NOTES ON GROUPS, MATH 369.101

GROUP HOMOMORPHISMS

Suppose that we consider a finite group G (say that |G| = n), and suppose
that G is cyclic. Then there is some a € G so that (a) = G. So

G ={e,a,d...,a" '}

Notice that if i +j > n, then 't/ = a'a’ is equal to a power of a that is
smaller than i + j. For example, a'a” ! = a" = e = a° and a?a"! = a?.
The formal way to say it is:

i+ j = k(mod n) if and only if o'tV = aF.

So in some sense our cyclic group G works just like the cyclic group Z,,
though the elements and operations are different.

Definition 1. Say (G1,*) and (Ge, ) are groups with their associated op-
erations. A function ¢ : G; — G4 is a group homomorphism if it preserves
the operation. That is:

wlaxb) = p(a) - p(b) for any a,b € G.

If ¢ : Gi — G2 is a homomorphism that is bijective, then ¢ is called an
isomorphism.

Proposition 1. Given a homomorphism ¢ : G1 — Ga, let e; be the identity
of Gi. Then p(e1) = ez and ¢ is one-to-one if and only if ker ¢ = {e1}.

Proof. For any = € G1, p(z)p(e1) = p(ze1) = p(z). Multiplying on the left
by o(x)~! we get that ¢(e1) = p(x) " to(z) = e.

(Note, as a consequence, that ¢(z~!) = ¢(z)~
p@)p(zh) = p(za™") = p(e1) = e2.)

If ¢ is one-to-one and = € ker ¢, then ¢(x) = ea = @(e1) implies z = e;
and so e; is the only element of the kernel. If kerp = {e;}, then if there
is ¢(z) = ¢(y) then (using that ¢ is a homomorphism, and that ¢(y—!) =
o(y)7Y, o(zy™!) = ez and so 2y~ = ey, which implies z = y. O

L gince

Proposition 2. The composition of two homomorphisms (isomorphisms)
is another homomorphism (isomorphism,).
The inverse of an isomorphism is an isomorphism.

Proposition 3. Given a homomorphism ¢ : Gi — Ga, the image p(G1) is
a subgroup of Gs.
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Example 1: We've considered the group (Zg)* before, which has ele-
ments {1,2,4,5,7,8} and multiplication modulo 9 as an operation.

Notice that (2) = (Zg)* (since 22 = 4, 23 =8, 2* =7, 2> = 5, and
26 = 1). With the observations about a cyclic group in mind, we define a
homomorphism

v (Zg,-) = (Ze,+)

by saying: if a € (Zg)* is equal to a = 2F, then define ¢(a) = [k], the
congruence class mod 6 of k. (We included the notation of the operations
just to clarify what the group operation was on each side.

Claim: ¢ is well-defined and an isomorphism.

We need to be careful, since there are more than one way to write a given
element a as 2% in Zg. To this end, suppose that 2/ = 2¥ in ZJ. Then by a
Proposition from a previous class, j is congruent to k¥ mod o(2). Since the
order of 2 is 6, j = k (mod 6) and so (27) and (2¥) agree in Zg.

¢ is a homomorphism: if a = 2F and b = 2! then

p(a-b) = 02" = [k +1] = [k] + [I] = ¢(a) + @(b).

We note also that kerp = {a € Z§ | a = 2°} = {1}. So the kernel is
just the identity and so ¢ is one-to-one. And finally, since 2% Zg for all
k=0,1,...,5, ¢ is onto.

So Z§, with multiplication is isomorphic to the integers mod 6 (under
addition)!

Proposition 4. Let G = (a) be any cyclic group and consider the group of
integers Z with addition. Then ¢ : Z — G defined by p(n) = a™ is an onto
homomorphism.

Proof. Try to prove this. ([l

Proposition 5. If ¢ : G1 — G is a group homomorphism and a € G1 has
order m, then the order of p(a) in Ga is a divisor of n.

Proposition 6. Let ¢ : G1 — G2 be an isomorphism of groups. Then

(a) If a € Gy has order n then ¢(a) € Gy has order n.
(b) If G1 is abelian then so is Ga.
(¢) If Gy is cyclic then so is Gs.

Example 2: The symmetric group S3 is isomorphic to the symmetry
group of an equilateral triangle.

Define an isomorphism ¢ as follows. First associate vertex a with 1, vertex
b with 2 and vertex ¢ with 3. Then, given a symmetry of the triangle send it
to the permutation that acts on {1,2,3} in the same way that the symmetry
acts on the vertices of the triangle.

So for 7, (the reflection that fixes vertex a and interchanges b and c)
define ¢(r,) = (2,3), the permutation that fixes 1 and interchanges 2 and
3. Set ¢(rp) = (1,3) (7 fixes b and the transposition (1, 3) fixes 2), and set
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o(re) = (1,2). Finally, for t;, which takes a — b +— ¢ — a define ¢(t1) =
(1,2,3) and define ¢(t2) = (1,3,2). We claim this defines an isomorphism.
It is clearly one-to-one and onto. The reason that ¢ preserves the group
operation is because it was composition of functions on both sides and we
were careful to match up how a symmetry acted on vertices to how the
permutation in the image acted on {1, 2, 3}.
For example: Recall that r.or, =t; and

p(re)e(ra) = (1,2)(2,3) = (1,2,3) = ¢(t1) = @(rc o ra).

Example 3: In your homework you looked at the group of symmetries
on a square, Dy. This group had 8 elements and they could all be written
as products of one reflection r which had order 2 (r? = €) and one rotation
t which had order 4 (t* = ¢).

Since the symmetric group S4 has 4-3-2-1 = 24 elements, Dy and Sy
cannot be isomorphic. But, try to construct a one-to-one, but not onto,
homomorphism from Dy into Sy (this will mean that Dy is isomorphic to a
subgroup of Sy).



