NOTES ON GROUPS, MATH 369.101

Symmetries of P_{3}, Continued

Recall that we have a group $\left(D_{3}, \circ\right)$ of symmetries (each of which is a bijective function) of an equilateral triangle P_{3} (o denotes composition of functions). Since \circ is an operation of a group we will write $x * y$ for $x \circ y$.

We used t_{1}, t_{2} to write the symmetry that rotates the triangle counterclockwise by $2 \pi / 3,4 \pi / 3$ respectively.

For the symmetries which reflect the triangle about the angle bisector at corner a, b or c we wrote r_{a}, r_{b} and r_{c} respectively. And we used e for the map that fixes every point.

Among other identities, we saw that:

$$
\begin{array}{ll}
t_{1} * r_{a}=r_{c}, & t_{2} * r_{a}=r_{b}, \quad r_{a} * r_{b}=t_{1}, \\
t_{1} * t_{1}=t_{2}, & t_{2} * t_{1}=t_{1} * t_{2}=e, \quad r_{a} * r_{a}=e .
\end{array}
$$

While there are other products to consider in order to fill out the multiplication table for the group D_{3}, let's see that we already have enough information.

Write simply $t=t_{1}$ and note (from the equalities above) that $t^{2}=t_{2}$ and $t^{3}=e$.

Write simply $r=r_{a}$ and note that $r^{2}=e$.
In addition, we have $t r=r_{c}$ and $t^{2} r=t_{2} * r_{a}=r_{b}$. And so, t_{2}, r_{b} and r_{c} can be written in terms of $t=t_{1}$ and $r=r_{a}$.

Also, we have that $r_{a} * t_{1}=r_{a} *\left(r_{a} * r_{b}\right)=\left(r_{a} * r_{a}\right) * r_{b}=r_{b}$. But, since $r_{b}=t_{2} * r_{a}=t^{2} r$, this means that

$$
r t=t^{2} r .
$$

[^0]We claim that we have everything we need to make any computation in D_{3}. Notice that:

$$
\begin{aligned}
& t_{1} * r_{a}=t r=r_{c} ; \\
& t_{1} * r_{b}=t\left(t^{2} r\right)=r=r_{a} ; \\
& t_{1} * r_{c}=t^{2} r=r_{b} .
\end{aligned}
$$

Also, if x is any of r_{a}, r_{b}, or r_{c} then $t_{2} * x=t_{1} *\left(t_{1} * x\right)$ and the above three equalities tell us what to do.

Since $r t=t^{2} r$, we can also convert anything (for $x=r_{a}, r_{b}$, or r_{c}) of the form $x * t_{1}$ to $\left(t_{1}\right)^{2} * x$ and convert $x *\left(t_{1}\right)^{2}=\left(t_{1}\right)^{4} * x=t_{1} * x$, and we know each of these elements.

Finally, $r_{b} * r_{c}=t^{2}(r t) r=t^{4} r^{2}=t$ and $r_{c} * r_{a}=t r^{2}=t$. And also $r_{a} * r_{c}=r t r=t^{2}, r_{b} * r_{a}=t^{2} r^{2}=t^{2}$, and $r_{c} * r_{b}=t r t^{2} r=t\left(r^{2}\right) t=t^{2}$.

We have now computed every possible product of two elements (excluding those involving e). The group generated by r, t can be described by:

$$
D_{3} \cong\left\langle r, t \mid r^{2}=e, t^{3}=e, r t=t^{2} r\right\rangle .
$$

The right side means: everything is a (possibly multiple times) product of r and/or t and their inverses, and every equation in the group arises from the three on the right (using associativity).
(We have not carefully proved this. We will soon discuss isomorphisms of groups. Then one can define an isomorphism from $\langle r, t| r^{2}=e, t^{3}=e, r t=$ $\left.t^{2} r\right\rangle$ to D_{3} by setting $\varphi(r)=r_{a}$ and $\varphi(t)=t_{1}$. These two assignments, for an isomorphism, force all the others: e.g. $\varphi(r t)=r_{a} * t_{1}=r_{b}$.)

Exercise: Explore the group $\left(D_{4}, \circ\right)$ of symmetries of a square P_{4} (there are eight elements in this group, and they are each a rotation or a reflection, or the identity).

Permutations and the symmetric group S_{n}

Take a set, S. A permutation of S is a bijection (a one-to-one and onto function) $S \rightarrow S$. The set of all permutations of S is written $\operatorname{Sym}(S)$.
(Note: a symmetry of a polygon P - or any other shape - is an element of $\operatorname{Sym}(P)$.)

Mostly we will discuss the situation when S is finite. In this case we can simply name the elements of S with numbers $\{1,2, \ldots, n\}$ for some integer $n>0$. In this case, that $S=\{1,2, \ldots, n\}$, we use the notation S_{n} for $\operatorname{Sym}(S)$.

Proposition 1. For any set $S, \operatorname{Sym}(S)$ with the operation of function composition is a group. In particular S_{n} is a group.

Proof. First, we check that the composition of two permutations is a permutation. In other words, if φ and ψ are in $\operatorname{Sym}(S)$ then we need that $\varphi \circ \psi: S \rightarrow S$ is one-to-one and onto. We will leave out this routine check.

Composition of functions is always associative, so the operation is associative.

Recall that two functions f, g are equal if they have the same domain and target (codomain) and if $f(x)=g(x)$ for all x in the domain.

Let $e: S \rightarrow S$ be the function defined by $e(s)=s$ for all $s \in S$. Then e is one-to-one and onto and so in $\operatorname{Sym}(S)$. Moreover, for any $\varphi \in \operatorname{Sym}(S)$

$$
\varphi(e(s))=\varphi(s) \quad \text { and } \quad e(\varphi(s))=\varphi(s)
$$

for all $s \in S$. This means $\varphi \circ e=\varphi=e \circ \varphi$. So $e: S \rightarrow S$ is the identity under composition.

For $\varphi \in \operatorname{Sym}(S)$, define $\varphi^{-1}: S \rightarrow S$ by $\varphi^{-1}(s)=r$, for $s \in S$, if $s=\varphi(r)$. This indeed defines an element of $\operatorname{Sym}(S)$ because for every $s \in S$, there is a unique $r \in S$ with $s=\varphi(r)$, since φ is one-to-one and onto.
Then we have $\varphi \circ \varphi^{-1}=\varphi^{-1} \circ \varphi=e$ as these functions agree on every $s \in S$.

We will often use σ and τ for permutations in S_{n}, and remember that $\sigma(i)$, for $i \in\{1,2, \ldots, n\}$, is the number to which i is sent by σ.

We will also drop the composition notation \circ and instead just write $\sigma \tau$ to mean $\sigma \circ \tau$. Note that this means τ is applied first, then σ.

Notation: For $\sigma \in S_{n}$, write

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
\sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n)
\end{array}\right) .
$$

For example, $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4\end{array}\right)$ is in S_{5}. Represented as a function we can write:

Exercises:
(1) Find $\sigma \tau$ if

$$
\tau=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 1 & 5 & 4
\end{array}\right) \quad \text { and } \quad \sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 3 & 1 & 5
\end{array}\right) .
$$

(2) Let $\sigma \in S_{3}$ be as below. Check that $\sigma^{3}=e$.

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

Definition 1. If $\sigma \in S_{n}$ and there are numbers $a_{1}, a_{2}, \ldots, a_{k} \in\{1,2, \ldots, n\}$, no two of which are the same, so that $\sigma\left(a_{i}\right)=a_{i+1}$ for $1 \leq i \leq k-1$ and $\sigma\left(a_{k}\right)=a_{1}$, then $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is called a cycle of length k.

Exercise: Find all the cycles of the permutation

$$
\sigma=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
8 & 2 & 10 & 11 & 5 & 9 & 4 & 6 & 1 & 3 & 12 & 7
\end{array}\right)
$$

[^0]: Date: Oct. 31.

