
NOTES ON GROUPS, MATH 369.101

Intro to groups

Groups is a fairly applicable part of abstract algebra. Groups have less
structure than rings or fields, which makes it so that there are many more
situations in which they come up, but they have enough structure to be able
to say interesting things about them.

Introduction. To give you a sneak-peek into the wide variety of groups
that exist:

(1) Take any ring R (possibly but not necessarily a field), but use only
+, the addition operation. Then (R,+) is a group. (For example,
(Zn,+))

(2) The first example includes the set of n× n matrices with entries in
a field F (since Mn(F) is a ring). But if we just take those matrices
which have an inverse (multiplicative), call it GLn(F), and use · for
matrix multiplication, then (GLn(F), ·) is a group.

(3) Any vector space with vector addition (V,+) is a group.
(4) The set S = {eiθ | θ ∈ [0, 2π)} ⊂ C can be identified with the

set of points on the unit circle in the plane. If we multiply two of
them (as complex numbers), we get a new number in S. with this
multiplication ∗, (S, ∗) is a group.

(5) Take a shape P in the plane (for us, let’s just think of a regular poly-
gon). A symmetry φ is a 1-1 and onto map from the P to P . For a
regular polygon, think of any 1-1, onto function which permutes the
set of vertices, then complete the definition of the symmetry in the
following way: if a, b are vertices and the permutation takes these
vertices to c, d, then send the edge ab to the edge cd (if you always
get an edge that way, then this gives a symmetry).

a

d c

b

φ

For example, if P is a square with vertices a, b, c, d. Taking φ(a) =
c, φ(b) = b, φ(c) = a, and φ(d) = d, we take edges ab 7→ cb, bc 7→ ba,
cd 7→ ad, and da 7→ dc. This gives us one symmetry of the square P .
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Another symmetry of the square is given by ψ(a) = b, ψ(b) = c,
ψ(c) = d, and ψ(d) = a. Think about where the edges go.

We can multiply φ, ψ, two symmetries on P , by first applying ψ,
then applying φ (take the composition). In other words do φ ◦ ψ,
which is another symmetry. With the operation of ◦, the set of
symmetries of P make a group.

A binary operation is something (like addition, or like multiplication)
which takes two things in a set (with order mattering) and returns something
new in the same set.

Definition 1. Let G be a set with a binary operation ∗. So ∀g, h ∈ G there
is a defined g ∗ h ∈ G (G is closed under ∗).

Then G is a group if the following axioms are met.

(1) (Associativity): ∀f, g, h ∈ G, we have (f ∗ g) ∗ h = f ∗ (g ∗ h).
(2) (Identity): ∃ e ∈ G so that e ∗ g = g ∗ e = g, ∀ g ∈ G.
(3) (Inverses): For each g ∈ G, ∃ g−1 ∈ G so that g ∗ g−1 = g−1 ∗ g = e.

Back to our examples, let’s check they are groups.

(1) A ring R, but use only +. (So here G = R and our ∗ is +.)
For any r, s ∈ R we certainly have r + s ∈ R since R is a ring.

Also, + is associative since that is one of the axioms of a ring, that
is, r + (s+ t) = (r + s) + t for r, s, t ∈ R.

The identity is the additive identity 0, and for each r ∈ R the
inverse is the additive inverse −r. Since ∗ is +:

r ∗ (−r) = r +−r = 0 = e.

So, in particular, (Z,+) is a group, (Zn,+) is a group, (R[x],+)
is a group, etc.

(2) (GLn(F), ·)
Matrix multiplication is associative. The identity I is the matrix

with 1 on diagonal and 0 off the diagonal. We specifically said that
GLn(F) is the set of matrices that have an inverse (that is AA−1 =
A−1A = I). So if A ∈ GLn(F) then A−1 exists. Furthermore, since
(A−1)−1 = A, A−1 also has an inverse and so A−1 ∈ GLn(F) also.
This shows that (GLn(F), ·) satisfies the “Inverses” axiom for groups.

(3) Vector space (V,+).
(Check).

(4) (S, ∗).
Note:

eiα ∗ eiβ = (cos(α) + i sin(α))(cos(β) + i sin(β))

= (cos(α) cos(β)− sin(α) sin(β)) + (cos(α) sin(β) + sin(α) cos(β))i

= cos(α+ β) + i sin(α+ β)

= ei(α+β).
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So S is closed under ∗. Now for associativity (using the calculation
we just did):

(eiα ∗ eiβ) ∗ eiγ = ei(α+β) ∗ eiγ = ei(α+β+γ)

and

eiα ∗ (eiβ ∗ eiγ) = eiα ∗ ei(β+γ) = ei(α+β+γ).

So ∗ is associative.
Identity: ei0 ∗ eiα = eiα = eiα ∗ ei0 for any α.
Inverses: eiα ∗ ei(2π−α) = e2πi = ei0.
So (S, ∗) is a group!

(5) Symmetries with composition. Let’s call our n-sided regular polygon
Pn and use Dn for the set of symmetries of Pn.

Composition of functions is always associative.
Identity: Keep each point fixed: e(x) = x. This is definitely a

bijection, and for any symmetry ψ, if y = ψ(x), then:

e(ψ(x)) = e(y) = y = ψ(x) and ψ(e(x)) = ψ(x).

Since ψ can be any function symmetry, these two equations show
that e ∗ ψ = e ◦ ψ = ψ and ψ ∗ e = ψ ◦ e = ψ.

So e(x) = x defines the identity element in the set of symmetries.
Inverses: A symmetry is determined by a bijective function on

the set P , and for any bijective function we define: if y = φ(x) then
x = φ−1(y).

This makes φ−1 a function on P since every y ∈ P is φ(x) for
some x ∈ P (φ is onto), and φ−1(y) is well-defined since there was
only one such x (φ is 1-1).

We then get that φ−1 ◦ φ(x) = φ−1(φ(x)) = φ−1(y) = x (and
something similar for φ◦φ−1), so φ−1◦φ = e is the identity function.

We can conclude that (Dn, ◦) is a group.

Let’s more fully explore symmetries on a regular polygon, starting with
an equilateral triangle P3.

a

c

b

ra

Since φ has to take vertices to vertices (and the edges are determined
by that), we only have 6 choices. Let rx flip the triangle about the angle
bisector going through x, and t1, t2 are rotations about the center by π/3
and 2π/3 respectively.
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x e(x) ra(x) rb(x) rc(x) t1(x) t2(x)
a a a c b b c
b b c b a c a
c c b a c a b

Now let’s explore how the operation of composition relates these to each
other.

(1) Checking rb ◦ ra:
a a a

b b b

c c c

The composition is what you get by following from far left to far
right:

a a

b b

c c

which is an arrow diagram for t2. This means that (writing ∗ for the
operation ◦), we have rb ∗ ra = t2 in the group (D3, ◦).

(2) Let’s check t1 ◦ ra:
a a a

b b b

c c c

The composition gives us a map that sends a 7→ b, b 7→ a and c 7→ c.
Checking our table above, we see that t1 ∗ ra = rc.

Check also that t2 ∗ ra = rb.

(3) Check that ra∗rb = t1 6= t2, so this tells us that ∗ is not commutative
in D3.

(4) Also check that t1 ∗ t1 = t2 and that t1 ∗ t2 = t2 ∗ t1 = e.
(5) Also check that ra ∗ ra = e (and that the same is true for rb and rc).

For items (4) and (5), think about the meaning of these equations for
symmetries of the triangle. Why do the equations make sense?


