
NOTES ON GROUPS, MATH 369.101

Symmetries of P3, continued

Recall that we have a group (D3, ◦) of symmetries (each of which is a
bijective function) of an equilateral triangle P3 (◦ denotes composition of
functions). Since ◦ is an operation of a group we will write x ∗ y for x ◦ y.

We used t1, t2 to write the symmetry that rotates the triangle counter-
clockwise by 2π/3, 4π/3 respectively.

For the symmetries which reflect the triangle about the angle bisector at
corner a, b or c we wrote ra, rb and rc respectively. And we used e for the
map that fixes every point.

a

c

b

ra = r2π/3
t1 = t

Among other identities, we saw that:

t1 ∗ ra = rc, t2 ∗ ra = rb, ra ∗ rb = t1,

t1 ∗ t1 = t2, t2 ∗ t1 = t1 ∗ t2 = e, ra ∗ ra = e.

While there are other products to consider in order to fill out the mul-
tiplication table for the group D3, let’s see that we already have enough
information.

Write simply t = t1 and note (from the equalities above) that t2 = t2 and
t3 = e.

Write simply r = ra and note that r2 = e.
In addition, we have tr = rc and t2r = t2 ∗ ra = rb. And so, t2, rb and rc

can be written in terms of t = t1 and r = ra.
Also, we have that ra ∗ t1 = ra ∗ (ra ∗ rb) = (ra ∗ ra) ∗ rb = rb. But, since

rb = t2 ∗ ra = t2r, this means that

rt = t2r.

Date: Oct. 31.

1



2 NOTES ON GROUPS, MATH 369.101

We claim that we have everything we need to make any computation in
D3. Notice that:

t1 ∗ ra = tr = rc;

t1 ∗ rb = t(t2r) = r = ra;

t1 ∗ rc = t2r = rb.

Also, if x is any of ra, rb, or rc then t2 ∗ x = t1 ∗ (t1 ∗ x) and the above three
equalities tell us what to do.

Since rt = t2r, we can also convert anything (for x = ra, rb, or rc) of the
form x ∗ t1 to (t1)

2 ∗x and convert x ∗ (t1)
2 = (t1)

4 ∗x = t1 ∗x, and we know
each of these elements.

Finally, rb ∗ rc = t2(rt)r = t4r2 = t and rc ∗ ra = tr2 = t. And also
ra ∗ rc = rtr = t2, rb ∗ ra = t2r2 = t2, and rc ∗ rb = trt2r = t(r2)t = t2.

We have now computed every possible product of two elements (excluding
those involving e). The group generated by r, t can be described by:

D3
∼= 〈r, t | r2 = e, t3 = e, rt = t2r〉.

The right side means: everything is a (possibly multiple times) product of
r and/or t and their inverses, and every equation in the group arises from
the three on the right (using associativity).

(We have not carefully proved this. We will soon discuss isomorphisms of
groups. Then one can define an isomorphism from 〈r, t | r2 = e, t3 = e, rt =
t2r〉 to D3 by setting ϕ(r) = ra and ϕ(t) = t1. These two assignments, for
an isomorphism, force all the others: e.g. ϕ(rt) = ra ∗ t1 = rb.)

Exercise: Explore the group (D4, ◦) of symmetries of a square P4 (there
are eight elements in this group, and they are each a rotation or a reflection,
or the identity).

Permutations and the symmetric group Sn

Take a set, S. A permutation of S is a bijection (a one-to-one and onto
function) S → S. The set of all permutations of S is written Sym(S).

(Note: a symmetry of a polygon P – or any other shape – is an element
of Sym(P ).)

Mostly we will discuss the situation when S is finite. In this case we can
simply name the elements of S with numbers {1, 2, . . . , n} for some integer
n > 0. In this case, that S = {1, 2, . . . , n}, we use the notation Sn for
Sym(S).

Proposition 1. For any set S, Sym(S) with the operation of function com-
position is a group. In particular Sn is a group.

Proof. First, we check that the composition of two permutations is a per-
mutation. In other words, if ϕ and ψ are in Sym(S) then we need that
ϕ ◦ ψ : S → S is one-to-one and onto. We will leave out this routine check.
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Composition of functions is always associative, so the operation is asso-
ciative.

Recall that two functions f, g are equal if they have the same domain and
target (codomain) and if f(x) = g(x) for all x in the domain.

Let e : S → S be the function defined by e(s) = s for all s ∈ S. Then e
is one-to-one and onto and so in Sym(S). Moreover, for any ϕ ∈ Sym(S)

ϕ(e(s)) = ϕ(s) and e(ϕ(s)) = ϕ(s)

for all s ∈ S. This means ϕ ◦ e = ϕ = e ◦ ϕ. So e : S → S is the identity
under composition.

For ϕ ∈ Sym(S), define ϕ−1 : S → S by ϕ−1(s) = r, for s ∈ S, if s = ϕ(r).
This indeed defines an element of Sym(S) because for every s ∈ S, there is
a unique r ∈ S with s = ϕ(r), since ϕ is one-to-one and onto.

Then we have ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ = e as these functions agree on every
s ∈ S. �

We will often use σ and τ for permutations in Sn, and remember that
σ(i), for i ∈ {1, 2, . . . , n}, is the number to which i is sent by σ.

We will also drop the composition notation ◦ and instead just write στ
to mean σ ◦ τ . Note that this means τ is applied first, then σ.

Notation: For σ ∈ Sn, write

σ =

(
1 2 3 . . . n

σ(1) σ(2) σ(3) . . . σ(n)

)
.

For example, σ =

(
1 2 3 4 5
2 3 1 5 4

)
is in S5. Represented as a function

we can write:
1

2

3

4

5

1

2

3

4

5

Exercises:

(1) Find στ if

τ =

(
1 2 3 4 5
2 3 1 5 4

)
and σ =

(
1 2 3 4 5
4 2 3 1 5

)
.

(2) Let σ ∈ S3 be as below. Check that σ3 = e.

σ =

(
1 2 3
2 3 1

)
.

Definition 1. If σ ∈ Sn and there are numbers a1, a2, . . . , ak ∈ {1, 2, . . . , n},
no two of which are the same, so that σ(ai) = ai+1 for 1 ≤ i ≤ k − 1 and
σ(ak) = a1, then (a1, a2, . . . , ak) is called a cycle of length k.
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Exercise: Find all the cycles of the permutation

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12
8 2 10 11 5 9 4 6 1 3 12 7

)


