
NOTES ON GROUPS, MATH 369.101

Cyclic groups

Cyclic groups are simple compared to most groups. Remember that saying
G is cyclic means that there is an a ∈ G so that every x ∈ G is x = ak for
some k ∈ Z.

Proposition 1. If G is a cyclic group and |G| is infinite, then G ∼= Z. If
|G| is finite (say n is a positive number so that |G| = n), then G ∼= Zn.

Proof. We know from before (Proposition 4 in the last set of notes) that
there is an onto homomorphism ϕ : Z → G. Recall that a = ϕ(1) is a
generator of G.

Case 1: |G| is infinite. Since n is 1 added to itself n times, n = n ·
1 =“ 1n ” (see the note below). That means, since a = ϕ(1) and ϕ is a
homomorphism that ϕ(n) = an. We know that ϕ is onto.

To see that ϕ is one-to-one, consider if ϕ(n) = ϕ(m). In other words,
an = am. If m 6= n, then assume m < n (which we may do without loss of
generality). Then an−m = e, and n−m > 0, which implies that a has finite
order. But then |G| = |〈a〉| = o(a) is finite, a contradiction. So an = am

implies m = n and so ϕ is one-to-one and is an isomorphism from Z to G.

Note: The reason for the quotes here is that we are not referring to
repeated multiplication, as is usually done with powers of numbers. We
wrote “ 1n ” to make reference to how we’ve been writing group operations:
an is a ∗a ∗ . . . ∗a (n times). Since the group operation in Z is addition, this
agrees in that setting with a+ a+ . . .+ a (n times).

Case 2: |G| is finite. We again use our onto homomorphism ϕ : Z→ G.
Since |G| = n is finite and G = 〈a〉, we know that o(a) = n. So ϕ(n) =
an = e, implying n ∈ kerϕ. Moreover any multiple of n is in kerϕ. Since
n = o(a), no smaller (in absolute value) power of a equals the identity, and
so kerϕ = nZ.

Before the end of the semester, we will prove the Fundamental Theorem
of Homomorphisms (for groups), which in this case says ϕ(Z) ∼= Z/ kerϕ.
Since ϕ is onto and kerϕ = nZ this implies

Zn
∼= Z/nZ ∼= G.

�

Corollary 1. A subgroup of a cyclic group is also cyclic.
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Proof. Let H be a subgroup of a cyclic group G = 〈a〉 and let ϕ be the
isomorphism from the Proposition (so ϕ : Z→ G or ϕ : Zn → G, depending
on whether G is infinite or finite).

Then ϕ−1(H) is a subgroup of Z (or Zn), and the only subgroups of these
groups are of the form kZ (or kZn). That means that (in the case that G is
an infinite group)

H = ϕ(ϕ−1(H)) = ϕ(kZ) = {akm | m ∈ Z}
which is a cyclic group generated by ak. �

Corollary 2. Let G = 〈a〉 be a finite cyclic group with |G| = n. Then

(1) for any m ∈ Z, set d = gcd(m,n). Then 〈am〉 = 〈ad〉 as subgroups
of G.

(2) ak generates G if and only if gcd(k, n) = 1.
(3) for any divisors m and k of n (where m, k might be equal to 1),
〈am〉 ⊂ 〈ak〉 if and only if k divides m.

Proof. We know all these properties to hold true when translated to Zn. �

Examples:
The group Z×

13 is cyclic, generated by (the congruence class of) 2. So
〈2〉 = Z×

13. In this group o(12) = 2, o(3) = 3 = o(9), o(5) = 4 = o(8), and
o(4) = 6 = o(10) and all other non-identity elements have order 12.

The group has proper subgroups: 〈3〉 ⊂ 〈4〉 ⊂ 〈2〉, and 〈12〉 ⊂ 〈4〉 ⊂ 〈2〉
〈12〉 ⊂ 〈5〉 ⊂ 〈2〉.

We could draw the inclusions in a diagram as below. (The sizes of the
subgroups are in red.)

〈1〉

〈12〉2 〈3〉 3

〈4〉 6〈5〉4

〈2〉 12

Exercise: Create a similar diagram for (Z18)
× or for (Z16)

× (one of these
groups is cyclic, and the other is not. If the group is not cyclic, there won’t
be a 〈a〉 subgroup at the top, just the group (Zn)× with some number of
subgroups directly below it).

Normal subgroups

We want to construct “factor groups” like we did factor rings (that is,
think of using a subgroup H ⊂ G to make congruence classes, and have a
group structure on those congruence classes).

The thing that would be like factor rings would be to define: for a, b ∈ G,
set a ∼ b if ab−1 ∈ H. This is equivalent to saying Hb = Ha as sets, where
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Ha is the set of all group elements that are of the form xa for some x ∈ H,
a coset of H.

Let us prove it.

Proposition 2. Let H be a subgroup of G and consider two elements a, b ∈
G. Then the following are equivalent.

(1) ab−1 ∈ H
(2) a ∈ Hb
(3) Ha = Hb

Proof. Suppose that ab−1 ∈ H, that is there is some h ∈ H so that ab−1 = h.
Then a = hb ∈ Hb, so a ∈ Hb.

Suppose that a ∈ Hb, then there is an h ∈ H so that a = hb. Any
element of Ha has the form xa for some x ∈ H, and we see that xa =
x(hb) = (xh)b ∈ Hb, so Ha ⊂ Hb. Any element in Hb is xb for some
x ∈ H. Since a = hb, xb = x(h−1a) = (xh−1)a ∈ Ha, so Hb ⊂ Ha, and so
Ha = Hb.

Suppose that Ha = Hb. Since e ∈ H, a is an element of Ha and so
a ∈ Hb, and so there is an h ∈ H with a = hb, which implies ab−1 = h ∈ H.

We have shown (1) ⇒ (2) ⇒ (3) ⇒ (1). This implies that any one of the
three conditions is true if and only if one of the others is true. �

Recall from the lemma right before Lagrange’s theorem, that this is always
an equivalence relation, so the sets Ha partition G and for a fixed a the
number of elements in Ha (in the case that H is finite) equals |H|, the
number of elements in H, regardless of which a was chosen.

We have yet to point it out explicitly, but if |G| = n is finite, then since
|H| is a factor of |G|,

Proposition 3. If |G| is finite, the number of cosets of H in G is |G|/|H|.
This number is called the index of H in G (sometimes written [G : H]).

If |G| is infinite then sometimes there are infinitely many cosets of H,
sometimes a finite number. In the first case we say H has infinite index, in
the second case its index is the number of cosets.

Like in factor rings, we would like to define an operation through the
operation of the group. Something like Ha ∗Hc = H(a · c), where · is the
operation of G.

But there is a problem. We could have b 6= a but b ∈ Ha, in which case
Hb = Ha by the above Proposition. This is not the problem, but it means
that Hc ∗Ha should equal Hc ∗Hb – our answer should not depend on how
we choose to represent the coset. But there are cases where H(c·a) 6= H(c·b).

Example: Let H = {e, (1, 2)} be the subgroup of S3 generated by the
transposition (1, 2). Let’s write out all the cosets.
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Take τ1 = (2, 3) and τ2 = (1, 3). Then

H = {e, (1, 2)}
Hτ1 = {(2, 3), (1, 2, 3)}
Hτ2 = {(1, 3), (1, 3, 2)}

Now, referring to the discussion of the problem above: consider this case,
with a = (2, 3), b = (1, 2, 3) and c = (1, 3).

Since τ1 = (2, 3) and (1, 2, 3) are in the same coset (that is, (2, 3) ∼
(1, 2, 3)) then we have H(2, 3) = H(1, 2, 3).

So it ought to be that H(1, 3) ∗ H(2, 3) = H(1, 3) ∗ H(1, 2, 3) (that is,
Hc ∗Ha = Hc ∗Hb). But is H(c · a) = H(c · b)?

Since c · a = (1, 3)(2, 3) = (1, 3, 2) and c · b = (1, 3)(1, 2, 3) = (1, 2), this
would require H(1, 3, 2) to equal H(1, 2) = H, but these cosets are not the
same!

But not all is lost. The answer is to focus on subgroups where this defi-
nition will work, and this is the reason for the following definition.

Definition 1. A subgroup H ⊂ G is normal if for any x ∈ G and any
h ∈ H, xhx−1 ∈ H.

Technically our cosets here are “right cosets” and for a left coset you
multiply by a on the left. In general, a left coset of H is not necessarily
a right coset of H, but there is a one-to-one correspondence between left
cosets and right cosets. We will stick with right cosets.

Notice that the subgroup H = {e, (1, 2)} ⊂ S3 from our example above
is not normal: (2, 3) is the inverse of (2, 3), and we can calculate that
(2, 3)(1, 2)(2, 3) = (2, 3)(1, 2, 3) = (1, 3) 6∈ H.

However, the subgroup {e, (1, 2, 3), (1, 3, 2)} ⊂ S3 is normal (use problem
2.3.13 from the homework):

for any σ ∈ S3, σ · (1, 2, 3) · σ−1 = (σ(1), σ(2), σ(3)) which is another
3-cycle, so it either equals (1, 2, 3) or (1, 3, 2).

Observation: If G is an abelian group, then every subgroup of G is
normal (since xhx−1 = h if G is abelian). So, any subgroup of a cyclic group
is normal, since cyclic groups are abelian. Also, for any n, any subgroup of
(Zn)× will be normal as (Zn)× is abelian (since multiplication modulo n is
a commutative operation).

Exercise 1: Let H = 4Z24 be the cyclic subgroup of Z24 generated by
the congruence class of 4. Write out all the cosets of H. How many elements
are there in Z24/H? Does our proposed operation on cosets make Z24/H
cyclic?

Exercise 2: Consider the set of matrices

M =

{(
ε a
0 δ

) ∣∣∣ where ε, δ ∈ {1,−1} and a ∈ Z
}

.
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Check that M, with matrix multiplication, is a group.
Find M1,M2 ∈M so that M1M2 6= M2M1. Such matrices show that M

is not abelian.

Fix an integer n. Let N(n) =

{(
1 a
0 1

) ∣∣∣ where a ∈ nZ
}

. Show that

N(n) is a normal subgroup of M for any choice of n.

Show also that M(2) =

{(
ε a
0 δ

) ∣∣∣ where ε, δ ∈ {1,−1} and a ∈ 2Z
}

is

a normal subgroup.

In the next class we will show that if H is a normal subgroup, then we
can define a group operation on cosets like we want to, and this gives us a
new group, called a factor group.


