NOTES ON RINGS, MATH 369.101

Rings

Often we need to work in a setting where there are not multiplicative inverses (at least for some non-zero elements). For example, the integers \mathbb{Z}, polynomials, or matrices.

A commutative ring is a set with addition and multiplication which satisfies all the field axioms except (possibly) the existence of multiplicative inverses.

A ring is a set with addition and multiplication which satisfies all the commutative ring axioms except (possibly) the commutativity of multiplication.

Examples:

(1) \mathbb{Z} : the only thing missing to go from \mathbb{Z} to the field \mathbb{Q} are reciprocals of non-zero numbers (multiplicative inverses). So \mathbb{Z} is a commutative ring.
(2) Every field is a commutative ring. We don't require multiplicative inverses to not be there, they just might not be. Similarly, every commutative ring is a ring.
(3) For any $n>0$, we have \mathbb{Z}_{n}, integers $\bmod n$, which is a commutative ring. If n is a prime, then \mathbb{Z}_{n} is also a field. If n is not prime, there are still some elements that have a multiplicative inverse (any a with $\operatorname{gcd}(a, n)=1$), just not every non-zero element. For example:
in \mathbb{Z}_{10} : congruence class of 3 has inverse: $[3][7]=[21] \equiv[1]$. However, the congruence class of 5 does not, since every multiple of 5 is either congruent to 5 or to 0 .
(4) $\mathbb{F}[x]$ is a commutative ring.
(5) $M_{n}(\mathbb{F})$ which denotes, for $n>0$, the set of $n \times n$ matrices with entries in a field. This is a ring: addition and multiplication of matrices give you a new matrix; the operations are associative and distributive; the matrix of all zero entries is the additive identity, and the identity matrix (with 1 on diagonal, and 0 elsewhere) is the mult. identity; additive inverses are found by negating every entry.
$M_{n}(\mathbb{F})$ is not a commutative ring.
All the Propositions on addition still work for rings: for example, (additive cancellation) if $a+b=a+c$ then $b=c$ for a, b, c in a ring. And also for any a in a ring, $a \cdot 0=0$, and $-(-a)=a$.

Recall that in $\mathbb{F}[x]$ there is multiplicative cancellation: $f(x) \cdot g(x)=f(x)$. $h(x)$ implies that $g(x)=h(x)$. Proving this works required the use of the degree of the polynomials.

In a general ring, this doesn't work. For example: in $\mathbb{Z}_{20}:[2][5]=[10]=[2][15]$, but $[5] \neq[15]$ in \mathbb{Z}_{20}.

