
NOTES ON GROUPS, MATH 369.101

Subgroups

Definition 1. A subgroup H ⊂ G is a subset H of a group G which (using
the same operation as in G) is itself a group.

Because of Corollary 3.2.3, we get the following.

Corollary 1. Let G be a group and H a finite, non-empty subset of G.
Then H is a subgroup if and only if ab ∈ H for all a, b in H.

Proof. If H is a subgroup then a, b ∈ H ⇒ ab ∈ H is clear.
If, for any a, b ∈ H we have ab ∈ H then, in particular, bk ∈ H for k > 0.

Since |H| < ∞, if b 6= e (the identity of G), then there is some pair i > j
so that bi = bj , and so bi−j = e, which means bi−j−1 = b−1 ∈ H. So we’ve
shown b ∈ H implies b−1 ∈ H, and so a, b ∈ H implies ab−1 ∈ H, and so H
is a subgroup by Corollary 3.2.3. �

Example:

(1) In the circle group S, say you want a subgroup (as small as possible)

containing ei
2π
3 and ei

π
2 . From Corollary 1 we should make sure all

possible products are in it.

For example, ei
3π
2 = (ei

π
2 )3 should be in there; and then we need

ei
2π
3 ei

3π
2 = ei

13π
6 = ei

π
6 to be in it also. Then that means we need all

powers of ei
π
6 :

H = {1, ei
π
6 , ei

π
3 , ei

π
2 , ei

2π
3 , ei

5π
6 , eiπ = −1, ei

7π
6 , ei

4π
3 , ei

3π
2 , ei

5π
3 , ei

11π
6 }.

Now note that H is a subgroup of S by Corollary 1.

Cyclic subgroups.

Definition 2. 〈a〉 = {x ∈ G | x = an for some n ∈ Z} is the cyclic
subgroup generated by a.
G is cyclic if ∃ a ∈ G so that G = 〈a〉, and then a is a generator of G.

Examples:

(1) under normal addition, Z = 〈1〉
(here a = 1 and an means 1 + 1 + . . .+ 1 (n times)).

(2) K = 〈
(

0 −1
1 0

)
〉 is a cyclic subgroup of GL2(R). |K| = 4.
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(3) (Z7)
× = 〈3〉 (recall, for a ring R, R× means the set of elements of R

with a multiplicative inverse, with multiplication as the operation):

31 = 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5, 36 ≡ 1.

If a group is finite (|G| <∞), then the order o(a) is finite for each a ∈ G.
And in this case, G will be cyclic exactly when there exists an a so that
o(a) = |G|. If there is no such a, then G is not cyclic, but each 〈a〉 is a cyclic
subgroup that has size o(a).

While we have essentially proved this already, we point out:

Proposition 1. If o(a) is finite for a ∈ G and k ∈ Z is such that ak = e,
then o(a)|k.

Proof. We showed last class that ai = aj if and only if i ≡ j(mod o(a)).
Since e = a0, this means k ≡ 0(mod o(a)) which means o(a)|k. �

Sometimes (Zn)× is cyclic, sometimes it isn’t. We saw in example (3)
above that (Z7)

× is cyclic. However, (Z8)
× consists of elements {1, 3, 5, 7}

and 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 (mod 8). So, except for the identity (g = 1), we
have o(g) = 2 for every g ∈ (Z8)

×. Since |(Z8)
×| = 4 the group cannot be

cyclic.

Lemma 1. For a subgroup H of G, define a ∼ b if ab−1 ∈ H. Then ∼ is
an equivalence relation.

Proof. To show it is an equivalence relation, we need to show it is reflexive
(a ∼ a for all a ∈ G), symmetric (a ∼ b implies b ∼ a for all a, b ∈ G), and
transitive (a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ G).

Reflexive: a ∼ a ⇐⇒ aa−1 ∈ H. Since H is a subgroup and aa−1 = e,
this is true.

Symmetric: Suppose a ∼ b. Then ab−1 ∈ H. Since H is a subgroup,
ba−1 = (ab−1)−1 is in H. This is the definition of b ∼ a.

Transitive: Suppose a ∼ b and b ∼ c. Then ab−1 ∈ H and bc−1 ∈ H.
Then since a product of elements in H is in H, ac−1 = (ab−1)(bc−1) ∈ H,
and so a ∼ c. �

Note: congruence mod n is a special case, G = Z, H = nZ.

Theorem 1. (Lagrange). If H is a subgroup of G and G is a finite group,
then |H| divides |G|.

Proof. Let [a] be the set of b ∈ G such that a ∼ b (where ∼ is as in the
previous lemma). For any a ∈ G, the function ρa : H → [a] defined by
ρa(x) = xa is well-defined (meaning xa ∈ [a]) since xa(a−1) = x ∈ H shows
that xa ∼ a for any x ∈ H. It is also bijective:

If ρa(x) = ρa(y) then xa = ya. By multiplying by a−1 on the right, x = y.
This shows ρa is one-to-one.
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If b ∈ [a] then a ∼ b so b ∼ a, and so ba−1 ∈ H. But then ρa(ba
−1) = b.

Since b could be anything in [a], ρa is onto.
Now that we know ρa is bijective for any a ∈ G, note that each element

of G is in exactly one equivalence class (since by the above Lemma, ∼ is an
equivalence relation). If [a] is one of the equivalence classes, then ρa being
bijective implies that [a] has exactly |H| elements in it. This is true for
every a. So |G| = t|H| where t is the number of distinct equiv. classes. �

Corollary 2. Say |G| = n. Then o(a)|n and an = e for all a ∈ G.

Proof. Since for any a ∈ G, 〈a〉 is a subgroup and it has size o(a), Lagrange’s
theorem says that o(a) must divide n = |G|. This implies that n = k · o(a)
for some integer k. But then

an = (ao(n))k = ek = e.

�

Corollary 3. If |G| is a prime, then G is cyclic.

Proof. Choose some a ∈ G and consider the subgroup 〈a〉. If |〈a〉| = 1 then
o(a) = 1 and a must be the identity. Otherwise, |〈a〉| is a divisor of |G| that
is bigger than 1. Since |G| is a prime number, we must have |〈a〉| = |G|, and
so G = 〈a〉. �

Examples:

(1) The group of symmetries D of an equilateral triangle has 6 elements.
So every subgroup of this group has size 1,2,3, or 6 by Lagrange’s
theorem. One element would simply mean the subgroup {e} ⊂ D,
and 6 elements would mean the whole group. Every other subgroup
has 2 or 3 elements, and any such subgroup would be cyclic by the
last Corollary.

(2) Along the same lines as the last example, if a group G has n elements
in it and the prime decomposition of n is p1p2, where p1, p2 are each
primes, then every subgroup of G (other than {e} and G itself) is a
cyclic subgroup, either of size p1 or of size p2. Note that this does
not mean that G is cyclic.

The above (and when n is prime) is basically the only time this
works. If |G| has 3 or more prime factors (like 30 = 2 ·3 ·5), or has a
prime being raised to a power more than 1 in its prime decomposition
(like 4 = 22, or 18 = 2 · 32), then you cannot guarantee that every
proper (not equal to G or {e}) subgroup is cyclic – though it may
well be true, such as for (Z4,+).

In order to better understand the groups (Zn)×, we introduce Euler’s totient function
ϕ : Z → Z. By definition, ϕ(n) equals the number of i ∈ {1, 2, . . . , n} such
that gcd(n, i) = 1. Here are it’s values for the first 10 values of n:
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n ϕ(n)
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4

Note that ϕ(n) is the size of the group (Zn)×. A few comments:

(1) If n is a prime number then ϕ(n) = n − 1, since gcd(n, i) will be 1
for all i ≤ p− 1.

(2) If n = pk for some k > 0 then the only numbers between 1 and n that
are not relatively prime to n are multiples of p: p, 2p, 3p, . . . , (pk−1)p.
So in that case ϕ(pk) = pk−1(p− 1).

There is a nice formula for computing ϕ(n).

Proposition 2. ϕ(n) = n
∏
p|n

(
1− 1

p

)
, where the product is being taken

over all distinct primes p which divide n.

Proof. The proof depends on a fact we won’t prove: that ϕ is multiplicative.
That is ϕ(mn) = ϕ(m)ϕ(n).

Note that 1− 1
p = p−1

p . Now suppose that the prime decomposition of n

is n = pk11 p
k2
2 · · · pkmm . Then

ϕ(n) = ϕ(pk11 )ϕ(pk22 ) · · ·ϕ(pkmm )

=

m∏
i=1

pki−1i (pi − 1)

=

(
m∏
i=1

pkii

)(
m∏
i=1

pi − 1

pi

)

= n
∏
p|n

(
1− 1

p

)
�

Exercise: Show that ϕ(n) is even for any n ≥ 3.
Exercise: Describe all proper subgroups of (Z23)

×.


