NOTES ON RINGS, MATH 369.101

Kernels of ring homomorphisms and Ideals

Recall the definition of a ring homomorphism.
Some new examples:
(1) Complex conjugation: $z=a+b i \mapsto \bar{z}=a-b i$ (where $i^{2}=-1$). This gives a ring homomorphism $\mathbb{C} \rightarrow \mathbb{C}$, since we can check that $\overline{1}=1, \overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ and $\overline{z_{1} z_{2}}=\overline{z_{1}} \overline{z_{2}}$. To check the last one, let $z_{1}=a+b i, z_{2}=c+d i$:

$$
z_{1} z_{2}=(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

but

$$
\overline{z_{1}} \overline{z_{2}}=(a-b i)(c-d i)=a c-b d-(a d+b c) i=\overline{z_{1} z_{2}} .
$$

(2) Evaluation: For any ring R, choose $r \in R$. Then evaluation at $x=r$ gives a ring homomorphism $\phi_{r}: R[x] \rightarrow R$ defined by $\phi_{r}(f(x))=$ $f(r)$. In other words, if $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ is a polynomial in $R[x]$, then

$$
\phi_{r}(f(x))=f(r)=a_{0}+a_{1} r+\ldots+a_{n} r^{n} .
$$

It is the case that $f(a)$ is in R, since the coefficients of f were in $R, a \in R$, and all the operations on polynomials are the addition and multiplication operations used in the ring.

Think about how evaluation at $x=r$ is defined on a sum $f(x)+$ $g(x)$ and product $f(x) g(x)$ of polynomials, and why this means that ϕ_{r} preserves addition and multiplication. So ϕ_{r} is a homomorphism, even when R is not a commutative ring.

As an example of the evaluation homomorphism, think of when $R=\mathbb{Z}$ and we choose some integer $n \in \mathbb{Z}$. Then $\phi_{n}\left(1+x+2 x^{2}\right)=$ $1+n+2 n^{2}$. For which $f(x)$ does $\phi_{n}(f(x))=0$? Can you describe this set of $f(x)$ as "all multiples of some particular polynomial"?
P.S. As another nice example of the evaluation homomorphism, one could think of evaluation at a matrix of a polynomial in $R[x]$ where $R=M_{n}(\mathbb{R})$. The fact that this is a homomorphism provides the essential details for why the Cayley-Hamilton theorem (from linear algebra) is true.

Proposition 1. Composition of two ring homomorphisms is a ring homomorphism.

[^0]Proof. Let $\phi: R \rightarrow S$ and $\psi: S \rightarrow T$ be two ring homomorphisms. We need to show that $\psi \circ \phi($ defined by $\psi(\phi(r)))$ is a ring homomorphism.

First, we check that 1 is sent to $1: \psi(\phi(1))=\psi(1)=1$, the first equality because ϕ is a ring homomorphism, the second equality because ψ is a ring homomorphism.

Second, choose $r_{1}, r_{2} \in R$. We check that the composition preserves addition: $\psi\left(\phi\left(r_{1}+r_{2}\right)\right)=\psi\left(\phi\left(r_{1}\right)+\phi\left(r_{2}\right)\right)=\psi\left(\phi\left(r_{1}\right)\right)+\psi\left(\phi\left(r_{2}\right)\right)$. Again, the first equality holds because ϕ is a ring homomorphism, the second equality because ψ is a ring homomorphism.

The reason that multiplication is preserved is similar: $\psi\left(\phi\left(r_{1} \cdot r_{2}\right)\right)=\psi\left(\phi\left(r_{1}\right) \cdot \phi\left(r_{2}\right)\right)=\psi\left(\phi\left(r_{1}\right)\right) \cdot \psi\left(\phi\left(r_{2}\right)\right)$.

So we can compose two homomorphisms and still have a homomorphism.
Exercise. Think about the rings \mathbb{Z}_{9} and $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ and a ring homomorphism $\mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$. Since it is a ring homomorphism, we know to where $[1] \in \mathbb{Z}_{9}$ must be sent. But this tells us where [2] $=[1]+[1]$ must be sent (since it is a ring homomorphism), and [3], etc. How many ring homomorphisms $\mathbb{Z}_{9} \rightarrow \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ exist? Are any of them onto (remember, there are nine elements in $Z_{3} \oplus \mathbb{Z}_{3}$?

Exercise. Do the same as above, but with \mathbb{Z}_{6} and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$.
Kernels. The kernel of a ring homomorphism $\phi: R \rightarrow S$ is the set

$$
\{r \in R \mid \phi(r)=0\}=^{d e f n} \operatorname{ker} \phi
$$

Examples:
for evaluation $\phi_{n}: \mathbb{Z}[x] \rightarrow \mathbb{Z}$:

$$
\operatorname{ker}\left(\phi_{n}\right)=\{(x-n) g(x) \mid g(x) \in \mathbb{Z}[x]\}
$$

for 'reduction $\bmod n, ' \psi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$:

$$
\operatorname{ker} \psi=\{n d \mid d \in \mathbb{Z}\}
$$

for 'projection to a coordinate' $p_{1}: R^{2} \rightarrow R$:

$$
\operatorname{ker} p_{1}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1}=0\right\}
$$

Proposition 2. A ring homomorphism $\phi: R \rightarrow S$ is $1-1 \Longleftrightarrow \operatorname{ker} \phi=\{0\}$.

Proof. Suppose ϕ is 1-1 and let $x \in \operatorname{ker} \phi(x$ could be anything in $\operatorname{ker} \phi)$. Then $\phi(0)=0=\phi(x)$. Since ϕ is 1-1 this forces $0=x$. So anything that is in $\operatorname{ker} \phi$ must be 0 , so $\operatorname{ker} \phi=\{0\}$.

Suppose that $\operatorname{ker} \phi=\{0\}$ and let $x, y \in R$ be such that $\phi(x)=\phi(y)$. We need to show that x must equal y. But $\phi(x)=\phi(y)$ implies $\phi(x-y)=$ $\phi(x)-\phi(y)=0$, so $x-y \in \operatorname{ker} \phi$, and so $x-y=0$.

Each of the kernels in examples above is a set of all multiples of some element. But not all ideals can be described as the set of multiples of one element:

Define $\zeta: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{2}$ by composing ϕ_{0} (evaluation at $x=0$) with reduction mod 2. Then $\zeta(f(x))=0$ if and only if $f(x)$ has an even constant coefficient. This is true for $2 \in \mathbb{Z}[x]$ and for $x \in \mathbb{Z}[x]$.

But it cannot be that $\operatorname{ker} \zeta$ is the set of multiples (in $\mathbb{Z}[x]$) of some $f_{0}(x) \in$ $\mathbb{Z}[x]$. Looking at 2 , this f_{0} would need to be constant. It cannot be ± 1, because then $\operatorname{ker} \zeta$ would be all of $\mathbb{Z}[x]$ since every polynomial is something times ± 1. So this would force $f_{0}(x)$ to be ± 2, but then x cannot be a multiple of it (using only polynomials in $\mathbb{Z}[x]$).

A nice proposition.
Proposition 3. If \mathbb{F} is a field and $\phi: \mathbb{F} \rightarrow R$ is a ring homomorphism (where $0 \neq 1$ in R), then ϕ must be 1-1.

Proof. We know that $\phi(1)=1_{R}$, the ' 1 ' in R. Choose $x \in \operatorname{ker} \phi$.
Now if $x \neq 0$ then x^{-1} exists in \mathbb{F}. But then

$$
1=\phi(1)=\phi\left(x x^{-1}\right)=\phi(x) \phi\left(x^{-1}\right)=0 \cdot \phi\left(x^{-1}\right)=0
$$

which is untrue. So it must be that $x=0$. Thus $\operatorname{ker} \phi=\{0\}$ and so ϕ is 1-1 by Proposition 2.

Ideals. It will be convenient to introduce the notion of a 'ring without 1 ,' which is a set with addition and multiplication that would be a ring, except it does not have a multiplicative identity ($\mathrm{a}^{\prime} 1^{\prime}$ ').

A simple example to think of is the set $n \mathbb{Z}$ of all integer multiples of some n. So for example, $2 \mathbb{Z}$: this is closed under adding, multiplying, has zero in it, has additive inverses, etc.

Let R be a commutative ring. An ideal $I \subset R$ is a subset that is either a ring or a 'ring without 1 ' and has the super-closed under multiplication property:

$$
\text { for any } r \in R \text {, and any } x \in I, r x \in I
$$

So an ideal always has a commutative ring R in which it sits. And if you multiply anything in R by something in I, you get something in I.

Think again of $2 \mathbb{Z}$. You can take any integer, multiply it by an even integer, and you get an even integer.

Note: If an ideal $I \subset R$ contains 1 , then $I=R$: if $1 \in I$, then $\forall r \in$ $R, r=r \cdot 1 \in I$. Also, any ideal contains 0 . We call an ideal proper if I contains more than 0 and does not contain 1 .

Proposition 4. $\operatorname{ker} \phi \subset R$ is an ideal for any ring h 'sm $\phi: R \rightarrow S$.
Try checking this. You need to check ker ϕ satisfies all the ring axioms (except existence of 1) and the super-closed condition. The reason it will
work is that multiplying by 0 gives 0 (and adding 0 to 0 gives 0), so you remain in the set of things sent by ϕ to 0 .

Alternatively, you could use this shorter way to check something is an ideal.

Proposition 5. Let $I \subset R$ be any subset, which is not empty. If the following conditions are satisfied, then I is an ideal:
(1) if $a, b \in I$ then $a-b \in I$.
(2) if $a \in I$ and $r \in R$ then $r a \in I$.

So we have two ways to check if something is an ideal:

- identify the set is the kernel of some homomorphism;
- use Proposition 5.

Proposition 6. Any ideal in \mathbb{Z} and any ideal in $\mathbb{F}[x]$ is equal to the set of multiples of one element.

Proof. For \mathbb{Z} this statement is the content of Theorem 1.1.4. For $\mathbb{F}[x]$ this is implied by Theorem 4.2.2.

For a little more detail: Start with all multiples of some given polynomial in the ideal. If this doesn't give the whole ideal, some poly. in the ideal is not a multiple of that one. These two have a gcd, and every combination of them is a multiple of that gcd (by Theorem 4.2.2). Eventually you stop getting a new gcd; for each new choice of polynomial either the degree of the gcd drops and you use induction, or the new polynomial has same gcd and has already been accounted for.

Factor rings. A very generalized form of congruence classes.
Fix an ideal $I \subset R$, where R a commutative ring.
For $r \in R$, write $r+I$ to mean the set

$$
r+I=\{r+x \mid x \in I\} .
$$

This set $r+I$ is called a coset.
You can choose different r 's and get the same coset. For example, take the ideal $3 \mathbb{Z} \subset \mathbb{Z}$. So here $I=3 \mathbb{Z}$. Since this is multiples of $3,2+I$ is the set of all integers which are 2 plus a multiple of 3 . But $5+I$ is the same set, since $5=2+3$ so 5 plus a multiple of 3 is just 2 plus a different multiple of 3. So as cosets, $5+3 \mathbb{Z}=2+3 \mathbb{Z}$.
(This is exactly the same as saying $[2]=[5]$ in \mathbb{Z}_{3}.)
But in the completely general setting:
Proposition 7. For an ideal $I \subset R$ and $a, b \in R$,
$a+I=b+I \quad \Longleftrightarrow \quad a-b \in I$.
Proof. If $a-b \in I$ then for any $x \in I$, we have

$$
a+x=b+a-b+x=b+(a-b+x)
$$

and $a-b+x \in I$. This shows any element in $a+I$ is in $b+I$, so $a+I \subset b+I$.

Since $a-b \in I$ implies $b-a=-(a-b) \in I$, there is a symmetry, and so we also have $b+I \subset a+I$, and so they are equal cosets.

If $a+I=b+I$, then for any $x \in I$ we have that $a+x=b+x^{\prime}$ for some $x^{\prime} \in I$. That equality on elements in the cosets means that $a-b=x^{\prime}-x$ which is in I, so $a-b \in I$.

Constructing the factor ring R / I. We make the set of cosets of $I \subset R$ into a ring by declaring the following operations.

$$
\begin{aligned}
& \text { Addition: } \quad(r+I)+(s+I)=(r+s)+I \\
& \text { Multiplication: } \quad(r+I) \cdot(s+I)=r s+I
\end{aligned}
$$

We need to know this is well-defined, in other words the answer we get when adding or multiplying should not depend on the ' r ' representing the coset.

Say that $a+I=r+I$ and $b+I=s+I$. (Note, by Prop'n 7, this means $a-r \in I$ and $b-s \in I$.)

Then $a+I+b+I=(a+b)+I$ and $r+I+s+I=(r+s)+I$. Are the answers the same? Well,

$$
(a+b)-(r+s)=(a-r)+(b-s) \in I
$$

since each of $a-r$ and $b-s$ are in I. So $(a+b)+I=(r+s)+I$.
For multiplication: is $a b+I=r s+I ?$

$$
a b-r s=a b-r b+r b-r s=(a-r) b+r(b-s)
$$

Each of these summands is an element of I because of the super-closed condition! So this shows $a b-r s \in I$ and so $a b+I=r s+I$.

The additive identity is $0+I$ and the multiplicative identity is $1+I$. Additive inverse of $r+I$ is $-r+I$.

Some examples of the factor ring R / I.
(1) $R=\mathbb{Z}$ and $I=n \mathbb{Z}: \mathbb{Z} / n \mathbb{Z}=\mathbb{Z}_{n}$.
(2) All multiples of one element is an ideal:

$$
\langle p(x)\rangle=\{p(x) g(x) \mid g(x) \in \mathbb{F}[x]\}
$$

Then $\mathbb{F}[x] /\langle p(x)\rangle$ is a factor ring.
Theorem 1 (Fundamental Theorem for Homomorphisms). Let $\phi: R \rightarrow S$ be a ring h'sm, where R is a commutative ring. Use $\phi(R)$ to denote the image of ϕ (everything that is $\phi(r)$ for some r). Then $\phi(R) \cong R / \operatorname{ker} \phi$.

Proof. One should note that $\phi(R)$ is itself a ring. Check this.
Let $I=\operatorname{ker} \phi$ which is an ideal by Prop'n 4. Define $\psi: R / \operatorname{ker} \phi \rightarrow \phi(R)$ by setting $\psi(r+I)=\phi(r)$.

Check that ψ is a well-defined homomorphism.

Also, it is clear that ψ is onto. Lastly, consider the $\operatorname{ker} \psi$:

$$
\begin{aligned}
\operatorname{ker} \psi & =\{r+I \mid \phi(r)=0\} \\
& =\{r+I \mid r \in \operatorname{ker} \phi\} \\
& =\{r+I \mid r \in I\}=\{I\} .
\end{aligned}
$$

Since I is the zero of R / I, this means that ψ is $1-1$ by Prop'n 2.
Using the Fundamental Theorem: Let $p_{1}: \mathbb{Z} \oplus \mathbb{Z}_{n} \rightarrow \mathbb{Z}$ be projection to first coordinate. Since for any $r \in \mathbb{Z}$, we know that $p_{1}((r, 0))=r$, we have that $p_{1}\left(\mathbb{Z} \oplus \mathbb{Z}_{n}\right)=\mathbb{Z}$ (that is, p_{1} is onto).

The kernel is $\operatorname{ker} p_{1}=\left\{(0, s) \mid s \in \mathbb{Z}_{n}\right\}$. If we call ker $p_{1}=K$ then the Fundamental Theorem says that

$$
\mathbb{Z} \cong\left(\mathbb{Z} \oplus \mathbb{Z}_{n}\right) / K
$$

In other words, the cosets, under the addition,multiplication we've given, make a ring structure just like that of \mathbb{Z}.

To see that this is natural, notice that $\left(r_{1}, s_{1}\right)+K=\left(r_{2}, s_{2}\right)+K$ if and only if $r_{1}=r_{2}$.

So an equation of the form $\left(r_{0}, s_{0}\right)+K+\left(r_{1}, s_{1}\right)+K=\left(r_{2}, s_{2}\right)+K$ occurs if and only if $r_{0}+r_{1}-r_{2}=0$, that is $r_{0}+r_{1}=r_{2}$.

Hence, since the first coordinate is \mathbb{Z} every coset $(r, s)+K$ is equal to either $(1, s)+K$ added to itself r times or (if $r<0)(-1, s)+K$ added to itself $|r|$ times.

That is exactly how \mathbb{Z} is structured (multiplication in \mathbb{Z} is just a consequence of distribution, the fact that 1 is mult. identity, and that $r=$ $1+1+\ldots+1(r$ times $))$.

Note that $K=\left\{(0, s) \mid s \in \mathbb{Z}_{n}\right\}$ which can be treated very much like \mathbb{Z}_{n} : $(0,1)+(0,1)+\ldots+(0,1)(n$ times $)$ is equal to $(0,0)$. In this sense, we can say that $\left(\mathbb{Z} \oplus \mathbb{Z}_{n}\right) / \mathbb{Z}_{n} \cong \mathbb{Z}$, which is pleasing.

Tie in to Theorem 4.3.6. Finally, say that α is a root of an irreducible $p(x) \in \mathbb{F}[x]$ and let $\phi_{\alpha}: \mathbb{F}[x] \rightarrow \mathbb{F}(\alpha)$ be the evaluation homomorphism, where $\mathbb{F}(\alpha)$ is the smallest field containing \mathbb{F} and α.

It turns out that $\langle p(x)\rangle$ is equal to $\operatorname{ker} \phi_{\alpha}$ (takes some care to see). By the fundamental theorem, $\mathbb{F}[x] /\langle p(x)\rangle \cong \phi_{\alpha}(\mathbb{F}[x])$, which is a subfield of $\mathbb{F}(\alpha)$ (since we know the left side is a field!). Since $\mathbb{F}(\alpha)$ is the smallest field containing α and \mathbb{F}, it must be that ϕ_{α} is onto.

[^0]: Date: Oct. 12 - Oct. 19.

