
NOTES ON RINGS, MATH 369.101

Kernels of ring homomorphisms and Ideals

Recall the definition of a ring homomorphism.

Some new examples:

(1) Complex conjugation: z = a + bi 7→ z = a − bi (where i2 = −1).
This gives a ring homomorphism C → C, since we can check that
1 = 1, z1 + z2 = z1 + z2 and z1z2 = z1 z2. To check the last one, let
z1 = a+ bi, z2 = c+ di:

z1z2 = (a+ bi)(c+ di) = ac− bd+ (ad+ bc)i

but

z1 z2 = (a− bi)(c− di) = ac− bd− (ad+ bc)i = z1z2.

(2) Evaluation: For any ring R, choose r ∈ R. Then evaluation at x = r
gives a ring homomorphism φr : R[x] → R defined by φr(f(x)) =
f(r). In other words, if f(x) = a0 +a1x+ . . .+anx

n is a polynomial
in R[x], then

φr(f(x)) = f(r) = a0 + a1r + . . .+ anr
n.

It is the case that f(a) is in R, since the coefficients of f were in
R, a ∈ R, and all the operations on polynomials are the addition
and multiplication operations used in the ring.

Think about how evaluation at x = r is defined on a sum f(x) +
g(x) and product f(x)g(x) of polynomials, and why this means that
φr preserves addition and multiplication. So φr is a homomorphism,
even when R is not a commutative ring.

As an example of the evaluation homomorphism, think of when
R = Z and we choose some integer n ∈ Z. Then φn(1 + x+ 2x2) =
1 + n + 2n2. For which f(x) does φn(f(x)) = 0? Can you describe
this set of f(x) as “all multiples of some particular polynomial”?

P.S. As another nice example of the evaluation homomorphism,
one could think of evaluation at a matrix of a polynomial in R[x]
where R = Mn(R). The fact that this is a homomorphism provides
the essential details for why the Cayley-Hamilton theorem (from
linear algebra) is true.

Proposition 1. Composition of two ring homomorphisms is a ring homo-
morphism.
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Proof. Let φ : R→ S and ψ : S → T be two ring homomorphisms. We need
to show that ψ ◦ φ (defined by ψ(φ(r))) is a ring homomorphism.

First, we check that 1 is sent to 1: ψ(φ(1)) = ψ(1) = 1, the first equality
because φ is a ring homomorphism, the second equality because ψ is a ring
homomorphism.

Second, choose r1, r2 ∈ R. We check that the composition preserves
addition: ψ(φ(r1+r2)) = ψ(φ(r1)+φ(r2)) = ψ(φ(r1))+ψ(φ(r2)). Again, the
first equality holds because φ is a ring homomorphism, the second equality
because ψ is a ring homomorphism.

The reason that multiplication is preserved is similar:
ψ(φ(r1 · r2)) = ψ(φ(r1) · φ(r2)) = ψ(φ(r1)) · ψ(φ(r2)). �

So we can compose two homomorphisms and still have a homomorphism.

Exercise. Think about the rings Z9 and Z3 ⊕ Z3 and a ring homomor-
phism Z9 → Z3 ⊕ Z3. Since it is a ring homomorphism, we know to where
[1] ∈ Z9 must be sent. But this tells us where [2] = [1] + [1] must be sent
(since it is a ring homomorphism), and [3], etc. How many ring homomor-
phisms Z9 → Z3 ⊕ Z3 exist? Are any of them onto (remember, there are
nine elements in Z3 ⊕ Z3?

Exercise. Do the same as above, but with Z6 and Z2 ⊕ Z3.

Kernels. The kernel of a ring homomorphism φ : R→ S is the set

{r ∈ R
∣∣ φ(r) = 0} =defn kerφ.

Examples:
for evaluation φn : Z[x]→ Z:

ker(φn) = {(x− n)g(x)
∣∣ g(x) ∈ Z[x]}

for ‘reduction mod n,’ ψ : Z→ Zn:

kerψ = {nd
∣∣ d ∈ Z}

for ‘projection to a coordinate’ p1 : R2 → R:

ker p1 = {(r1, r2)
∣∣ r1 = 0}

Proposition 2. A ring homomorphism φ : R→ S is 1-1 ⇐⇒ kerφ = {0}.

Proof. Suppose φ is 1-1 and let x ∈ kerφ (x could be anything in kerφ).
Then φ(0) = 0 = φ(x). Since φ is 1-1 this forces 0 = x. So anything that is
in kerφ must be 0, so kerφ = {0}.

Suppose that kerφ = {0} and let x, y ∈ R be such that φ(x) = φ(y). We
need to show that x must equal y. But φ(x) = φ(y) implies φ(x − y) =
φ(x)− φ(y) = 0, so x− y ∈ kerφ, and so x− y = 0. �
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Each of the kernels in examples above is a set of all multiples of some
element. But not all ideals can be described as the set of multiples of one
element:

Define ζ : Z[x] → Z2 by composing φ0 (evaluation at x = 0) with re-
duction mod 2. Then ζ(f(x)) = 0 if and only if f(x) has an even constant
coefficient. This is true for 2 ∈ Z[x] and for x ∈ Z[x].

But it cannot be that ker ζ is the set of multiples (in Z[x]) of some f0(x) ∈
Z[x]. Looking at 2, this f0 would need to be constant. It cannot be ±1,
because then ker ζ would be all of Z[x] since every polynomial is something
times ±1. So this would force f0(x) to be ±2, but then x cannot be a
multiple of it (using only polynomials in Z[x]).

A nice proposition.

Proposition 3. If F is a field and φ : F → R is a ring homomorphism
(where 0 6= 1 in R), then φ must be 1-1.

Proof. We know that φ(1) = 1R, the ‘1’ in R. Choose x ∈ kerφ.
Now if x 6= 0 then x−1 exists in F. But then

1 = φ(1) = φ(xx−1) = φ(x)φ(x−1) = 0 · φ(x−1) = 0,

which is untrue. So it must be that x = 0. Thus kerφ = {0} and so φ is 1-1
by Proposition 2. �

Ideals. It will be convenient to introduce the notion of a ‘ring without 1,’
which is a set with addition and multiplication that would be a ring, except
it does not have a multiplicative identity (a ’1’).

A simple example to think of is the set nZ of all integer multiples of some
n. So for example, 2Z: this is closed under adding, multiplying, has zero in
it, has additive inverses, etc.

Let R be a commutative ring. An ideal I ⊂ R is a subset that is either
a ring or a ‘ring without 1’ and has the super-closed under multiplication
property:

for any r ∈ R, and any x ∈ I, rx ∈ I.
So an ideal always has a commutative ring R in which it sits. And if you

multiply anything in R by something in I, you get something in I.
Think again of 2Z. You can take any integer, multiply it by an even

integer, and you get an even integer.
Note: If an ideal I ⊂ R contains 1, then I = R: if 1 ∈ I, then ∀r ∈

R, r = r · 1 ∈ I. Also, any ideal contains 0. We call an ideal proper if I
contains more than 0 and does not contain 1.

Proposition 4. kerφ ⊂ R is an ideal for any ring h’sm φ : R→ S.

Try checking this. You need to check kerφ satisfies all the ring axioms
(except existence of 1) and the super-closed condition. The reason it will
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work is that multiplying by 0 gives 0 (and adding 0 to 0 gives 0), so you
remain in the set of things sent by φ to 0.

Alternatively, you could use this shorter way to check something is an
ideal.

Proposition 5. Let I ⊂ R be any subset, which is not empty. If the follow-
ing conditions are satisfied, then I is an ideal:

(1) if a, b ∈ I then a− b ∈ I.
(2) if a ∈ I and r ∈ R then ra ∈ I.

So we have two ways to check if something is an ideal:
• identify the set is the kernel of some homomorphism;
• use Proposition 5.

Proposition 6. Any ideal in Z and any ideal in F[x] is equal to the set of
multiples of one element.

Proof. For Z this statement is the content of Theorem 1.1.4. For F[x] this
is implied by Theorem 4.2.2.

For a little more detail: Start with all multiples of some given polynomial
in the ideal. If this doesn’t give the whole ideal, some poly. in the ideal is
not a multiple of that one. These two have a gcd, and every combination
of them is a multiple of that gcd (by Theorem 4.2.2). Eventually you stop
getting a new gcd; for each new choice of polynomial either the degree of
the gcd drops and you use induction, or the new polynomial has same gcd
and has already been accounted for. �

Factor rings. A very generalized form of congruence classes.
Fix an ideal I ⊂ R, where R a commutative ring.
For r ∈ R, write r + I to mean the set

r + I = {r + x
∣∣ x ∈ I}.

This set r + I is called a coset.
You can choose different r’s and get the same coset. For example, take

the ideal 3Z ⊂ Z. So here I = 3Z. Since this is multiples of 3, 2 + I is the
set of all integers which are 2 plus a multiple of 3. But 5 + I is the same set,
since 5 = 2 + 3 so 5 plus a multiple of 3 is just 2 plus a different multiple of
3. So as cosets, 5 + 3Z = 2 + 3Z.

(This is exactly the same as saying [2] = [5] in Z3.)
But in the completely general setting:

Proposition 7. For an ideal I ⊂ R and a, b ∈ R,
a+ I = b+ I ⇐⇒ a− b ∈ I.

Proof. If a− b ∈ I then for any x ∈ I, we have

a+ x = b+ a− b+ x = b+ (a− b+ x),

and a−b+x ∈ I. This shows any element in a+I is in b+I, so a+I ⊂ b+I.
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Since a− b ∈ I implies b− a = −(a− b) ∈ I, there is a symmetry, and so
we also have b+ I ⊂ a+ I, and so they are equal cosets.

If a+ I = b+ I, then for any x ∈ I we have that a+ x = b+ x′ for some
x′ ∈ I. That equality on elements in the cosets means that a − b = x′ − x
which is in I, so a− b ∈ I. �

Constructing the factor ring R/I. We make the set of cosets of I ⊂ R
into a ring by declaring the following operations.

Addition: (r + I) + (s+ I) = (r + s) + I

Multiplication: (r + I) · (s+ I) = rs+ I

We need to know this is well-defined, in other words the answer we get
when adding or multiplying should not depend on the ‘r’ representing the
coset.

Say that a+ I = r+ I and b+ I = s+ I. (Note, by Prop’n 7, this means
a− r ∈ I and b− s ∈ I.)

Then a+ I + b+ I = (a+ b) + I and r+ I + s+ I = (r+ s) + I. Are the
answers the same? Well,

(a+ b)− (r + s) = (a− r) + (b− s) ∈ I

since each of a− r and b− s are in I. So (a+ b) + I = (r + s) + I.

For multiplication: is ab+ I = rs+ I?

ab− rs = ab− rb+ rb− rs = (a− r)b+ r(b− s).

Each of these summands is an element of I because of the super-closed
condition! So this shows ab− rs ∈ I and so ab+ I = rs+ I.

The additive identity is 0 + I and the multiplicative identity is 1 + I.
Additive inverse of r + I is −r + I.

Some examples of the factor ring R/I.

(1) R = Z and I = nZ: Z/nZ = Zn.
(2) All multiples of one element is an ideal:

〈p(x)〉 = {p(x)g(x)
∣∣ g(x) ∈ F[x]}

Then F[x]/〈p(x)〉 is a factor ring.

Theorem 1 (Fundamental Theorem for Homomorphisms). Let φ : R → S
be a ring h’sm, where R is a commutative ring. Use φ(R) to denote the
image of φ (everything that is φ(r) for some r). Then φ(R) ∼= R/ kerφ.

Proof. One should note that φ(R) is itself a ring. Check this.
Let I = kerφ which is an ideal by Prop’n 4. Define ψ : R/ kerφ → φ(R)

by setting ψ(r + I) = φ(r).
Check that ψ is a well-defined homomorphism.
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Also, it is clear that ψ is onto. Lastly, consider the kerψ:

kerψ = {r + I
∣∣ φ(r) = 0}

= {r + I
∣∣ r ∈ kerφ}

= {r + I
∣∣ r ∈ I} = {I}.

Since I is the zero of R/I, this means that ψ is 1-1 by Prop’n 2. �

Using the Fundamental Theorem: Let p1 : Z⊕Zn → Z be projection
to first coordinate. Since for any r ∈ Z, we know that p1((r, 0)) = r, we
have that p1(Z⊕ Zn) = Z (that is, p1 is onto).

The kernel is ker p1 = {(0, s)
∣∣ s ∈ Zn}. If we call ker p1 = K then the

Fundamental Theorem says that

Z ∼= (Z⊕ Zn)/K.

In other words, the cosets, under the addition,multiplication we’ve given,
make a ring structure just like that of Z.

To see that this is natural, notice that (r1, s1) +K = (r2, s2) +K if and
only if r1 = r2.

So an equation of the form (r0, s0)+K+(r1, s1)+K = (r2, s2)+K occurs
if and only if r0 + r1 − r2 = 0, that is r0 + r1 = r2.

Hence, since the first coordinate is Z every coset (r, s) + K is equal to
either (1, s) + K added to itself r times or (if r < 0) (−1, s) + K added to
itself |r| times.

That is exactly how Z is structured (multiplication in Z is just a con-
sequence of distribution, the fact that 1 is mult. identity, and that r =
1 + 1 + . . .+ 1 (r times)).

Note that K = {(0, s)
∣∣ s ∈ Zn} which can be treated very much like Zn:

(0, 1) + (0, 1) + . . .+ (0, 1) (n times) is equal to (0, 0). In this sense, we can
say that (Z⊕ Zn)/Zn ∼= Z, which is pleasing.

Tie in to Theorem 4.3.6. Finally, say that α is a root of an irreducible
p(x) ∈ F[x] and let φα : F[x] → F(α) be the evaluation homomorphism,
where F(α) is the smallest field containing F and α.

It turns out that 〈p(x)〉 is equal to kerφα (takes some care to see). By the
fundamental theorem, F[x]/〈p(x)〉 ∼= φα(F[x]), which is a subfield of F(α)
(since we know the left side is a field!). Since F(α) is the smallest field
containing α and F, it must be that φα is onto.


