NOTES ON GROUPS, MATH 369.101

SUBGROUPS

Definition 1. A subgroup $H \subset G$ is a subset H of a group G which (using the same operation as in G) is itself a group.

Because of Corollary 3.2.3, we get the following.

Corollary 1. Let G be a group and H a finite, non-empty subset of G. Then H is a subgroup if and only if $ab \in H$ for all a, b in H.

Proof. If H is a subgroup then $a, b \in H \implies ab \in H$ is clear.

If, for any $a, b \in H$ we have $ab \in H$ then, in particular, $b^k \in H$ for k > 0. Since $|H| < \infty$, if $b \neq e$ (the identity of G), then there is some pair i > j so that $b^i = b^j$, and so $b^{i-j} = e$, which means $b^{i-j-1} = b^{-1} \in H$. So we've shown $b \in H$ implies $b^{-1} \in H$, and so $a, b \in H$ implies $ab^{-1} \in H$, and so H is a subgroup by Corollary 3.2.3.

Example:

(1) In the circle group S, say you want a subgroup (as small as possible) containing $e^{i\frac{2\pi}{3}}$ and $e^{i\frac{\pi}{2}}$. From Corollary 1 we should make sure all possible products are in it.

For example, $e^{i\frac{3\pi}{2}} = (e^{i\frac{\pi}{2}})^3$ should be in there; and then we need $e^{i\frac{2\pi}{3}}e^{i\frac{3\pi}{2}} = e^{i\frac{13\pi}{6}} = e^{i\frac{\pi}{6}}$ to be in it also. Then that means we need all powers of $e^{i\frac{\pi}{6}}$:

$$H = \{1, e^{i\frac{\pi}{6}}, e^{i\frac{\pi}{3}}, e^{i\frac{\pi}{2}}, e^{i\frac{2\pi}{3}}, e^{i\frac{5\pi}{6}}, e^{i\pi} = -1, e^{i\frac{7\pi}{6}}, e^{i\frac{4\pi}{3}}, e^{i\frac{3\pi}{2}}, e^{i\frac{5\pi}{3}}, e^{i\frac{11\pi}{6}}\}.$$

Now note that H is a subgroup of S by Corollary 1.

Cyclic subgroups.

Definition 2. $\langle a \rangle = \{x \in G \mid x = a^n \text{ for some } n \in \mathbb{Z}\}$ is the cyclic subgroup generated by a.

G is cyclic if $\exists a \in G$ so that $G = \langle a \rangle$, and then a is a generator of G.

Examples:

 (1) under normal addition, Z = ⟨1⟩ (here a = 1 and aⁿ means 1 + 1 + ... + 1 (n times)).
(2) K = ⟨ (0 -1) / 1 0 ⟩ ⟩ is a cyclic subgroup of GL₂(ℝ). |K| = 4.

Date: Nov. 7 – Nov. 9.

(3) $(\mathbb{Z}_7)^{\times} = \langle 3 \rangle$ (recall, for a ring $R, R \times$ means the set of elements of R with a multiplicative inverse, with multiplication as the operation):

$$3^1 = 3, 3^2 \equiv 2, 3^3 \equiv 6, 3^4 \equiv 4, 3^5 \equiv 5, 3^6 \equiv 1.$$

If a group is finite $(|G| < \infty)$, then the order o(a) is finite for each $a \in G$. And in this case, G will be cyclic exactly when there exists an a so that o(a) = |G|. If there is no such a, then G is not cyclic, but each $\langle a \rangle$ is a cyclic subgroup that has size o(a).

While we have essentially proved this already, we point out:

Proposition 1. If o(a) is finite for $a \in G$ and $k \in \mathbb{Z}$ is such that $a^k = e$, then o(a)|k.

Proof. We showed last class that $a^i = a^j$ if and only if $i \equiv j \pmod{o(a)}$. Since $e = a^0$, this means $k \equiv 0 \pmod{o(a)}$ which means o(a)|k.

Sometimes $(\mathbb{Z}_n)^{\times}$ is cyclic, sometimes it isn't. We saw in example (3) above that $(\mathbb{Z}_7)^{\times}$ is cyclic. However, $(\mathbb{Z}_8)^{\times}$ consists of elements $\{1, 3, 5, 7\}$ and $1^2 \equiv 3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{8}$. So, except for the identity (g = 1), we have o(g) = 2 for every $g \in (\mathbb{Z}_8)^{\times}$. Since $|(\mathbb{Z}_8)^{\times}| = 4$ the group cannot be cyclic.

Lemma 1. For a subgroup H of G, define $a \sim b$ if $ab^{-1} \in H$. Then \sim is an equivalence relation.

Proof. To show it is an equivalence relation, we need to show it is reflexive $(a \sim a \text{ for all } a \in G)$, symmetric $(a \sim b \text{ implies } b \sim a \text{ for all } a, b \in G)$, and transitive $(a \sim b \text{ and } b \sim c \text{ implies } a \sim c \text{ for all } a, b, c \in G)$.

Reflexive: $a \sim a \iff aa^{-1} \in H$. Since H is a subgroup and $aa^{-1} = e$, this is true.

Symmetric: Suppose $a \sim b$. Then $ab^{-1} \in H$. Since H is a subgroup, $ba^{-1} = (ab^{-1})^{-1}$ is in H. This is the definition of $b \sim a$.

Transitive: Suppose $a \sim b$ and $b \sim c$. Then $ab^{-1} \in H$ and $bc^{-1} \in H$. Then since a product of elements in H is in H, $ac^{-1} = (ab^{-1})(bc^{-1}) \in H$, and so $a \sim c$.

Note: congruence mod n is a special case, $G = \mathbb{Z}, H = n\mathbb{Z}$.

Theorem 1. (Lagrange). If H is a subgroup of G and G is a finite group, then |H| divides |G|.

Proof. Let [a] be the set of $b \in G$ such that $a \sim b$ (where \sim is as in the previous lemma). For any $a \in G$, the function $\rho_a : H \to [a]$ defined by $\rho_a(x) = xa$ is well-defined (meaning $xa \in [a]$) since $xa(a^{-1}) = x \in H$ shows that $xa \sim a$ for any $x \in H$. It is also bijective:

If $\rho_a(x) = \rho_a(y)$ then xa = ya. By multiplying by a^{-1} on the right, x = y. This shows ρ_a is one-to-one.

If $b \in [a]$ then $a \sim b$ so $b \sim a$, and so $ba^{-1} \in H$. But then $\rho_a(ba^{-1}) = b$. Since b could be anything in [a], ρ_a is onto.

Now that we know ρ_a is bijective for any $a \in G$, note that each element of G is in exactly one equivalence class (since by the above Lemma, \sim is an equivalence relation). If [a] is one of the equivalence classes, then ρ_a being bijective implies that [a] has exactly |H| elements in it. This is true for every a. So |G| = t|H| where t is the number of distinct equiv. classes. \Box

Corollary 2. Say |G| = n. Then o(a)|n and $a^n = e$ for all $a \in G$.

Proof. Since for any $a \in G$, $\langle a \rangle$ is a subgroup and it has size o(a), Lagrange's theorem says that o(a) must divide n = |G|. This implies that $n = k \cdot o(a)$ for some integer k. But then

$$a^n = (a^{o(n)})^k = e^k = e.$$

Corollary 3. If |G| is a prime, then G is cyclic.

Proof. Choose some $a \in G$ and consider the subgroup $\langle a \rangle$. If $|\langle a \rangle| = 1$ then o(a) = 1 and a must be the identity. Otherwise, $|\langle a \rangle|$ is a divisor of |G| that is bigger than 1. Since |G| is a prime number, we must have $|\langle a \rangle| = |G|$, and so $G = \langle a \rangle$.

Examples:

- (1) The group of symmetries D of an equilateral triangle has 6 elements. So every subgroup of this group has size 1,2,3, or 6 by Lagrange's theorem. One element would simply mean the subgroup $\{e\} \subset D$, and 6 elements would mean the whole group. Every other subgroup has 2 or 3 elements, and any such subgroup would be cyclic by the last Corollary.
- (2) Along the same lines as the last example, if a group G has n elements in it and the prime decomposition of n is p_1p_2 , where p_1, p_2 are each primes, then every subgroup of G (other than $\{e\}$ and G itself) is a cyclic subgroup, either of size p_1 or of size p_2 . Note that this does not mean that G is cyclic.

The above (and when *n* is prime) is basically the only time this works. If |G| has 3 or more prime factors (like $30 = 2 \cdot 3 \cdot 5$), or has a prime being raised to a power more than 1 in its prime decomposition (like $4 = 2^2$, or $18 = 2 \cdot 3^2$), then you cannot <u>guarantee</u> that every proper (not equal to *G* or $\{e\}$) subgroup is cyclic – though it may well be true, such as for (\mathbb{Z}_4 , +).

In order to better understand the groups $(\mathbb{Z}_n)^{\times}$, we introduce <u>Euler's totient function</u> $\varphi : \mathbb{Z} \to \mathbb{Z}$. By definition, $\varphi(n)$ equals the number of $i \in \{1, 2, ..., n\}$ such that gcd(n, i) = 1. Here are it's values for the first 10 values of n:

Note that $\varphi(n)$ is the size of the group $(\mathbb{Z}_n)^{\times}$. A few comments:

- (1) If n is a prime number then $\varphi(n) = n 1$, since gcd(n, i) will be 1 for all $i \leq p 1$.
- (2) If $n = p^k$ for some k > 0 then the only numbers between 1 and n that are not relatively prime to n are multiples of $p: p, 2p, 3p, \ldots, (p^{k-1})p$. So in that case $\varphi(p^k) = p^{k-1}(p-1)$.

There is a nice formula for computing $\varphi(n)$.

4

Proposition 2. $\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$, where the product is being taken

 $over \ all \ distinct \ primes \ p \ which \ divide \ n.$

Proof. The proof depends on a fact we won't prove: that φ is multiplicative. That is $\varphi(mn) = \varphi(m)\varphi(n)$.

Note that $1 - \frac{1}{p} = \frac{p-1}{p}$. Now suppose that the prime decomposition of n is $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$. Then

$$\varphi(n) = \varphi(p_1^{k_1})\varphi(p_2^{k_2})\cdots\varphi(p_m^{k_m})$$
$$= \prod_{i=1}^m p_i^{k_i-1}(p_i-1)$$
$$= \left(\prod_{i=1}^m p_i^{k_i}\right)\left(\prod_{i=1}^m \frac{p_i-1}{p_i}\right)$$
$$= n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Exercise: Show that $\varphi(n)$ is even for any $n \ge 3$. **Exercise:** Describe all proper subgroups of $(\mathbb{Z}_{23})^{\times}$.