NOTES ON GROUPS, MATH 369.101

Group homomorphisms

Suppose that we consider a finite group G (say that $|G|=n$), and suppose that G is cyclic. Then there is some $a \in G$ so that $\langle a\rangle=G$. So

$$
G=\left\{e, a, a^{2}, \ldots, a^{n-1}\right\} .
$$

Notice that if $i+j \geq n$, then $a^{i+j}=a^{i} a^{j}$ is equal to a power of a that is smaller than $i+j$. For example, $a^{1} a^{n-1}=a^{n}=e=a^{0}$ and $a^{3} a^{n-1}=a^{2}$. The formal way to say it is:

$$
i+j \equiv k(\bmod n) \quad \text { if and only if } \quad a^{i+j}=a^{k} .
$$

So in some sense our cyclic group G works just like the cyclic group \mathbb{Z}_{n}, though the elements and operations are different.

Definition 1. Say $\left(G_{1}, *\right)$ and $\left(G_{2}, \cdot\right)$ are groups with their associated operations. A function $\varphi: G_{1} \rightarrow G_{2}$ is a group homomorphism if it preserves the operation. That is:

$$
\varphi(a * b)=\varphi(a) \cdot \varphi(b) \quad \text { for any } a, b \in G_{1} .
$$

If $\varphi: G_{1} \rightarrow G_{2}$ is a homomorphism that is bijective, then φ is called an isomorphism.

Proposition 1. Given a homomorphism $\varphi: G_{1} \rightarrow G_{2}$, let e_{i} be the identity of G_{i}. Then $\varphi\left(e_{1}\right)=e_{2}$ and φ is one-to-one if and only if $\operatorname{ker} \varphi=\left\{e_{1}\right\}$.

Proof. For any $x \in G_{1}, \varphi(x) \varphi\left(e_{1}\right)=\varphi\left(x e_{1}\right)=\varphi(x)$. Multiplying on the left by $\varphi(x)^{-1}$ we get that $\varphi\left(e_{1}\right)=\varphi(x)^{-1} \varphi(x)=e_{2}$.
(Note, as a consequence, that $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$ since
$\left.\varphi(x) \varphi\left(x^{-1}\right)=\varphi\left(x x^{-1}\right)=\varphi\left(e_{1}\right)=e_{2}.\right)$
If φ is one-to-one and $x \in \operatorname{ker} \varphi$, then $\varphi(x)=e_{2}=\varphi\left(e_{1}\right)$ implies $x=e_{1}$ and so e_{1} is the only element of the kernel. If $\operatorname{ker} \varphi=\left\{e_{1}\right\}$, then if there is $\varphi(x)=\varphi(y)$ then (using that φ is a homomorphism, and that $\varphi\left(y^{-1}\right)=$ $\varphi(y)^{-1}, \varphi\left(x y^{-1}\right)=e_{2}$ and so $x y^{-1}=e_{1}$, which implies $x=y$.

Proposition 2. The composition of two homomorphisms (isomorphisms) is another homomorphism (isomorphism).

The inverse of an isomorphism is an isomorphism.
Proposition 3. Given a homomorphism $\varphi: G_{1} \rightarrow G_{2}$, the image $\varphi\left(G_{1}\right)$ is a subgroup of G_{2}.

Date: Nov. 16, Nov. 21.

Example 1: We've considered the group $\left(\mathbb{Z}_{9}\right)^{\times}$before, which has elements $\{1,2,4,5,7,8\}$ and multiplication modulo 9 as an operation.

Notice that $\langle 2\rangle=\left(\mathbb{Z}_{9}\right)^{\times}\left(\right.$since $2^{2}=4,2^{3}=8,2^{4} \equiv 7,2^{5} \equiv 5$, and $2^{6} \equiv 1$). With the observations about a cyclic group in mind, we define a homomorphism

$$
\varphi:\left(\mathbb{Z}_{9}^{\times}, \cdot\right) \rightarrow\left(\mathbb{Z}_{6},+\right)
$$

by saying: if $a \in\left(\mathbb{Z}_{9}\right)^{\times}$is equal to $a=2^{k}$, then define $\varphi(a)=[k]$, the congruence class mod 6 of k. (We included the notation of the operations just to clarify what the group operation was on each side.

Claim: φ is well-defined and an isomorphism.
We need to be careful, since there are more than one way to write a given element a as 2^{k} in \mathbb{Z}_{9}^{\times}. To this end, suppose that $2^{j} \equiv 2^{k}$ in \mathbb{Z}_{9}^{\times}. Then by a Proposition from a previous class, j is congruent to $k \bmod o(2)$. Since the order of 2 is $6, j \equiv k(\bmod 6)$ and so $\varphi\left(2^{j}\right)$ and $\varphi\left(2^{k}\right)$ agree in \mathbb{Z}_{6}.
φ is a homomorphism: if $a=2^{k}$ and $b=2^{l}$ then

$$
\varphi(a \cdot b)=\varphi\left(2^{k+l}\right)=[k+l]=[k]+[l]=\varphi(a)+\varphi(b) .
$$

We note also that $\operatorname{ker} \varphi=\left\{a \in \mathbb{Z}_{9}^{\times} \mid a=2^{0}\right\}=\{1\}$. So the kernel is just the identity and so φ is one-to-one. And finally, since $2^{k} \in \mathbb{Z}_{9}^{\times}$for all $k=0,1, \ldots, 5, \varphi$ is onto.

So \mathbb{Z}_{9}^{\times}, with multiplication is isomorphic to the integers $\bmod 6$ (under addition)!

Proposition 4. Let $G=\langle a\rangle$ be any cyclic group and consider the group of integers \mathbb{Z} with addition. Then $\varphi: \mathbb{Z} \rightarrow G$ defined by $\varphi(n)=a^{n}$ is an onto homomorphism.

Proof. Try to prove this.
Proposition 5. If $\varphi: G_{1} \rightarrow G_{2}$ is a group homomorphism and $a \in G_{1}$ has order n, then the order of $\varphi(a)$ in G_{2} is a divisor of n.

Proposition 6. Let $\varphi: G_{1} \rightarrow G_{2}$ be an isomorphism of groups. Then
(a) If $a \in G_{1}$ has order n then $\varphi(a) \in G_{2}$ has order n.
(b) If G_{1} is abelian then so is G_{2}.
(c) If G_{1} is cyclic then so is G_{2}.

Example 2: The symmetric group S_{3} is isomorphic to the symmetry group of an equilateral triangle.

Define an isomorphism φ as follows. First associate vertex a with 1 , vertex b with 2 and vertex c with 3 . Then, given a symmetry of the triangle send it to the permutation that acts on $\{1,2,3\}$ in the same way that the symmetry acts on the vertices of the triangle.

So for r_{a} (the reflection that fixes vertex a and interchanges b and c) define $\varphi\left(r_{a}\right)=(2,3)$, the permutation that fixes 1 and interchanges 2 and 3. Set $\varphi\left(r_{b}\right)=(1,3)$ (r_{b} fixes b and the transposition $(1,3)$ fixes 2), and set
$\varphi\left(r_{c}\right)=(1,2)$. Finally, for t_{1}, which takes $a \mapsto b \mapsto c \mapsto a$ define $\varphi\left(t_{1}\right)=$ $(1,2,3)$ and define $\varphi\left(t_{2}\right)=(1,3,2)$. We claim this defines an isomorphism.

It is clearly one-to-one and onto. The reason that φ preserves the group operation is because it was composition of functions on both sides and we were careful to match up how a symmetry acted on vertices to how the permutation in the image acted on $\{1,2,3\}$.

For example: Recall that $r_{c} \circ r_{a}=t_{1}$ and

$$
\varphi\left(r_{c}\right) \varphi\left(r_{a}\right)=(1,2)(2,3)=(1,2,3)=\varphi\left(t_{1}\right)=\varphi\left(r_{c} \circ r_{a}\right) .
$$

Example 3: In your homework you looked at the group of symmetries on a square, D_{4}. This group had 8 elements and they could all be written as products of one reflection r which had order $2\left(r^{2}=e\right)$ and one rotation t which had order $4\left(t^{4}=e\right)$.

Since the symmetric group S_{4} has $4 \cdot 3 \cdot 2 \cdot 1=24$ elements, D_{4} and S_{4} cannot be isomorphic. But, try to construct a one-to-one, but not onto, homomorphism from D_{4} into S_{4} (this will mean that D_{4} is isomorphic to a subgroup of S_{4}).

