1, 2), (1, 3)(2, 3), (2, 3)(1, 2) and (2, 3)(1, 3)
are each either (1, 2, 3) or (1, 3, 2) (Do you know why, without computing?)
This means that each of these products are in K, and so K(1, 2) = K(1, 3) =
K(2, 3), and there are exactly 2 cosets in S3/K (we could also see this by
noting |S3| = 6 and |K| = 3).

For the group structure, K(1, 2) ∗K(1, 2) = K, which is the identity. So
the order of the coset K(1, 2) is 2.

Exercise 1: Let G = (Z16)
× and let 〈9〉 be the cyclic subgroup generated

by 9 (this subgroup has only 2 elements in it). Write out the cosets in G/〈9〉
(there are four), then figure out their orders in G/〈9〉. Note the order of an
element will be the lowest power to which you raise it before getting into
the normal subgroup, 〈9〉. Is G/〈9〉 cyclic?

Now do the same for G/〈7〉.

Proposition 1. If ϕ : G1 → G2 is a group homomorphism, then kerϕ is a
normal subgroup of G1.

Proof. We already know it is a subgroup. Given any x ∈ G1 and h ∈ kerϕ,
we need to see that ϕ(xhx−1) = e2, the identity in G2.

Since ϕ(h) = e2 we have ϕ(xhx−1) = ϕ(x)ϕ(h)ϕ(x)−1 = ϕ(x)ϕ(x)−1 =
e2. So xhx−1 ∈ kerϕ, and the kernel is normal. �

Let’s try to get a non-trivial homomorphism ϕ : S3 → Z2 (where Z2 has
+ as operation).

If we had such a ϕ, then the order of ϕ((1, 2, 3)) divides the order of
(1, 2, 3) (which is 3: (1, 2, 3)3 = e) by previous a proposition (see the 4th set
of notes on groups). But the only orders of elements in Z2 are 1 or 2, so
ϕ((1, 2, 3)) must be 0 (the identity). Similarly, it must be ϕ((1, 3, 2)) = 0.

Since the identity of S3 must be sent to 0 also, we cannot have any-
thing else in the kernel (it must be a subgroup, so | kerϕ| divides |S3| =
6 which means | kerϕ| ≤ 3, since ϕ is not trivial, and we already have
e, (1, 2, 3), (1, 3, 2) ∈ kerϕ. So we must set ϕ((1, 2)) = ϕ((1, 3)) = ϕ((2, 3)) =
1. We’ve defined ϕ(σ) for each σ ∈ S3.
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This defines a homomorphism ϕ : S3 → Z2, though a straightforward
check that our definition preserves the group operation would require several
calculations.

Instead of doing that, note that ϕ sends even permutations to 0 and
odd permutations to 1. A product of two even permutations is even, and
a product of two odd permutations is even, and on the Z2 side 0 + 0 = 0
and 1 + 1 = 0. This shows that ϕ preserves operations when the parity of
permutations is the same. If one permuation is even and one is odd, then
their product is odd. Likewise, 0 + 1 = 1 and 1 + 0 = 1 in Z2. This proves
that ϕ is a homomorphism.

Observe! In fact, the last paragraph did more. In one fell swoop that
paragraph (along with the well-definedness of even & odd in Sn) proves that
the function ϕ : Sn → Z2 that sends an even σ to 0 and an odd σ to 1 is a
group homomorphism.

By Proposition 1, K = kerϕ (the set of even permutations) is a normal
subgroup. (If you count how many even permutations there are, you see it
is half of |Sn|, so you could also use your homework problem for this). So
Sn/K (permutations mod even permutations) is a group. If σ1, σ2 are odd
permutations, then K(σ21) = K = K(σ1σ

−1
2 ) since σ21 and σ1σ

−1
2 are even.

This means that Sn/K has only two elements (cosets), and the non-identity
one has order 2.

Remember that for ϕ : G1 → G2, the image ϕ(G1) ⊂ G2 is a subgroup.

Theorem 2. (Fundamental Homomorphism Theorem) Let ϕ : G1 → G2 be
a homomorphism of groups and set K = kerϕ. Then G1/K is isomorphic
to ϕ(G2). In particular, if ϕ is onto then G1/K ∼= G2.

So, for example, taking ϕ : Sn → Z2 to be the even/odd homomorphism
above, we get that Sn/K ∼= Z2.

Proof. The proof of this theorem is essentially the same as it was for the
Fund. Homomorphism Th’m for Rings. You define a function ψ : G1/K →
φ(G2) by setting ψ(Ka) = φ(a). Then you check that this is a bijective
homomorphism (so an isomorphism). �

Exercise 2: Using the notation from the example in the last set of notes,
show that the factor group M/N(1) is isomorphic to Z2⊕Z2 (with addition
in each component). For this, you may want to remember that {1,−1}, with
the operation of multiplication, is isomorphic to (Z2,+).


