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1 Introduction

The problem of finding an & = h(z) such that for z sufficiently large (z,z + Al
contains a squarefree integer is an old one with a number of authors’ contri-
butions. The best result is due to M. Filaseta and O. Trifonov [1] who prove
that h = czs log z is admissible. Here ¢ > 0 is an unspecified absolute constant.
In this note we give concrete meaning to both the constant ¢ and the words
“sufficiently large” in the Theorem from [1]. We establish the following

Theorem. For every x > 2 the interval (z,z +1000z% log z] contains a square-
free integer.

We follow closely the approach from [1], but at the same time pay much
more attention to the exact constants in our estimates. Also, for “small” values

of x we make use of the asymptotically weaker results h = 21:2 h = 223 and
h = 9z3. These are stated as lemmas which are proved in Sectlons 3 and 4.

2 Preliminaries

Let N(z, h) be the number of the integers in (z,z + h] that are not squarefree.
As in [1] we establish that (z,z + h] contains a squarefree number by showing
that N(z,h) < h — 1. First we note that
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For )", we obtain

(2) >, < hzgz— +m(H) < 0.454h + w(H) .

On the other hand, if p > v/2x and & < z, we have
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so that all terms in ), with p > /2 are zero and
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Also, if p > vh
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Hence, if we define
S(A,B)=#{ncZ: A<n<B, {z/n?} e (1 —hn7% 1)},
we will have
Y, < S(H,V2z) .

Therefore, in view of (1) and (2), in order to prove that (z,z + h] contains a
squarefree integer it suffices to show that

(3) m(H) + S(H,v2z) < 0.546h — 1

for some H > vh.
We end this section with two technical lemmas. Lemma 1 is an effective

version of a well known result (e.g. Lemma 1 of [1]). Lemma 2 contains (3.1)
and (3.6) of [2].

Lemma 1. Suppose that A, a, b, u and v are real numbers with A > 0 and
0 <u<wv <1, and assume that for all M € [z%, %] the estimate

S(M,2M) < Az®M*

holds. Then
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Lemma 2. For any x > 1 we have

z 14 3
logx 2logx

m(x) < 1.256x/ logx .

7(z) <

and

3 Small Values of =

In this section we prove that A = 227 and & = 2z% are admissible in the gap
problem for the squarefree numbers. We establish the following lemmas

Lemma 3. If z > 200, the interval (z, z + 2x%] contains a squarefree number.
Lemma 4. Ifz > e?°, the interval (x,z + Zz%] contains a squarefree number.

Initially, we show that the Theorem is true for z < ™ assuming that Lem-
mas 3 and 4 hold. Note that if z € (€2°, 7] then

273 < 1000z logx,

and for z € [200, ¢20]

Rl

227 < 100023 logz .

Hence, in the first case the Theorem follows from Lemma 4, and in the second
from Lemma 3. Finally, if 2 < z < 200, the interval (z, z+1000z% log 2] contains
the integer 201 that is squarefree.

Now we prove Lemmas 3 and 4.

Proof of Lemma 3. We need to prove (3) with h = 27%. Choosing H = /2,
we have S(H,+/2z) = 0, so (3) is equivalent to

m(h/V2) < 0.546h — 1 .

By the second part of Lemma 2,

YNNG
m(h/v2) < 1.256 x o2/ V3 <0.3h

if x > 200. Hence, the lemma follows. ]

For the rest of this note we let f(u) = zu~2 and

Ty,={necZ: 2¥ <n<2z®, {fin)}y e ~hn7% 1)} .



Proof of Lemma 4. We prove (3) with k = 22% and H = 2h. Let uand u +a
be two elements of 1, % <p <L % We have

f(u) =nn] — 91 and f(u + (l) = N9 — 92
where n; are integers and 0 < 8; < hz=%%. So,
f(u+a) —f(u) = (ng —n1) + (61 —92) =n+40

with n € Z and |8] < hz=%¢, First we show that n # 0. Suppose n is zero.
Then we get

£t a) = F(u)| < ha~2.
On the other hand, by the Mean Value Theorem,

2ar _ 1 1-3p

[fu+a) = fu)] = alf'(§)] = = Z
Combining these inequalities, we obtain
T < 4hz¥ < 4hx? = 845 ,

which is impossible for z > €20, Hence, n cannot be zero and we must have
|n] > 1. Also, for z¥ > H we have

S

6] < ha™2 < hH 2 = %x_é <ze 3 =4,

Qo)

so that
|f(u+a) ~ flu)] =In—6>1-6.

This inequality and another application of the Mean Value Theorem give the
estimate

(4) a>0.5(1 - g1
and hence,
(5) S(z¥,22%) < 2(1 - §)"gl-2¢ 11 .
Now (5) and Lemma 1 give
8 _ logz
6 HV2r) < ——— .gH 2 4 257
© s x)—3(1—5) Tt Gloga T

1 logz ~;)
Shlgm——s+————+275) <0.080h -1
<12(1 —8) 1223 log 2

ifz > €2, Also, by the first estimate of Lemma 2, we have
7(2h) < 0.295h ,

which in combination with (6) proves the lemma. O



4 Intermediate Values of

In this section we prove that # = 921 is admissible. The result is
Lemma 5. If x > €™, the interval (z,z + 927 contains a squarefree number.
Note that since for z € (79, £200]
9z 1 < 100023 logz ,

this lemma and the results from Section 3 establish the Theorem for all zz < ¢200,

Proof of Lemma 5. We prove (3) with H = h = 971, Let Uy = u, up = u + q,
u3 =u + a + b be 3 consecutive elements of T,, 1 <¢< 1, and let

flus) =n; — 6 in; €4, 0< 8; < ho~2%°,
Consider the second divided difference

Flut, uz, us] = Su1)(uz — ug) — fluz)(us —uy) + fus)(uz2 — uq) . A

(uz — u1)(ug — ui)(uz — up) v
We have A = n + 6 where
n=bny — (a+ b)ny + ans and 0 =b6, — (a+b)fs + abs ,
and hence, 6] < (a + b)hz=2%. Assuming that n = 0, we obtain

_ 18l _ (a+bha=2  hxp-2e
If[u17u27u3” - V ab(a +b) - ab 3

and in the same time

If[ul,u2,U3H = |7

f”(é)l SN
2!

These inequalities imply
16 .
ab < ?hxzp—l — 48723

Since a and b are positive integers, we have ab > 1, and hence we must have
3 =)
z¥ > ﬁxﬁ. On the other hand, by (4), ab > 0.5(1 — 0)x3¢~1 and we get

32h 96x1

® —
309 " 1-5"

For z > €™ this is a contradiction, whence |n| > 1.
Now, we proceed to show that

(7) a+b> v1.3240-1/3



If a+b > 0.012%, this is true by virtue of the condition z > e, so assume that
a+b < 0.01z%. In this case

6] < (a+b)hz=% < 0.01 .

Hence, we have

Al _ In| - 18] 0.99
= — > 11~ _ 7Y
'f[ulau27u3” v = % = ab(a+b) ;
and
3
[ flu, ug, ug]| = f-f < 3zl

Since 4ab < (a + b)?, we can derive (7) from these inequlities. Now, using (7),
we find
2

3

(8) S(x¥,2z%) <

z(l—‘{’)/S +2 ,
32

and putting this in Lemma 1

2 11 log =
S(HV2z) < —————_ yap~% 4 98T
(9) ( y I')— 3/—132(1_2_%)173}1 J+210g2

- h( 2 N logz N 2 _41)
P =T

T \9VOVIB2(1-2-%) " 18z%log2 | O

< 0.473h — 1

+2

if z > e™. Also, by the first estimate in Lemma 2, we obtain that for z >e™
m(h) < 0.049h .

The last estimate and (9) complete the proof of the lemma. O

5 Large Values of z

First note that Lemma 1 and (5) imply that if z > 200 then

8 log =
O>4 <
S, vaz) < 31-3) ' 10log2

@

+2 < 0.001A .
Hence, by the discussion in the previous sections, it suffices to show that if
z > 200

m(H) + S(H,z%) < 0.545h 1

with A = 10002% log z and a suitable H. We choose H — 125, Then by Lemma 2
we have

m(H) < 0.226h



and it remains to show that
(10) S(H,z%%) < 0.319h — 1.
Now, we define the set
T(a) = {u: u, u+ a are consecutive elements of Ty}
and denote its cardinality by t(a). We also set
A=V132z47D/3  and B = 0.005z9% .

Then

S(x¥,2z%) =1+ it(a) <242 Z t(a),
a=1

a>A

by virtue of the estimate (7). Also, since for any B > 1

o0

#¥ > ) at(a) > Y at(a) > B > Ha),
a=1 a>B a>B
we obtain
(11) §(2%,20°) <2+ 22°B7 +2 3 (a).

A<a< B

At this point it is convenient to replace the set T'(a) by its subset 7}

by dropping the last element of T (a) and every other element 1 € 7'

{a), obtained
(a) such that

u —ais also in T'(a). Set t1(a) = |T}(a)|. Then t(a) < 2t1(a) + 1, and if u and
u+b are two elements of Ti{a), uy = u, ug = u+a, u3 =u+b, ug =u+a+bare
distinct elements of 7},. Also, for any u € Ti(a), u + 2a < 2z%. Now, consider

fluy) N f(usg) flus) . f(ua)

f[ula"' 1U’4] = _ab(a+b) ab(b—a,) h a,b(b—a) ab(a+b) -

We proceed to show that U > 0.5. Since u; € Ty,
flus) =n; —6; ing €Z,0<8; < hx=?%,

So, if 0 < U < 0.5, we have

U=UI=1=61(b—a) +62(b + a) — 83(b + @) + 04(b — )|
< hw‘zw((b +a)+ (b—a)) = 2bhz=2¢ ,
and hence
—2p
,f[ul"'- ,’LL4” < G_M% 3
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On the other hand,

4 1
]ﬂmpu,mﬂ=5§2gmkw.
Combining these estimates, we get
2bha =2 |

- Sz ®
abla+b)(b—a) — 8%

and this implies
a(b—a)(b+a) < 16hz3¢1
Since a > A and b > 2A, we also have
a(b—a)(b+a) > 343 = 3.96z% 1

So, if ¥ > H, we obtain 12h < z¥ < 5h. Hence, we must have U > 0.5. We
now find that

4x ! _1
1=5p ~ 2 _ A > > *
4x = 55 ,f[ula ,’lL4” = Qab(a + b)(b — a) — 3ab’d
Finally we obtain
1
(12) ab’ 2 et

— 12
Now, we use the polynomial identity

2u—a 2u + 3a a®

> (u+a)? __uz(u+a)2 '

If u € T (a), this implies

(1327

_m:(2u_a)f(u)—(2u+3a)f(u+a):n+0

where 7 is an integer and
0] = | - 61(2u — a) + 6,(2u + 3a)| < dhz™¥ .
Applying this to u and u + b, we obtain

—za® N xza® -
(u+0)*(u+ta+b)? " wl(u+a)?

g

with n € Z and |0] < 8hz~¥, i.e.

2a®b(2u + a + b)[(u + b)(u + a + b) + u(u + a)

u(u+a)(u + b)2(u + a + b)2 =wte,

8



The left hand side is both

- 4zah
= Wt a)2(u+ b)

< 4a3bgt=5%

and

4xa3b 1
> > a%br! %%
T (uta)(u+b)2(uta+b)? = g” bz

Since the condition z¥ > H implies 8] < %, we obtain from the upper estimate
that if b < %a_3$5‘p‘1, we must have n < 1. On the other hand, the lower
estimate implies that if & > 64a"3hz?-1 pn is a positive integer. Therefore
these two conditions cannot hold simultaneously, i.e. either

1 —=3,.5¢p—-1
b> 12a z ,
or
(13) b <64a 3hzte-T

Consequently, if I is an interval of length || < %a_?’a:&a_l, and u,u+ b ¢
Ti(a) N1, the condition (13) must hold. When combined with (12) this implies

4, =3p,4p—1
I NT(a)] < bla “he +1=64V12a Sha(Te=2/3 4 1

3/l —1 (50-1)/3
12a 31-(90 )/

Also, since
1263274 > 124311 5 15 )
the maximum possible number of intervals I with the above properties is

¥

15,3 1—dg 3, 1-dp
_szw_l-i—l—lZaI +1<12.8¢°x .

Putting the pieces together, we find

ti(a) <12.80%z'7% x (64120~ S ha(T9-2/3 1 1)
= 819.2V/12¢3 ha5—5¢/3 4 1984314

From (11) and the last estimate we obtain

5(z¥,22%) <24 22°B™' 4 2B + 7502h(1-5¢)/3 > ad 1510014 > at
a<B a<B
< 2+400.01z% + 5626.5h21-59)/3(B 4 1)% + 12.82' 74 (B + 1)

< 400.0112% + 4.816hzTs —%/3 .



Now, applying Lemma 1, we get

S(H,2%) < 400.011% ( 1262 | ) 4816 & jay s
N 5log2 -1

1.0197h
(log z)*
<0.295h < 0.3h— 1.

< 120.004z5 log z +

Thus, (10) holds and the proof is complete. O
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