NOTES ON RINGS, MATH 369.101

More on Rings

So multiplicative cancellation in rings does not generally work. In addition, there might be a non-zero element which can be raised to a power to get zero - a nilpotent element.

Examples:
(1) In $\mathbb{Z}_{8}:[2]^{3}=[2][2][2]=[8] \equiv[0]$.
(2) In $M_{2}(\mathbb{F}),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
(3) In $M_{3}(\mathbb{F}),\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)^{3}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Recall, we have the following.

Note that for any $f(x) \in \mathbb{F}[x]$, the set of congruence classes $\mathbb{F}[x] /\langle f(x)\rangle$ is a commutative ring.
[If you look at the proof of Theorem 4.3.6, none of the axioms that are used for a commutative ring required that $f(x)$ is irreducible. That was used to get multiplicative inverses.]

Relaxing coefficients. Let R be any ring.
Then $R[x]$, polynomials with coefficients in R, is a ring. This ring is commutative if and only if R is commutative.

You can also have $M_{n}(R)$, matrices with entries in R, and this with matrix addition/multiplication is a ring.

One has to be careful about inverses. For example, $\left(\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right)$ has an inverse in $M_{2}(\mathbb{Q})$ but as a matrix in $M_{2}(\mathbb{Z})$ it does not have an inverse.
The direct sum. For any rings R and S.
$R \oplus S$, as a set, is the ordered pairs:

$$
R \oplus S=\{(r, s) \mid r \in R, s \in S\}
$$

Addition and multiplication are done in each coordinate. So,

$$
\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=\left(r_{1}+r_{2}, s_{1}+s_{2}\right)
$$

and

$$
\left(r_{1}, s_{1}\right) \cdot\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right) .
$$

Example: $(a, b) \in \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, then $a \in \mathbb{Z}_{2}$ and $b \in \mathbb{Z}_{3}$.
$(1,1)+(1,1)=(0,2)$, since $2 \equiv 0 \bmod 2$.
$(0,2)+(1,1)=(1,0)$, since $3 \equiv 0 \bmod 3$.
$(1,2) \cdot(0,2)=(0,1)$.
The additive/multipicative identities in $R \oplus S$ are $(0,0)$ and $(1,1)$.
Is $\mathbb{F} \oplus \mathbb{F}={ }^{\text {defn }} \mathbb{F}^{2}$ a field, or just a ring?

Ring homomorphisms

Let R, S be rings. A ring homomorphism is a function $\phi: R \rightarrow S$ such that $\phi(1)=1$ and $\phi\left(r_{1}+r_{2}\right)=\phi\left(r_{1}\right)+\phi\left(r_{2}\right)$ and $\phi\left(r_{1} \cdot r_{2}\right)=\phi\left(r_{1}\right) \cdot \phi\left(r_{2}\right)$, for all $r_{1}, r_{2} \in R$.

A ring homomorphism is an isomorphism if it is 1-1 and onto.
Example (reduction $\bmod n$): Define $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ by $\phi(m)=[m]$. Addition being preserved $(\phi(a+b)=\phi(a)+\phi(b))$ means $[a+b]=[a]+[b]$. Multiplication is similar. See Proposition 1.4.2 (compare to Proposition 4.3.4 on polynomial congruence).

For this example, what subset of \mathbb{Z} is sent to [0]?
Note that for any ring homomorphism $\phi, \phi(0)=0$ since for any $r \in R$,

$$
\phi(0)+\phi(r)=\phi(0+r)=\phi(r)=0+\phi(r) .
$$

Other examples:
projection to a coordinate

Define $\phi: R^{2} \rightarrow R$ by $\phi\left(\left(r_{1}, r_{2}\right)\right)=r_{1}$. Check this is a homomorphism.
Is there any ring homomorphism $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}$? (Think about the fact that $\phi(1)=1, \phi(1+1)=\phi(1)+\phi(1)=1+1$, etc. $)$

