NOTES ON GROUPS, MATH 369.101

Subgroups

Definition 1. A subgroup $H \subset G$ is a subset H of a group G which (using the same operation as in G) is itself a group.

Because of Corollary 3.2.3, we get the following.
Corollary 1. Let G be a group and H a finite, non-empty subset of G. Then H is a subgroup if and only if $a b \in H$ for all a, b in H.

Proof. If H is a subgroup then $a, b \in H \quad \Rightarrow \quad a b \in H$ is clear.
If, for any $a, b \in H$ we have $a b \in H$ then, in particular, $b^{k} \in H$ for $k>0$. Since $|H|<\infty$, if $b \neq e$ (the identity of G), then there is some pair $i>j$ so that $b^{i}=b^{j}$, and so $b^{i-j}=e$, which means $b^{i-j-1}=b^{-1} \in H$. So we've shown $b \in H$ implies $b^{-1} \in H$, and so $a, b \in H$ implies $a b^{-1} \in H$, and so H is a subgroup by Corollary 3.2.3.

Example:
(1) In the circle group \mathbb{S}, say you want a subgroup (as small as possible) containing $e^{i \frac{2 \pi}{3}}$ and $e^{i \frac{\pi}{2}}$. From Corollary 1 we should make sure all possible products are in it.

For example, $e^{i \frac{3 \pi}{2}}=\left(e^{i \frac{\pi}{2}}\right)^{3}$ should be in there; and then we need $e^{i \frac{2 \pi}{3}} e^{i \frac{3 \pi}{2}}=e^{i \frac{13 \pi}{6}}=e^{i \frac{\pi}{6}}$ to be in it also. Then that means we need all powers of $e^{i \frac{\pi}{6}}$:

$$
H=\left\{1, e^{i \frac{\pi}{6}}, e^{i \frac{\pi}{3}}, e^{i \frac{\pi}{2}}, e^{i \frac{2 \pi}{3}}, e^{i \frac{5 \pi}{6}}, e^{i \pi}=-1, e^{i \frac{7 \pi}{6}}, e^{i \frac{4 \pi}{3}}, e^{i \frac{3 \pi}{2}}, e^{i \frac{i \pi}{3}}, e^{i \frac{11 \pi}{6}}\right\}
$$

Now note that H is a subgroup of \mathbb{S} by Corollary 1 .

Cyclic subgroups.

Definition 2. $\langle a\rangle=\left\{x \in G \mid x=a^{n}\right.$ for some $\left.n \in \mathbb{Z}\right\}$ is the cyclic subgroup generated by a.
G is cyclic if $\exists a \in G$ so that $G=\langle a\rangle$, and then a is a generator of G.
Examples:
(1) under normal addition, $\mathbb{Z}=\langle 1\rangle$
(here $a=1$ and a^{n} means $1+1+\ldots+1$ (n times)).
(2) $K=\left\langle\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\right\rangle$ is a cyclic subgroup of $\mathrm{GL}_{2}(\mathbb{R}) .|K|=4$.

[^0](3) $\left(\mathbb{Z}_{7}\right)^{\times}=\langle 3\rangle$ (recall, for a ring $R, R \times$ means the set of elements of R with a multiplicative inverse, with multiplication as the operation):
$$
3^{1}=3,3^{2} \equiv 2,3^{3} \equiv 6,3^{4} \equiv 4,3^{5} \equiv 5,3^{6} \equiv 1 .
$$

If a group is finite $(|G|<\infty)$, then the order $o(a)$ is finite for each $a \in G$. And in this case, G will be cyclic exactly when there exists an a so that $o(a)=|G|$. If there is no such a, then G is not cyclic, but each $\langle a\rangle$ is a cyclic subgroup that has size $o(a)$.

While we have essentially proved this already, we point out:
Proposition 1. If $o(a)$ is finite for $a \in G$ and $k \in \mathbb{Z}$ is such that $a^{k}=e$, then $o(a) \mid k$.
Proof. We showed last class that $a^{i}=a^{j}$ if and only if $i \equiv j(\bmod o(a))$. Since $e=a^{0}$, this means $k \equiv 0(\bmod o(a))$ which means $o(a) \mid k$.

Sometimes $\left(\mathbb{Z}_{n}\right)^{\times}$is cyclic, sometimes it isn't. We saw in example (3) above that $\left(\mathbb{Z}_{7}\right)^{\times}$is cyclic. However, $\left(\mathbb{Z}_{8}\right)^{\times}$consists of elements $\{1,3,5,7\}$ and $1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1(\bmod 8)$. So, except for the identity $(g=1)$, we have $o(g)=2$ for every $g \in\left(\mathbb{Z}_{8}\right)^{\times}$. Since $\left|\left(\mathbb{Z}_{8}\right)^{\times}\right|=4$ the group cannot be cyclic.

Lemma 1. For a subgroup H of G, define $a \sim b$ if $a b^{-1} \in H$. Then \sim is an equivalence relation.

Proof. To show it is an equivalence relation, we need to show it is reflexive ($a \sim a$ for all $a \in G$), symmetric ($a \sim b$ implies $b \sim a$ for all $a, b \in G$), and transitive ($a \sim b$ and $b \sim c$ implies $a \sim c$ for all $a, b, c \in G$).

Reflexive: $a \sim a \Longleftrightarrow a a^{-1} \in H$. Since H is a subgroup and $a a^{-1}=e$, this is true.

Symmetric: Suppose $a \sim b$. Then $a b^{-1} \in H$. Since H is a subgroup, $b a^{-1}=\left(a b^{-1}\right)^{-1}$ is in H. This is the definition of $b \sim a$.

Transitive: Suppose $a \sim b$ and $b \sim c$. Then $a b^{-1} \in H$ and $b c^{-1} \in H$. Then since a product of elements in H is in $H, a c^{-1}=\left(a b^{-1}\right)\left(b c^{-1}\right) \in H$, and so $a \sim c$.

Note: congruence $\bmod n$ is a special case, $G=\mathbb{Z}, H=n \mathbb{Z}$.
Theorem 1. (Lagrange). If H is a subgroup of G and G is a finite group, then $|H|$ divides $|G|$.

Proof. Let $[a]$ be the set of $b \in G$ such that $a \sim b$ (where \sim is as in the previous lemma). For any $a \in G$, the function $\rho_{a}: H \rightarrow[a]$ defined by $\rho_{a}(x)=x a$ is well-defined (meaning $\left.x a \in[a]\right)$ since $x a\left(a^{-1}\right)=x \in H$ shows that $x a \sim a$ for any $x \in H$. It is also bijective:

If $\rho_{a}(x)=\rho_{a}(y)$ then $x a=y a$. By multiplying by a^{-1} on the right, $x=y$. This shows ρ_{a} is one-to-one.

If $b \in[a]$ then $a \sim b$ so $b \sim a$, and so $b a^{-1} \in H$. But then $\rho_{a}\left(b a^{-1}\right)=b$. Since b could be anything in $[a], \rho_{a}$ is onto.

Now that we know ρ_{a} is bijective for any $a \in G$, note that each element of G is in exactly one equivalence class (since by the above Lemma, \sim is an equivalence relation). If $[a]$ is one of the equivalence classes, then ρ_{a} being bijective implies that $[a]$ has exactly $|H|$ elements in it. This is true for every a. So $|G|=t|H|$ where t is the number of distinct equiv. classes.

Corollary 2. Say $|G|=n$. Then $o(a) \mid n$ and $a^{n}=e$ for all $a \in G$.
Proof. Since for any $a \in G,\langle a\rangle$ is a subgroup and it has size $o(a)$, Lagrange's theorem says that $o(a)$ must divide $n=|G|$. This implies that $n=k \cdot o(a)$ for some integer k. But then

$$
a^{n}=\left(a^{o(n)}\right)^{k}=e^{k}=e .
$$

Corollary 3. If $|G|$ is a prime, then G is cyclic.
Proof. Choose some $a \in G$ and consider the subgroup $\langle a\rangle$. If $|\langle a\rangle|=1$ then $o(a)=1$ and a must be the identity. Otherwise, $|\langle a\rangle|$ is a divisor of $|G|$ that is bigger than 1 . Since $|G|$ is a prime number, we must have $|\langle a\rangle|=|G|$, and so $G=\langle a\rangle$.

Examples:

(1) The group of symmetries D of an equilateral triangle has 6 elements. So every subgroup of this group has size $1,2,3$, or 6 by Lagrange's theorem. One element would simply mean the subgroup $\{e\} \subset D$, and 6 elements would mean the whole group. Every other subgroup has 2 or 3 elements, and any such subgroup would be cyclic by the last Corollary.
(2) Along the same lines as the last example, if a group G has n elements in it and the prime decomposition of n is $p_{1} p_{2}$, where p_{1}, p_{2} are each primes, then every subgroup of G (other than $\{e\}$ and G itself) is a cyclic subgroup, either of size p_{1} or of size p_{2}. Note that this does not mean that G is cyclic.

The above (and when n is prime) is basically the only time this works. If $|G|$ has 3 or more prime factors (like $30=2 \cdot 3 \cdot 5$), or has a prime being raised to a power more than 1 in its prime decomposition (like $4=2^{2}$, or $18=2 \cdot 3^{2}$), then you cannot guarantee that every proper (not equal to G or $\{e\}$) subgroup is cyclic - though it may well be true, such as for $\left(\mathbb{Z}_{4},+\right)$.
In order to better understand the groups $\left(\mathbb{Z}_{n}\right)^{\times}$, we introduce Euler's totient function $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$. By definition, $\varphi(n)$ equals the number of $i \in\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(n, i)=1$. Here are it's values for the first 10 values of n :

n	$\varphi(n)$
1	1
2	1
3	2
4	2
5	4
6	2
7	6
8	4
9	6
10	4

Note that $\varphi(n)$ is the size of the group $\left(\mathbb{Z}_{n}\right)^{\times}$. A few comments:
(1) If n is a prime number then $\varphi(n)=n-1$, $\operatorname{since} \operatorname{gcd}(n, i)$ will be 1 for all $i \leq p-1$.
(2) If $n=p^{k}$ for some $k>0$ then the only numbers between 1 and n that are not relatively prime to n are multiples of $p: p, 2 p, 3 p, \ldots,\left(p^{k-1}\right) p$. So in that case $\varphi\left(p^{k}\right)=p^{k-1}(p-1)$.
There is a nice formula for computing $\varphi(n)$.
Proposition 2. $\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$, where the product is being taken over all distinct primes p which divide n.
Proof. The proof depends on a fact we won't prove: that φ is multiplicative. That is $\varphi(m n)=\varphi(m) \varphi(n)$.

Note that $1-\frac{1}{p}=\frac{p-1}{p}$. Now suppose that the prime decomposition of n is $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$. Then

$$
\begin{aligned}
\varphi(n) & =\varphi\left(p_{1}^{k_{1}}\right) \varphi\left(p_{2}^{k_{2}}\right) \cdots \varphi\left(p_{m}^{k_{m}}\right) \\
& =\prod_{i=1}^{m} p_{i}^{k_{i}-1}\left(p_{i}-1\right) \\
& =\left(\prod_{i=1}^{m} p_{i}^{k_{i}}\right)\left(\prod_{i=1}^{m} \frac{p_{i}-1}{p_{i}}\right) \\
& =n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

Exercise: Show that $\varphi(n)$ is even for any $n \geq 3$.
Exercise: Describe all proper subgroups of $\left(\mathbb{Z}_{23}\right)^{\times}$.

[^0]: Date: Nov. 7 - Nov. 9.

