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Preface

These notes cover the material for the graduate course with the same title that I taught at the Univer-
sity of Texas at Austin during the Spring 2005 semester. Theydraw heavily onThe Distribution of
Prime Numbersby M. Huxley andMultiplicative Number Theoryby H. Davenport (as revised by
H. L. Montgomery). I also acknowledge the use of notes by Jeff Vaaler and numerous discussions
with him that helped improve the exposition.
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Notation

For functionsf andg with g ≥ 0, we write f (x) = O(g(x)) or f (x)� g(x) when there is a constant
c such that| f (x)| ≤ cg(x); when f andg are both non-negative, we may also writef � g instead of
g� f . We write f (x) ∼ g(x) when lim f (x)/g(x) = 1 asx tends to some limit to be specified at each
occurrence. We usec, c0, c1, c2, . . . to denote implicit constants; these and the constants implied by
O- and�-symbols are presumed absolute, unless stated otherwise. Throughout these notes (and
much of number theory outside them) the letterp, with or without subscripts or superscripts, is
reserved for prime numbers. We also uses= σ + it to denote a complex variable.

For the most part, we use the standard notations for common number-theoretic functions. These
are usually defined at their first appearance, but for convenience we also list them here:

‖θ‖ the distance from the real numberθ to the nearest integer;
[θ] the integral part of the real numberθ;
{θ} the fractional part of the real numberθ;
e(z) e2πiz;
Logz the principal branch of the complex logarithm (Logx = ln x whenx > 0);
d(n) the number of positive divisors ofn;
φ(n) Euler’s totient function: the number of reduced residue classes modulon;
µ(n) the Möbius function (see (1.1));
Λ(n) von Mangoldt’s function (see (1.3));
π(x) the number of primesp ≤ x;
π(x; q, a) the number of primesp ≤ x, with p ≡ a (modq);
θ(x) Chebyshev’s function (see (1.4));
ψ(x) the sum of the values ofΛ(n) overn ≤ x;
ψ(x; q, a) the sum of the values ofΛ(n) overn ≤ x, with n ≡ a (modq);
ψ(x, χ) the sum of the values ofΛ(n)χ(n) overn ≤ x (see (3.50));
τ(χ, a) the Gaussian sum (see (3.7));
N(σ,T) the number of zerosρ = β + iγ of ζ(s) with σ ≤ β ≤ 1 and|γ| ≤ T;
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Chapter 0

Historical background

0.1 Early history

The first result on the distribution of primes is Euclid’s theorem (circa 300 B.C.) on the infinitude
of the primes. In 1737 Euler went a step further and proved that, in fact, the series of the reciprocals
of the primes diverges. In the opposite direction, Euler observed that the rate of divergence of this
series is much slower than the rate of divergence of the harmonic series:

“The sum of the series of the reciprocals of the prime numbers,

1
2
+

1
3
+

1
5
+

1
7
+

1
11
+

1
13
+ · · · ,

is infinitely large, but it is infinitely many times less than the sum of the harmonic
series,

1+
1
2
+

1
3
+

1
4
+

1
5
+ · · · .

Furthemore, the sum of the former series is like the logarithm of the sum of the latter
series.”

This statement appears to be the earliest attempt to quantify the frequency of the primes among the
positive integers.

Consider the prime counting function

π(x) =
∑

p≤x

1.

In 1798 Legendre conjectured thatπ(x) satisfies the asymptotic relation

lim
x→∞

π(x)
x/(log x)

= 1; (0.1)

this is theprime number theorem(PNT). Years later, Gauss wrote that back in his adolescent years
he had observed that the logarithmic integral

Li x =

∫ x

2

dt
log t
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seemed to provide a very good approximation toπ(x). This, of course, is consistent with (0.1), as
can be seen from the formula

Li x =
x

log x
+

1!x
(log x)2

+ · · · + k!x
(log x)k+1

+O

(

x
(log x)k+2

)

. (0.2)

The first theoretical evidence in support of the PNT was givenby Chebyshev in the 1850s. He
proved that:

• (0.1) predicts correctly the order of magnitude ofπ(x), that is, there exist absolute constants
c2 > c1 > 0 such that

c1x
log x

≤ π(x) ≤ c2x
log x

. (0.3)

Chebyshev showed that for sufficiently largex one may takec1 = 0.9212 andc2 = 1.1056.
In his honor, bounds forπ(x) of this type are now known asChebyshev’s estimates.

• If the limit on the left side of (0.1) exists, then it must be equal to 1.

Chebyshev used the methods that he developed for the proof of(0.3) to establishBertrand’s pos-
tulate: the interval (n, 2n] contains a prime number for all integersn ≥ 1. Furthermore, in 1874
Mertens used Chebyshev’s estimates (0.3) to show that

∑

p≤x

1
p
= log logx+ B+O

(

(log x)−1
)

, (0.4)

B being an absolute constant. This provided the first rigorousproof of Euler’s observation that “the
sum of the [series of the reciprocals of the primes] is like the logarithm of the sum of the [harmonic
series].” We sketch the proofs of (0.3), (0.4), and some related results in§1.2.

0.2 The Riemannζ-function and the prime number theorem

TheRiemann zeta-functionis defined in the half-plane Re(s) > 1 as

ζ(s) =
∞

∑

n=1

n−s =
∏

p

(

1− p−s
)−1

. (0.5)

The identity between the infinite series and the infinite product on the right (which runs over all
primes) is an analytic expression of the fundamental theorem of arithmetic and was discovered by
Euler in 1737 (in the same paper as his proof of the infinitude of the primes), at least in the case
when s is real. The first to considerζ(s) as a function of a complex variable was Riemann. In
1859 he published his seminal paper [47] (his only paper on number theory), in which he observed
thatζ(s) is holomorphic in the half-plane Re(s) > 1 and that it can be continued analytically to a
meromorphic function, whose only singularity is a simple pole at s = 1. Riemann was interested
in ζ(s), because Euler’s identity (0.5) provides a connection between the analytic properties ofζ(s)
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and the PNT. It is not difficult to deduce from (0.5) thatζ(s) does not vanish in the half-plane
Re(s) > 1. Riemann proved thatζ(s) satisfies thefunctional equation

π−s/2Γ

( s
2

)

ζ(s) = π(s−1)/2Γ

(

1− s
2

)

ζ(1− s),

from which it is easy to deduce that the only zeros ofζ(s) in the half-plane Re(s) < 0 are the
negative even integers; these are thetrivial zerosof ζ(s). Besides the trivial zeros,ζ(s) has infinitely
many zeros in the strip 0≤ Re(s) ≤ 1: thenon-trivial zerosof ζ(s). Riemann proposed several
conjectures about the non-trivial zeros ofζ(s):

C1. If
N(T) = #

{

ρ ∈ C : ζ(ρ) = 0, 0 ≤ Re(ρ) ≤ 1, 0 < Im(ρ) ≤ T
}

,

then

N(T) =
T
2π

log

(

T
2πe

)

+O(logT).

C2. The entire function

ξ(s) =
1
2

s(s− 1)π−s/2Γ

( s
2

)

ζ(s)

has a product representation

ξ(s) = eA+Bs
∏

ρ

(

1− s
ρ

)

e−s/ρ,

the product being over all non-trivial zeros ofζ(s).

C3. If x > 1, there is an explicit formula that representsπ(x) as a series over the non-trivial zeros
of ζ(s).

C4. Riemann Hypothesis (RH).All zeros ofζ(s) with 0 ≤ Re(s) ≤ 1 lie on the line Re(s) = 1
2.

By the end of the 19th century, conjectures C1–C3 were proved: C1 and C3 were established
by von Mangoldt, and C2 is a consequence of the general theoryof entire functions of finite
order developed by Hadamard. In particular, the Riemann–Mangoldt explicit formula forπ(x)
demonstrated that the PNT follows from the nonvanishing ofζ(s) on the line Re(s) = 1. Thus,
when in 1896 Hadamard and de la Vallée Poussin proved (independently) thatζ(1+ it) , 0 for all
real t, the PNT was finally proved. In contrast, the Riemann Hypothesis is still an open problem
that has been selected by the Clay Mathematics Institute as one of the seven Millennium Problems.
We remark that under RH, the Riemann–Mangoldt formula implies the asymptotic formula

π(x) = Li x+O
(

x1/2 log x
)

, (0.6)

which is essentially best possible.
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The last observation has motivated the investigations of the error term in the PNT. In 1899 de
la Vallée Poussin refined the original proof thatζ(1 + it) , 0 and showed that, in fact,ζ(σ + it)
does not vanish in the region

σ ≥ 1− c
log(|t| + 10)

, (0.7)

for some absolute constantc > 0. This suffices to establish the following quantitative version of
the PNT, which will be the main subject of Chapter 2 of these notes.

Theorem 1. There exists an absolute constant c> 0 such that

π(x) = Li x+O
(

xexp
(

− c
√

log x
))

.

Further improvements on the error term in the PNT have been quite limited. In 1922 Littlewood
proved that

π(x) − Li x� xexp
(

− c
√

log x log logx
)

, (0.8)

while the best result to date was obtained by Korobov [38] andI. M. Vinogradov [58] in 1958:

π(x) − Li x� xexp
(

− c(log x)3/5(log logx)−1/5
)

. (0.9)

Both (0.8) and (0.9) are consequences of repsective improvements on the estimate of the zerofree
region (0.7). Unfortunately, it is known that the approach employed in these works can never yield
a bound of the formπ(x) − Li x� xθ, with a fixedθ < 1.

0.3 Primes in arithmetic progressions

In a couple of memoirs published in 1837 and 1840, Dirichlet proved that ifa andq are natural
numbers with (a, q) = 1, then the arithmetic progressiona, a + q, a + 2q, . . . contains infinitely
many primes. By refining Dirichlet’s argument, Mertens established the asymptotic formula

∑

p≤x
p≡a (modq)

1
p
∼ 1
φ(q)

∑

p≤x

1
p

asx→ ∞, (0.10)

whereφ(q) is Euler’s totient function. Fixq and consider the various reduced residue classes
moduloq. Since all but finitely many primes lie in residue classesa modq with (a, q) = 1, (0.10)
suggests that the primes are uniformly distributed among the reduced residue classes to a given
modulusq. Thus, one may expect that if (a, q) = 1, then

π(x; q, a) =
∑

p≤x
p≡a (modq)

1 ∼ Li x
φ(q)

asx→∞. (0.11)

This is theprime number theorem for arithmetic progressions. We may approach this statement
in two different ways. First, we may fixa and q and ask whether (0.11) holds (allowing the
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convergence to depend onq anda). Posed in this form, the problem is a minor generalization of
the PNT. In fact, shortly after proving Theorem 1, de la Vall´ee Poussin showed that

π(x; q, a) =
Li x
φ(q)

+O
(

xexp
(

− c
√

log x
))

,

wherec = c(q, a) > 0 and theO-implied constant depends onq anda. The problem becomes much
more difficult if we want an estimate that is explicit inq and uniform ina. The first result of this
kind was obtained by Page [43], who proved that there exists a(small) positive numberδ such that

π(x; q, a) =
Li x
φ(q)

+O
(

xexp
(

− (log x)δ
))

,

whenever 1≤ q ≤ (log x)2−δ and (a, q) = 1. In 1935 Siegel [49] proved the following result, which
we will establish in Chapter 3.

Theorem 2. For any fixed A> 0, there exists a constant c= c(A) > 0 such that

π(x; q, a) =
Li x
φ(q)

+O
(

xexp
(

− c
√

log x
))

,

whenever1 ≤ q ≤ (log x)A and(a, q) = 1.

Remark. While this result is clearly sharper than Page’s, it does have one significant drawback: it
is ineffective, that is, given a particular value ofA, the proof does not allow the constantc(A) or
theO-implied constant to be computed.

The proofs of the above results rely on the analytic properties of a class of generalizations of
the Riemann zeta-function known asDirichlet L-functions. For each positive integerq there are
φ(q) functionsχ : Z→ C calledDirichlet characters modulo q(we will define these in Chapter 3).
Given a characterχ moduloq, we define the respective DirichletL-function by

L(s, χ) =
∞

∑

n=1

χ(n)n−s (Re(s) > 1).

Similarly to ζ(s), L(s, χ) is holomorphic in the half-plane Re(s) > 1 and can be continued analyt-
ically to a meromorphic function that has at most one pole, which (if present) must be a simple
pole ats= 1. Furthermore, just asζ(s), the continuedL(s, χ) has infinitely many zeros in the strip
0 ≤ Re(s) ≤ 1, and the horizontal distribution of those zeros has important implications on the
distribution of primes in arithmetic progressions. For example, the results of de la Vallée Poussin,
Page, and Siegel mentioned above were proved by showing thatno L-function has zeros “close” to
the line Re(s) = 1. We also have the following generalization of the Riemann Hypothesis:

Generalized Riemann Hypothesis (GRH).Let L(s, χ) be a DirichletL-function.
Then all zeros ofL(s, χ) with 0 ≤ Re(s) ≤ 1 lie on the line Re(s) = 1

2.
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Assuming GRH, we can deduce easily that

π(x; q, a) =
Li x
φ(q)

+O
(

x1/2 log x
)

, (0.12)

whenever (a, q) = 1. This estimate establishes (0.11) for 1≤ q ≤ xθ, θ < 1
2.

In many applications one only needs approximations like (0.12) in some average sense over
the moduliq. During the 1950s and 1960s several authors obtained such results. In particular, the
following quantity was studied extensively:

E(x,Q) =
∑

q≤Q

max
(a,q)=1

max
y≤x

∣

∣

∣

∣

π(y; q, a) − Li y
φ(q)

∣

∣

∣

∣

.

The trivial bound for this sum isE(x,Q) � x, whereas (0.12) implies

E(x,Q) � Qx1/2 log x. (0.13)

In 1965 Bombieri [5] and A. I. Vinogradov [55] proved (independently) the following result.

Theorem 3. For any fixed A> 0, there exists a constant B= B(A) > 0 such that

E(x,Q) � x(log x)−A,

whenever Q≤ x1/2(log x)−B.

We observe that this result provides a nontrivial estimate for E(x,Q) under essentially the
same restrictions onQ as GRH. Because of this fact, the Bombieri–Vinogradov theorem has seen
numerous applications in which it has been used as ade factoreplacement for GRH. In Chapter 5
we will give a proof of Theorem 3 withB = A+ 4.

It should be noted that unlike the error term in (0.6), the error term in (0.12) is not necessarily
best possible. In fact, there is some evidence in support of the bold conjecture that

π(x; q, a) =
Li x
φ(q)

+Oε

(

(x/q)1/2+ε
)

for any fixedε > 0. In Chapter 5 we will establish the so-calledBarban–Davenport–Halberstam
theorem, which asserts that this bound holds in the mean-square overall arithmetic progressions
with differencesq ≤ x1−ε . We should also mention that during the mid 1980s Bombieri, Friedlan-
der, and Iwaniec [6, 7, 8] obtained several variants of the Bombieri–Vinogradov theorem, in which
the value ofQ can exceedx1/2. However, since their methods go beyond the reach of these notes,
we will only state one of their results (see [7]).

Theorem 4. Let a, 0 and x≥ y ≥ 3. Then

∑

q≤√xy
(q,a)=1

∣

∣

∣

∣

π(x; q, a) − Li x
φ(q)

∣

∣

∣

∣

� (Li x)

(

logy
log x

)2

(log logx)c.

Here c is an absolute constant and the�-implied constant depends only on a.
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0.4 Primes in short intervals

It is an old problem in the theory of prime numbers to prove that for any integern ≥ 1, the interval
(n2, (n+ 1)2] contains a prime number. This problem leads quickly to the more general question of
estimating the differences between consecutive primes. Cramér was the first tostudy this question
systematically. Letpn denote thenth prime number. In 1920 Cramér [12] proved that under RH

pn+1 − pn � p1/2
n log pn.

Cramér also proposed a probabilistic model of the prime numbers that leads to very precise (and
very bold) predictions of the asymptotic properties of the primes. In particular, he conjectured [13]
that

lim sup
n→∞

pn+1 − pn

(log pn)2
= 1. (0.14)

Nontrivial upper bounds forpn+1− pn can be derived from the quantitative versions of the PNT
stated above, but the ensuing results are rather poor, because the known bounds for the error term
in the PNT are barely smaller than the main term. However, in 1930 Hoheisel [26] obtained a
much sharper result. He proved (unconditionaly) the asymptotic formula

π(x+ xθ) − π(x) ∼ xθ(log x)−1 asx→ ∞, (0.15)

with θ = 1− (33000)−1. Subsequently several authors made further contributionsthat produced the
following improvements on Hoheisel’s result:

Heilbronn [25] (1933) θ = 0.996
Chudakov [11] (1936) θ > 3/4 = 0.750
Ingham [30] (1937) θ > 5/8 = 0.625
Montgomery [41] (1971) θ > 3/5 = 0.600
Huxley [27] (1972) θ > 7/12= 0.583. . .
Heath-Brown [23] (1988) θ = 7/12= 0.583. . .

We will see the proof of Huxley’s result in Chapter 5 of these notes. Furthermore, since the
late 1970s, several mathematicians have shown that even shorter intervals must contain primes
(without establishing an asymptotic formula for the numberof primes in such intervals). Such
results usually take the form

π(x+ xθ) − π(x) � xθ(log x)−1 for x ≥ x0(θ). (0.16)

The following list displays the progress in that direction over the last 30 years:

Iwaniec and Jutila [34] (1979) θ = 13/23= 0.565. . .
Heath-Brown and Iwaniec [24] (1979) θ > 11/20= 0.550
Iwaniec and Pintz [35] (1984) θ = 23/42= 0.547. . .
Lou and Yao [40] (1992) θ = 6/11 = 0.545. . .
Baker and Harman [1] (1996) θ = 0.535
Baker, Harman, and Pintz [2] (2001) θ = 0.525
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Selberg [48] considered the distribution of primes in “almost all short intervals.” Leth(x) be an
increasing function ofx. We say thatalmost allintervals (x, x+h(x)] contain primes if the measure
of the set ofx ∈ (1,X] for which the interval (x, x+h(x)] contains no prime iso(X). Selberg proved
that if h(x) grows faster than (logx)2 asx → ∞, the Riemann Hypothesis implies that almost all
intervals (x, x+h(x)] contain a prime number (and also that the asymptotic formula (0.15) holds for
each inexceptional interval). Further, Selberg showed unconditionally that ifθ > 1/4, then almost
all intervals (x, x+xθ] contain a prime number. The latter result has been the subject of a long series
of successive improvements, similar to the improvements onHoheisel’s result described above. In
particular, the best result to date obtained in 1996 by Jia [36] extends the range forθ in Selberg’s
result toθ > 1/20.

In the opposite direction, Erdös [16] showed in 1935 that

pn+1 − pn ≥ c log pn log logpn(log log logpn)
−2 (0.17)

infinitely often. In 1938 Rankin [46] showed that one can replace the right side of (0.17) by

(1/3+ o(1)) logpn log logpn log log log logpn(log log logpn)
−2,

but subsequent attempts at further improvements have not been very successful: the best result
to date (see Pintz [44]) replaces the constant 1/3 in Rankin’s bound by 2eγ, whereγ is Euler’s
constant. In fact, the problem appears to be so notoriously difficult that Erdös—who was known
for offerring monetary prizes for solutions of problems he was intrigued by—announced that he
would pay $10,000 to anyone who proved that the constant 1/3 in Rankin’s result can be taken
arbitrarily large!
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Chapter 1

Introduction: basic estimates

The purpose of this chapter is to introduce some of the basic techniques and functions appearing
in the later chapters. The results are mostly elementary andthe reader may be familiar with some
(and possibly all) of them.

1.1 Multiplicative functions

A function f : N→ C is said to bemultiplicativeif it is not identically zero and

f (mn) = f (m) f (n) whenever gcd(m, n) = 1.

If f satisfies the stronger condition thatf (mn) = f (m) f (n) for all pairsm, n, it is said to becom-
pletely (or totally) multiplicative.

Some functions, such asf (n) = ns (s ∈ C), are obviously multiplicative. Others are defined so
that they are. One such function is theMöbius function

µ(n) =











1 if n = 1,

(−1)r if n is the product ofr distinct primes,

0 if n is divisible by the square of a prime.

(1.1)

The following lemma provides an easy way to deduce the multiplicativity of a large class of arith-
metic functions. We leave its proof as an exercise.

Lemma 1.1. Suppose that f and g are multiplicative functions. Then the arithmetic function f∗g,
defined by

( f ∗ g)(n) =
∑

d|n
f (d)g(n/d),

is also multiplicative.

The next lemma contains the most important property of the M¨obius function.
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Lemma 1.2.
∑

d|n
µ(d) =

{

1 if n = 1,

0 otherwise.

Proof. It suffices to consider the case whenn is squarefree. Suppose thatn = p1p2 · · · pr , where
p1, p2, . . . , pr are distinct primes, and writem= p1p2 · · · pr−1. Then

∑

d|n

µ(d) =
∑

d|m

µ(d) +
∑

d|m

µ(dpr) =
∑

d|m

µ(d) +
∑

d|m

(−µ(d)) = 0,

where the second to last step uses the multiplicativity ofµ. �

Corollary 1.3. (Möbius inversion formula) Suppose that f: N→ C is an arithmetic function and
define

F(n) =
∑

d|n
f (d).

Then f= F ∗ µ, that is,
f (n) =

∑

d|n
F(d)µ(n/d).

In particular, if F is multiplicative, so is f .

Proof. We have
∑

d|n

F(d)µ(n/d) =
∑

d|n

∑

k|d

f (k)µ(n/d) =
∑

k|n

∑

d|n
k|d

f (k)µ(n/d) =
∑

k|n

∑

m|(n/k)

f (k)µ(n/km).

By Lemma 1.2, the sum overmvanishes unlessk = n, so the first claim follows. The second claim
is a consequence of the first, Lemma 1.1, and the multiplicativity of µ. �

1.2 Partial summation

We now discuss a simple trick that is put to a great use in analytic number theory.

Lemma 1.4 (Abel). Suppose that an are complex numbers and f(x) is continuously differentiable
on [α, β]. Then

∑

α<n≤β
an f (n) = A(β) f (β) −

∫ β

α

A(x) f ′(x) dx,

where A(x) =
∑

α<n≤x an.

Proof. Using Stieltjes integration by parts, we have

∑

α<n≤β
an f (n) =

∫ β+

α+
f (x) dA(x) = f (x)A(x)

∣

∣

β

α
−

∫ β

α

A(x) d f(x),

and the desired result follows. �
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Corollary 1.5. There is a constant c1 such that

∑

n≤x

1
n
= log x+ c1 +O

(

x−1
)

.

Corollary 1.6.
∑

n≤x

logn = x log x− x+O(log x).

Remark. The constantc1 is known asEuler’s constantand usually is denoted byγ:

γ = lim
x→∞

(

∑

n≤x

1
n
− log x

)

≈ 0.5772. . . . (1.2)

Next, we define three arithmetic functions that play an important role in prime number theory.
These arevon Mangoldt’s function

Λ(n) =

{

log p if n is a power of a primep,

0 otherwise,
(1.3)

and the functions
θ(x) =

∑

p≤x

log p and ψ(x) =
∑

n≤x

Λ(n), (1.4)

which were introduced first by Chebyshev. Our first result about these functions is a Chebyshev-
type bound forψ(x).

Theorem 1.7.Suppose that0 < c2 < log 2 and c3 > log 4. Then for sufficiently large x,

c2x ≤ ψ(x) ≤ c3x.

Proof. Define
T(x) =

∑

n≤x

logn.

Taking logarithms in the prime factorization ofn, we see that

logn =
∑

d|n

Λ(d),

so we can rewriteT(x) as

T(x) =
∑

n≤x

∑

d|n
Λ(d) =

∑

d≤x

Λ(d)
∑

n≤x
d|n

1 =
∑

d≤x

Λ(d)
[ x

d

]

.

Thus,
T(x) − 2T(x/2) =

∑

d≤x

Λ(d)
([ x

d

]

− 2
[ x

2d

])

.

11



We now note that
0 ≤

[ x
d

]

− 2
[ x

2d

]

≤ 1

and
[ x

d

]

− 2
[ x

2d

]

= 1 for x/2 < d ≤ x.

Hence,
ψ(x) − ψ(x/2) ≤ T(x) − 2T(x/2) ≤ ψ(x).

On the other hand, by Corollary 1.6,

T(x) − 2T(x/2) = x log 2+O(log x).

We deduce that
ψ(x) ≥ x log 2+O(log x)

and

ψ(x) ≤ ψ(x/2)+ x log 2+O(log x)

≤ ψ(x/4)+
(

1+ 1
2

)

x log 2+O(log x)

≤ ψ(x/8)+
(

1+ 1
2 +

1
4

)

x log 2+O(log x)
...

≤ ψ(x/2r) +
(

1+ 1
2 +

1
4 + · · ·

)

x log 2+O(r log x)

≤ x log 4+O
(

(log x)2
)

,

on choosingr so that 2r ≤ x < 2r+1. �

Lemma 1.8.
∑

p≤x

log p
p
= log x+O(1).

Theorem 1.9 (Mertens).There is an absolute constant B such that

∑

p≤x

1
p
= log logx+ B+O

(

(log x)−1
)

. (1.5)

Proof. Define the function

R(x) =
∑

2<p≤x

log p
p
− log x

and the sequence

an =

{

(logn)/n if n is a prime number,

0 otherwise.

12



Then, by Lemma 1.4,

∑

p≤x

1
p
=

∑

2<n≤x

an

logn
+

1
2

=
1

log x

∑

2<n≤x

log p
p
+

∫ x

2

(

∑

2<n≤y

log p
p

)

dy
y(logy)2

+
1
2

=
1

log x

(

log x+ R(x)
)

+

∫ x

2

logy+ R(y)
y(logy)2

dy+
1
2

= log logx+
3
2
− log log 2+

∫ x

2

R(y)
y(logy)2

dy+
R(x)
log x

.

Using Lemma 1.8 to boundR(y), we obtain
∫ x

2

R(y)
y(logy)2

dy+
R(x)
log x

=

∫ ∞

2

R(y)
y(logy)2

dy+O
(

(log x)−1
)

,

and the desired conclusion follows with

B =
3
2
− log log 2+

∫ ∞

2

R(y)
y(logy)2

dy.

�

The final result of this section quantifies the relation between the error term in the PNT and the
differenceψ(x) − x.

Theorem 1.10.Suppose that f is an integrable function such that x1/2 � f (x)� x and
∫ x

2

f (t)
t

dt� f (x) log x.

Then
ψ(x) − x� f (x) ⇔ π(x) − Li x� f (x)(log x)−1.

Proof. Theorem 1.7 implies that
θ(x) = ψ(x) +O

(

x1/2
)

,

whence
θ(x) = x+O( f (x)).

Let an be the sequence

an =

{

logn if n is a prime number,

0 otherwise.

13



As in the proof of Theorem 1.9,

π(x) =
∑

2<n≤x

an

logn
+ 1

=
θ(x)
log x

+

∫ x

2

θ(y) dy
y(logy)2

+O(1)

=
x

log x
+

∫ x

2

dy
(logy)2

+O

(

f (x)
log x

)

+O

(
∫ x

2

f (y) dy
y(logy)2

)

= Li x+O
(

f (x)(log x)−1
)

,

by (0.2) and the properties off . This proves the direct implication, the converse is left asan
exercise. �

1.3 Dirichlet series

A Dirichlet seriesis an infinite series of the form
∞

∑

n=1

ann
−s, (1.6)

wherean are complex numbers ands= σ + it is a complex variable. The following lemma shows
that if a Dirichlet series converges at any finite complex numbers0 = σ0 + it0, then it converges to
a holomorphic function in the half-plane Re(s) > σ0.

Lemma 1.11.Suppose that s0 = σ0 + it0 and the series
∞

∑

n=1

ann
−s0

converges. Then the Dirichlet series(1.6)converges uniformly on the compact subsets of the half-
planeRe(s) > σ0 and the sum-function

f (s) =
∞

∑

n=1

ann
−s

is holomorphic in that half-plane.

Proof. It suffices to show that (1.6) converges uniformly in the regions
{

s ∈ C : Re(s) ≥ σ0 + δ, | Im(s) − t0| ≤ T
}

whereδ,T > 0. By Lemma 1.4 withan = ann−s0 and f (n) = n−(s−s0),

∑

α<n≤β
ann

−s�δ,T max
α<x≤β

∣

∣

∣

∣

∑

α<n≤x

ann
−s0

∣

∣

∣

∣

, (1.7)

so the uniform convergence of (1.6) follows from the convergence of
∑

n ann−s0 and Cauchy’s
criterion. �
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The number
inf

{

Re(s) : (1.6) converges
}

is called theabscissa of convergenceof the Dirichlet series (1.6). Here, of course, we allow the
possibility that the infimum could be±∞. The abscissa of convergence of the Dirichlet series
∑

n |an|n−s is called theabscissa of absolute convergenceof (1.6). The two abscissas are related by
the following inequality.

Lemma 1.12.Suppose thatσc andσa are the abscissa of convergence and the abscissa of absolute
convergence of the Dirichlet series(1.6). Thenσc ≤ σa ≤ σc + 1.

Dirichlet series are an important class of generating functions in number theory. In the re-
mainder of this section, we discuss their properties related to their use in number theory. We first
consider the relation between the sum-function of a Dirichlet series,

f (s) =
∞

∑

n=1

ann
−s,

and the running sums of its coefficient sequence,

A(x) =
∑

n≤x

an.

The passage fromA(x) to f (s) is easy (at least, when Re(s) is sufficiently large):

f (s) =
∞

∑

n=1

an

∫ ∞

n
sx−s−1 dx=

∫ ∞

1

(

∑

n≤x

an

)

sx−s−1 dx=

∫ ∞

1
A(x)sx−s−1 dx.

The inverse relation requires a little bit more work.

Lemma 1.13 (Perron’s formula). Suppose thatα > 0. Then

1
2πi

∫ α+iT

α−iT

us

s
ds=











1+O
(

uα(T | logu|)−1
)

if u > 1,
1
2 +O

(

αT−1
)

if u = 1,

O
(

uα(T | logu|)−1
)

if 0 < u < 1.

Proof. This is an exercise in contour integration. �

Corollary 1.14. Let f(s) be the sum-function of the Dirichlet series(1.6). Suppose that x< Z and
α > σa, whereσa is the abscissa of absolute convergence of(1.6). Then

∑

n≤x

an =
1

2πi

∫ α+iT

α−iT
f (s)xss−1 ds+O

(

xα

T

∞
∑

n=1

|an|n−α
| log(x/n)|

)

.
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Corollary 1.15. Suppose that a1, a2, a3, . . . and b1, b2, b3, . . . are sequences of complex numbers
and the holomorphic functions f(s) and g(s) are defined in the half-planeRe(s) > σ0 by

f (s) =
∞

∑

n=1

ann
−s and g(s) =

∞
∑

n=1

bnn
−s.

If f (s) = g(s) wheneverRe(s) > σ0, then an = bn for all n = 1, 2, 3, . . . .

Proof. We apply Corollary 1.14 withx < Z, α = σ0 + 2 (this ensures the absolute convergence of
the series on the line Re(s) = α), andT = ∞. We get

∑

n≤x

an =
1

2πi

∫ α+i∞

α−i∞
f (s)xss−1 ds=

1
2πi

∫ α+i∞

α−i∞
g(s)xss−1 ds=

∑

n≤x

bn.

Since this holds for all non-integerx > 1, it follows thatan = bn for all n = 1, 2, 3, . . . . �

The next two lemmas and their corollaries illustrate why Dirichlet series are convenient gener-
ating functions in multiplicative number theory.

Lemma 1.16.Suppose that f(n) is a multiplicative function. Then the identity

∞
∑

n=1

f (n)n−s =
∏

p

(

1+ f (p)p−s + f (p2)p−2s + · · ·
)

holds whenever the series on the left converges absolutely.

Proof. The absolute convergence of the series
∑

n f (n)n−s implies the absolute convergence of the
series

∑

m f (pm)p−ms for all primesp. Let x ≥ 2 andr = π(x). Then

∏

p≤x

(

1+ f (p)p−s + f (p2)p−2s + · · ·
)

=

∞
∑

m1=0

· · ·
∞

∑

mr=0

f (pm1
1 ) · · · f (pmr

r )(pm1
1 · · · pmr

r )−s

=

∞
∑

m1=0

· · ·
∞

∑

mr=0

f (pm1
1 · · · pmr

r )(pm1
1 · · · pmr

r )−s

=

∞
∑

n=1
p|n⇒p≤x

f (n)n−s,

where we have used the multiplicativity off . Noting that the last sum contains, in particular, all
the terms withn ≤ x, we conclude that

∣

∣

∣

∣

∑

n≤x

f (n)n−s−
∏

p≤x

(

1+ f (p)p−s + f (p2)p−2s + · · ·
)

∣

∣

∣

∣

≤
∑

n>x

| f (n)|n−σ,

which establishes the desired identity. �
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Corollary 1.17. Suppose that f(n) is a completely multiplicative function. Then the identity

∞
∑

n=1

f (n)n−s =
∏

p

(

1− f (p)p−s
)−1

holds whenever the series on the left converges absolutely.

Lemma 1.18.Suppose that a1, a2, a3, . . . and b1, b2, b3, . . . are sequences of complex numbers such
that the Dirichlet series

f (s) =
∞

∑

n=1

ann
−s and g(s) =

∞
∑

n=1

bnn
−s

converge absolutely in the half-planeRe(s) > σ0. Then the Dirichlet series

h(s) =
∞

∑

n=1

cnn
−s, cn =

∑

uv=n

aubv,

is also absolutely convergent inRe(s) > σ0 and h(s) = f (s)g(s).

Proof. Suppose first thatσ > σ0. Then

∑

n≤x

|cn|n−σ =
∑

n≤x

∣

∣

∣

∣

∑

uv=n

aubv

∣

∣

∣

∣

n−σ

≤
∑

n≤x

(

∑

uv=n

|aubv|
)

n−σ =
∑

uv≤x

|aubv|(uv)−σ

≤
(

∑

u≤x

|au|u−σ
)(

∑

v≤x

|bv|v−σ
)

≤
( ∞

∑

u=1

|au|u−σ
)( ∞

∑

v=1

|bv|v−σ
)

,

which proves the absolute convergence of
∑

n cnn−s for Re(s) = σ. In particular, we have that

∑

n>x

(

∑

uv=n

|aubv|
)

n−σ → 0 asx→ ∞,

so the second part of the lemma follows from the inequality
∣

∣

∣

∣

∑

n≤x

cnn
−s −

(

∑

u≤x

auu
−s

)(

∑

v≤x

bvv
−s

)
∣

∣

∣

∣

≤
∑

n>x

(

∑

uv=n

|aubv|
)

n−σ. (1.8)

�

In the next series of corollariesζ(s) is the Riemann zeta-function.
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Corollary 1.19. Suppose thatRe(s) > 1. Then
∞

∑

n=1

µ(n)n−s =
1
ζ(s)

.

Proof. By Lemmas 1.2 and 1.18,
( ∞

∑

n=1

µ(n)n−s

)( ∞
∑

n=1

n−s

)

= 1.

�

Corollary 1.20. Suppose thatRe(s) > 1. Then
∞

∑

n=1

Λ(n)n−s = −ζ
′(s)
ζ(s)

.

1.4 Divisor functions

In this section we collect several standard estimates for the number of divisors functiond(n) and its
averages. First of all, we note thatd(n) is multiplicative (by Lemma 1.1) and satisfiesd(pk) = k+1.
These two observations lead (after some work) to the following upper bound ford(n).

Lemma 1.21.For anyε > 0, d(n)�ε nε.

The bound in Lemma 1.21 is not tight, but it is also not too far from the best possible general
bound (see Exercise 21). On the other hand, the next lemma shows that for most values ofn, d(n)
is significantly smaller: its average value is logn.

Theorem 1.22 (Dirichlet). Suppose that x≥ 2. Then
∑

n≤x

d(n) = x log x+ (2γ − 1)x+O
(

x1/2
)

, (1.9)

whereγ is Euler’s constant.

Proof. Let D(x) denote the left side of (1.9). We have

D(x) =
∑

n≤x

∑

uv=n

1 =
∑

uv≤x

1 =
∑

uv≤x
u≤
√

x

1+
∑

uv≤x
v≤
√

x

1−
∑

u,v≤
√

x

1 = D1(x) + D2(x) − D3(x), say.

Thus, (1.9) follows from the estimates

D1(x) = D2(x) =
∑

u≤
√

x

[ x
u

]

=
∑

u≤
√

x

x
u
+O

(

x1/2
)

= x log
√

x+ γx+O
(

x1/2
)

(by Corollary 1.5);

D3(x) =
[√

x
]2
= x+O

(

x1/2
)

.

�
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Remark. The estimation of the error term in (1.9) is a famous problem in analytic number theory.
It is not too difficult to show that

∆(x) =
∑

n≤x

d(n) − x log x− (2γ − 1)x� x1/3 log x.

Attempts to improve further on this and other similar boundshave stimulated the development of
the theory of exponential sums (see Graham and Kolesnik [17]and Huxley [28]). The best result
to date was obtained recently by Huxley [29]:

∆(x) �ε x131/416+ε ,

where 131/416= 0.3149. . . . It is conjectured that

∆(x) �ε x1/4+ε ,

which if proven would be essentially best possible, as it is an old result of Hardy [20] that the
bound∆(x) � x1/4 does not hold for allx.

Often one needs upper bounds for higher moments ofd(n). The following theorem provides
such an estimate.

Theorem 1.23.Suppose that x≥ 1 and k∈ N. Then

∑

n≤x

(d(n))k �k x(log x)2k−1 + 1. (1.10)

Proof. By induction onk. The casek = 1 follows from Theorem 1.22. Now suppose that (1.10)
holds for somek ≥ 1. Then

∑

n≤x

(d(n))k+1 =
∑

uv≤x

(d(uv))k ≤
∑

uv≤x

(d(u)d(v))k,

where the last step uses thatd(mn) ≤ d(m)d(n). Hence, by the inductive hypothesis,

∑

uv≤x

(d(u)d(v))k ≤
∑

u≤x

(d(u))k
∑

v≤x/u

(d(v))k

�k x(log x)2k−1
∑

u≤x

(d(u))k

u
+

∑

u≤x

(d(u))k �k x(log x)2k+1−1,

on using the bound
∑

u≤x

(d(u))k

u
�k (log x)2k

,

which follows from the inductive hypothesis by partial summation. �
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Exercises

1. Prove (0.2).

2. Prove that Euler’s functionφ(n) is multiplicative.

3. Prove Lemma 1.1.

4. Prove Corollary 1.5.
[

H: The value ofc1 is 1−
∫ ∞

1 {x}x−2 dx.
]

5. Prove Corollary 1.6.

6. Prove Lemma 1.8.
[

H: First show that the given sum equalsx−1T(x)+O(1), whereT(x) is the sum appearing
in the proof of Theorem 1.7.

]

7. Prove that
∏

p≤x

(

1− 1
p

)

=
C

log x

(

1+O

(

1
log x

))

,

whereC is an absolute constant. (It can be shown that, in fact,C = e−γ, whereγ is Euler’s constant.)

8. LetB be the constant appearing in Theorem 1.9 andC be the constant appearing in the last problem. Prove that

B+ logC =
∑

p

(

1
p
+ log

(

1− 1
p

))

.

9. Prove that under the hypotheses of Theorem 1.10,
∫ x

2

f (y) dy
y(logy)2

� f (x)
log x

.

10. Prove the converse part of Theorem 1.10.

11. Modify the proof of Theorem 1.10 to show that the PNT is equivalent to the statement thatψ(x) ∼ x asx→ ∞.

12. Verify (1.7).

13. Suppose that in Lemma 1.11 the assumption that the series
∑

n ann−s0 converges is weakened to the assertion
that the partial sums

∑

n≤N

ann
−s0 (N = 1, 2, 3, . . . )

are bounded. Prove that the conclusion of the lemma stays true.

14. Prove Lemma 1.12.

15. Prove Lemma 1.13.

16. Prove (1.8).

17. Prove Corollary 1.20.

18. Prove the following identities:
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(a)
∞

∑

n=1

d(n)n−s = ζ2(s) whenever Re(s) > 1;

(b)
∞

∑

n=1

|µ(n)|n−s = ζ(s)/ζ(2s) whenever Re(s) > 1;

(c)
∞

∑

n=1

φ(n)n−s = ζ(s− 1)/ζ(s) whenever Re(s) > 2.

19. Define a multiplicative functionf : N→ C by

f (pk) =

(

k− 1/2
k

)

= (−1)k
(

−1/2
k

)

,

where the generalized binomial coefficient
(s

k

)

, s ∈ C, is the coefficient of zk in the Maclaurin expansion of
(1+ z)s:

(

s
k

)

=
s(s− 1) · · · (s− k+ 1)

k!
.

(a) Prove that the Dirichlet seriesF(s) =
∑

n f (n)n−s converges absolutely and uniformly on the compact
subsets of the half-plane Re(s) > 1.

(b) Prove thatF(s)2 = ζ(s) whenever Re(s) > 1.

20. Prove thatd(n) ≤
√

3n for all n ∈ N.

21. (a) Prove that there exists an absolute constantc1 > 0 such that

d(n)� exp

(

c1 logn
log logn

)

.

(b) Let n = p1p2 · · · pk, wherepk denotes thekth prime. Prove that there exists an absolute constantc2 > 0
such that

d(n)� exp

(

c2 logn
log logn

)

.
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Chapter 2

The prime number theorem

In this chapter we develop the basic theory of the Riemann zeta-function to the level needed for the
proof of the PNT in the form of Theorem 1. However, for technical reasons, instead of Theorem 1
we will establish the following result, which is equivalentto it (by Theorem 1.10).

Theorem 2.1.There exists an absolute constant c> 0 such that for x≥ 2

ψ(x) = x+O
(

xexp
(

−c
√

log x
) )

.

2.1 Definition of ζ(s). The functional equation

We start by providing a rigorous definition of the zeta-function. As we said in the Introduction, we
initially defineζ(s) for Re(s) > 1 by

ζ(s) =
∞

∑

n=1

n−s. (2.1)

Since the series converges uniformly on compact subsets of the half-plane Re(s) > 1, it follows that
ζ(s) is holomorphic in this half-plane. Moreover, since the convergence is absolute, Corollary 1.17
applies toζ(s). In this way, we get the Euler product representation ofζ(s):

ζ(s) =
∏

p

(

1− 1
ps

)−1

. (2.2)

In particular, we deduce from (2.2) thatζ(s) is does not vanish in the half-plane Re(s) > 1.

Our next goal is to extend the definition ofζ(s) to the whole complex planeC. There are nu-
merous ways to do this. We will follow the original approach of Riemann, which yields one of
the most elegant and illuminating treatments of the analytic continuation ofζ(s) even today. Al-
ternative proofs can be found in most monographs on the theory of the zeta-function (for example,
Titchmarsh [50] gives seven such proofs). However, before we are in position to present Riemann’s
argument, we need to build up our knowledge about two classical functions.
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2.1.1 The theta-series

If Re(z) > 0 andα ∈ C, we define the theta-functionϑ(z;α) by

ϑ(z;α) =
∞

∑

n=−∞
exp

(

−πz(n+ α)2
)

. (2.3)

The property ofϑ(z;α) that we are interested in is the following transformation formula.

Lemma 2.2. Let x> 0 and0 ≤ α < 1 be real. Then

ϑ(x;α) = x−1/2 exp
(

− πα2x
)

ϑ
(

x−1;−iαx
)

. (2.4)

Proof. Suppressing the dependence onx, we write f (α) = ϑ(x;α). Since the series
∞

∑

n=−∞
exp

(

−πx(n+ α)2
)

and
∞

∑

n=−∞
nexp

(

−πx(n+ α)2
)

converge uniformly inα, f (α) is continuously differentiable. It is also clear thatf (α) is 1-periodic.
Hence,f (α) equals its Fourier series:

f (α) =
∞

∑

n=−∞
f̂ne(nα).

Here f̂n is thenth Fourier coefficient of f (α),

f̂n =
∫ 1

0
f (t)e(−nt) dt.

Thus, it suffices to show that
∫ 1

0
f (t)e(−nt) dt = x−1/2 exp

(

−πn2x−1
)

.

By the absolute convergence of the theta-series, we can integrate it term-by-term, whence
∫ 1

0
f (t)e(−nt) dt =

∑

m∈Z

∫ 1

0
exp

(

−πx(m+ t)2
)

e(−nt) dt

=
∑

m∈Z

∫ m+1

m
exp

(

−πxt2
)

e(−n(t −m)) dt

=
∑

m∈Z

∫ m+1

m
exp

(

−πxt2
)

e(−nt) dt

=

∫

R

exp
(

−πxt2
)

e(−nt) dt

= x−1/2

∫

R

exp
(

−πu2
)

e
(

− nx−1/2u
)

du

= x−1/2 exp
(

−πn2x−1
)

,

where the last step uses that the function exp(−πu2) equals its Fourier transform. �
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While the above proof can be generalized to all complexα andz with Re(z) > 0, it is easier
to extend Lemma 2.2 to those cases by means of the identity theorem for analytic functions. This
yields the following result.

Corollary 2.3. Let Re(z) > 0 andα ∈ C. Then

ϑ(z;α) = z−1/2 exp
(

− πα2z
)

ϑ
(

z−1;−iαz
)

. (2.5)

Here z−1/2 = exp
(

− 1
2 Logz

)

denotes the principal branch of the function z−1/2.

2.1.2 The gamma-function

The other special function that will figure prominently in our analysis isEuler’s gamma-function
Γ(s). We defineΓ(s) by

1
Γ(s)

= seγs
∞

∏

n=1

(

1+
s
n

)

e−s/n, (2.6)

whereγ is Euler’s constant (recall (1.2)). As the infinite product is uniformly convergent on the
compact subsets ofC − {0,−1,−2, . . . }, (2.6) definesΓ(s) as a meromorphic function onC with
simple poles at 0 and at the negative integers and with no zeros. We now state several important
properties ofΓ(s) that will be needed later.

Lemma 2.4. Suppose that s, 0,−1,−2, . . . . Then

Γ(s+ 1) = sΓ(s). (2.7)

Proof. Define

ε(x) =
∑

k≤x

1
k
− log x− γ, (2.8)

so thatε(x)→ 0 asx→ ∞ (in fact,ε(x) = O(x−1)). By (2.6),

Γ(s+ 1)
Γ(s)

=
seγs

(s+ 1)eγ(s+1)
lim
n→∞

n
∏

k=1

(

1+ s/k
)

e−s/k

(

1+ (s+ 1)/k
)

e−(s+1)/k

=
s

eγ(s+ 1)
lim
n→∞

(s+ 1)(s+ 2) · · · (s+ n)
(s+ 2)(s+ 3) · · · (s+ n+ 1)

exp

(

1+
1
2
+ · · · + 1

n

)

= se−γ lim
n→∞

exp{logn+ γ + ε(n)}
n+ s+ 1

= s lim
n→∞

neε(n)

n+ s+ 1
= s.

�

Similar arguments can be used to establish other relations between the function values ofΓ(s).
In particular, we have the following two formulas:

Γ(s)Γ(1− s) =
π

sinπs
, Γ(s)Γ(s+ 1/2) = π1/221−2sΓ(2s). (2.9)
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Lemma 2.5 (Euler’s integral formula). Suppose thatRe(s) > 0. Then

Γ(s) =
∫ ∞

0
e−tts−1 dt. (2.10)

Proof. We first show that

Γ(s) = lim
n→∞

n! · ns

s(s+ 1)(s+ 2) · · · (s+ n)
.

By (2.6),

Γ(s) = s−1e−γs lim
n→∞

n
∏

k=1

(

1+
s
k

)−1
es/k

= s−1e−γs lim
n→∞

1 · 2 · · ·n
(s+ 1)(s+ 2) · · · (s+ n)

· exp
(

s+
s
2
+ · · · + s

n

)

= lim
n→∞

n! exp{s(logn+ ε(n))}
s(s+ 1)(s+ 2) · · · (s+ n)

= lim
n→∞

n! · ns

s(s+ 1)(s+ 2) · · · (s+ n)
,

whereε(x) is the function defined in (2.8). We now observe that
∫ n

0

(

1− t
n

)n

ts−1 dt =
n! · ns

s(s+ 1)(s+ 2) · · · (s+ n)
.

Indeed, whens> 0 the above integral converges and we have
∫ n

0

(

1− t
n

)n

ts−1 dt = ns

∫ 1

0
(1− u)nus−1 du

= nsn
s

∫ 1

0
(1− u)n−1us du

= nsn(n− 1)
s(s+ 1)

∫ 1

0
(1− u)n−2us+1 du

...

= ns n(n− 1) · · ·1
s(s+ 1) · · · (s+ n− 1)

∫ 1

0
us+n−1 du

=
n! · ns

s(s+ 1)(s+ 2) · · · (s+ n)
.

Thus, it suffices to prove that

lim
n→∞

∫ n

0

(

1− t
n

)n

ts−1 dt =
∫ ∞

0
e−tts−1 dt.

To this end, we consider the functions

fn(t) =

{

(1− t/n)nts−1 if 0 ≤ t ≤ n,

0 if t > n.
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Each of these functions is inL1[0,∞) and satisfies the inequality

| fn(t)| ≤ e−ttσ−1,

whereσ = Re(s). The last inequality is easily verified by taking logarithms and noting that

n log
(

1− t
n

)

= −t − t2

2n
− t3

3n2
− · · · < −t.

Furthermore,

lim
n→∞

fn(t) = ts−1 lim
n→∞

(

1− t
n

)n

= e−tts−1.

Since the functione−ttσ−1 is in L1[0,∞), the dominated convergence theorem yields

lim
n→∞

∫ ∞

0
fn(t) dt =

∫ ∞

0
lim
n→∞

fn(t) dt =
∫ ∞

0
e−tts−1 dt,

which completes the proof of the lemma. �

We conclude our discussion ofΓ(s) with Stirling’s formula, which provides an asymptotic
expansion for logΓ(s) when|s| → ∞.

Lemma 2.6 (Stirling’s formula). Suppose that| args| < π. Then

logΓ(s) = (s− 1/2) logs− s+ log
√

2π +
∫ ∞

0

Ψ(u)
u+ s

du.

Here log s denotes the principal branch of the logarithm andΨ(u) = {u} − 1/2.

Corollary 2.7. Suppose that0 < δ < π and | args| < π − δ. Then

logΓ(s) = (s− 1/2) logs− s+ log
√

2π +O
(

|s|−1
)

and
Γ′(s)
Γ(s)

= log s+O
(

|s|−1
)

,

the implied constants depending at most onδ.

Corollary 2.8. Suppose thatα ≤ σ ≤ β and |t| ≥ 1. Then

|Γ(σ + it)| =
√

2π|t|σ−1/2 exp(−π|t|/2)
{

1+O
(

|t|−1
)}

,

the implied constant depending at most onα andβ.
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2.1.3 The functional equation

We are now in position to obtain the analytic continuation ofζ(s).

Proposition 2.9. Suppose thatRe(s) > 1. Then

π−s/2Γ

( s
2

)

ζ(s) =
1

s(s− 1)
+

1
2

∫ ∞

1

(

xs/2−1 + x−s/2−1/2
)

(ϑ(x; 0)− 1)dx, (2.11)

whereϑ(x; 0) is defined by(2.3).

Proof. From (2.10), we have

Γ

( s
2

)

=

∫ ∞

0
e−yys/2−1 dy= πs/2ns

∫ ∞

0
e−πxn2

xs/2−1 dx.

Summing this identity overn, we get

π−s/2Γ

( s
2

)

ζ(s) =
∞

∑

n=1

∫ ∞

0
e−πxn2

xs/2−1 dx.

After interchanging the order of summation and integration, the right side becomes
∫ ∞

0

∞
∑

n=1

e−πxn2
xs/2−1 dx=

1
2

∫ ∞

0
(ϑ(x; 0)− 1)xs/2−1 dx.

Next we write
∫ 1

0
(ϑ(x; 0)− 1)xs/2−1 dx=

∫ ∞

1

(

ϑ(t−1; 0)− 1
)

t−s/2−1 dt

and use (2.4) withα = 0 to put the last integral in the form
∫ ∞

1

(

t1/2ϑ(t; 0)− 1
)

t−s/2−1 dt =
∫ ∞

1
(ϑ(t; 0)− 1)t−s/2−1/2 dt+

2
s(s− 1)

.

Clearly this completes the proof of (2.11). �

Theorem 2.10.The functionζ(s) can be continued to a meromorphic function onC, whose only
singularity is a simple pole at s= 1 with residue1. Furthermore, theζ(s) satisfies the functional
equation

π−s/2Γ

( s
2

)

ζ(s) = π(s−1)/2Γ

(

1− s
2

)

ζ(1− s). (2.12)

Proof. Proposition 2.9 was obtained under the assumption Re(s) > 1, but since forx > 1

ϑ(x; 0)− 1� e−πx,

the integral on the right side of (2.11) is an entire function. Therefore, the function

ξ(s) =
s(s− 1)

2

∫ ∞

1
(ϑ(x; 0)− 1)

(

xs/2−1 + x(1−s)/2−1
)

dx+ 1 (2.13)
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is entire. Thus, the right side of the equation

ζ(s) =
πs/2

s(s− 1)
Γ

( s
2

)−1
ξ(s) (2.14)

(which is equivalent to (2.11) when Re(s) > 1) is a meromorphic function whose only singularity
is a simple pole ats= 1 with residue

π1/2ξ(1)

Γ(1
2)
= 1.

This establishes the first part of the theorem.
The functional equation (2.12) follows from (2.14) and the invariance ofξ(s) under the trans-

formations 7→ 1− s. �

2.2 The zeros ofζ(s)

Since we want to work with the logarithmic derivativeζ′(s)/ζ(s), we need to understand the zeros
and the poles of the zeta-function. Theorem 2.10 provides the necessary information about the
single pole ofζ(s). In this section, we concentrate on the zeros. So far we knowthat there are
no zeros in the half-plane Re(s) > 1. Since 1/Γ(s) is entire with simple zeros at the nonpositive
integers, it follows from the functional equation (2.12) that the only zeros ofζ(s) in the half-plane
Re(s) < 0 are simple zeros at the negative even integers and thatζ(0) , 0. The remaining part of
the complex plane—the vertical strip 0≤ Re(s) ≤ 1— is a twilight zone which may, and indeed
does, contain more zeros of the zeta-function. These come from the factorξ(s) on the right of
(2.14). In this section we studyξ(s) as an entire function of order 1.

In general, an entire functionf with f (0) , 0 is said to be offinite order if there is a number
η > 0 such that

M f (r) = max
{

| f (z)| : |z| ≤ r
}

� f ,η exp(rη).

When it is finite, the infimum of all suchη > 0 is called theorder of f . Entire functions of finite
order enter our discussion because of the following result.

Lemma 2.11.The functionξ(s) is an entire function of order1. Furthermore,

lim sup
|s|→∞

log |ξ(s)|
|s| log |s| =

1
2
. (2.15)

Proof. Sinceξ(s) = ξ(1− s), it suffices to bound|ξ(s)| in the half-plane Re(s) ≥ 1/2. There, we can
estimateξ(s) by means of (2.14), Stirling’s formula, and elementary upper bounds forζ(s). When
Re(s) > 1, a variant of Corollary 1.5 yields

ζ(s) =
s

s− 1
− s

∫ ∞

1
{x}x−s−1 dx, (2.16)
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where{x} denotes the fractional part ofx. However, since the last integral represents a holomorphic
function in Re(s) > 0, the identity holds in this larger domain. In particular, we have

(s− 1)ζ(s) � |s|2 whenever Re(s) ≥ 1/2.

Moreover, since log|Γ(s)| ≤ | logΓ(s)|, Stirling’s formula yields

log |Γ(s)| ≤ |s| log |s| +O(|s|) whenever Re(s) ≥ 1/2.

Combining the last two estimates and (2.14), we obtain

log |ξ(s)| ≤ 1
2 |s| log |s| +O(|s|) whenever Re(s) ≥ 1/2,

which establishes the first claim of the lemma. For the secondclaim, we note that

log |Γ(|s|)| = logΓ(|s|) = |s| log |s| +O(|s|),

whence
logξ(|s|) = 1

2 |s| log |s| +O(|s|) as|s| → ∞.
�

We now take a short detour into the theory of entire functionsof finite order.

Lemma 2.12. Suppose that f(s) is holomorphic in the closed disk|s| ≤ R. Let0 < r < R and let
a1, . . . , an be the zeros of f(s) lying inside the disk|s| ≤ r (listed according to multiplicities). Then

| f (0)|Rn

|a1a2 · · ·an|
≤ max
|s|=R
| f (s)|.

Proof. Consider the function

F(s) = f (s)
n

∏

k=1

R2 − sāk

R(s− ak)
.

This function is holomorphic in|s| ≤ R and |F(s)| = | f (s)| on the circle|s| = R. Thus, by the
maximum modulus principle,

| f (0)|Rn

|a1a2 · · ·an|
= |F(0)| ≤ max

|s|=R
|F(s)| = max

|s|=R
| f (s)|.

�

Lemma 2.13.Suppose that f(s) is an entire function of orderη, and let N(R) denote the number of
zeros of f(s) inside the disk|s| < R, counted according to their multiplicities. Then for any R≥ 1
andε > 0,

N(R) � f ,η,ε Rη+ε .
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Proof. Without loss of generality, we may assume thatf (0) = 1. Leta1, . . . , an be the zeros off (s)
inside the disk|s| < R, listed according to multiplicities, and choose anr > 0 so that

max
{

|ak| : 1 ≤ k ≤ n
}

≤ r < R.

We apply Lemma 2.12 withr and 2Rand obtain

2N(R) ≤
∏

|ak|<R

(

2R
|ak|

)

≤ max
|s|=2R
| f (s)| � f ,ε exp((2R)η+ε).

The desired conclusion now follows by taking logarithms. �

Lemma 2.14.Let R> 0 and suppose that f(s) is holomorphic in the disk|s| ≤ R. Then
∣

∣ f (n)(0)
∣

∣ ≤ 2n!R−n max
|s|=R

Re(f (s) − f (0)).

Proof. It suffices to consider the casef (0) = 0. We write

f (n)(0)
n!

= rne
iφn, s= Reiθ.

Then

Re f (Reiθ) =
∞

∑

n=1

rnR
n cos(nθ + φn).

Since the last series is absolutely convergent, we can integrate it term-by-term to obtain the identity
∫ 2π

0

(

1+ cos(nθ + φn)
)

Re f (Reiθ) dθ = πrnR
n.

Hence,

πrnR
n ≤ M

∫ 2π

0

(

1+ cos(nθ + φn)
)

dθ = 2πM,

whereM = max{Re f (s) : |s| = R}. �

Corollary 2.15. Suppose that f(s) is an entire function such thatRe f (s) = o(|s|n) as |s| → ∞.
Then f(s) is a polynomial of degree at most n− 1.

Theorem 2.16.Suppose that f(s) is an entire function of order1with f(0) , 0, and let a1, a2, a3, . . .

denote the zeros of f(s) listed according to their multiplicities and arranged so that

0 < |a1| ≤ |a2| ≤ · · · ≤ |an| ≤ · · · .

Then f(s) can be written as

f (s) = eA+Bs
∞

∏

n=1

(

1− s
an

)

es/an,

where A and B are constants.
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Proof. From Lemma 2.13 we deduce by partial summation that
∑

n |an|−2 converges. Hence, the
product

P(s) =
∞

∏

n=1

(

1− s
an

)

es/an

converges uniformly on compact sets. Thus,P(s) is an entire function having the same zeros as
f (s) andF(s) = f (s)/P(s) is an entire function with no zeros. Therefore,F(s) has a holomorphic
logarithm, that is, there is an entire functiong(s) such thatF(s) = eg(s). We now prove that

g(s) = A+ Bs (2.17)

for some constantsA, B.
In view of Corollary 1.14, (2.17) follows from the estimate Reg(s) = o(|s|2) as|s| → ∞. Since

Reg(s) is a harmonic function, it suffices to establish this on a sequence of circles|s| = R with
R→∞. We choose the radii so that

∣

∣R− |an|
∣

∣ � R−1.1 (2.18)

for all zerosan of f (s); this is possible because of Lemma 2.13. With such a choice of R, we have

− log
∣

∣(1− s/an)e
s/an

∣

∣ �
{

R|an|−1 + logR if |an| ≤ 2R,

R2|an|−2 if |an| > 2R,

whenever|s| = R. Hence, by Lemma 2.13 and partial summation (see Exercise 6),

− log |P(s)| � logR
∑

|an|≤2R

1+ R
∑

|an|≤2R

|an|−1 + R2
∑

|an|>2R

|an|−2 �ε R1+ε

for any 0< ε < 1. Therefore,

Reg(s) = log
∣

∣eg(s)
∣

∣ = log | f (s)| − log |P(s)| �ε R1+ε

whenever|s| = R andR is chosen so that (2.18) holds. This establishes (2.17) and completes the
proof of the theorem. �

Theorem 2.17.The functionξ(s) has infinitely many zeros in the strip0 ≤ Re(s) ≤ 1 and no zeros
outside that strip. It can be written as

ξ(s) = eBs
∏

ρ

(

1− s
ρ

)

es/ρ, (2.19)

whereρ runs through the zeros ofξ(s) counted according to their multiplicities and B is a constant.

Proof. Because of Lemma 2.11, we can apply Theorem 2.16 toξ(s). Upon noting thatξ(0) = 1
(recall (2.13)), this proves (2.19). The infinitude of the zeros of ξ(s) is also a consequence of
Lemma 2.11. Indeed, ifξ(s) had only a finite number of zeros, (2.19) would imply the estimate

log |ξ(s)| � |s|,

which contradicts (2.15). �
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Lemma 2.18.There exists a constant B1 such that

ζ′(s)
ζ(s)

=
−1

s− 1
+ B1 +

∞
∑

n=1

(

1
s+ 2n

− 1
2n

)

+
∑

ρ

(

1
s− ρ +

1
ρ

)

, (2.20)

whereρ runs through the zeros ofξ(s) counted according to their multiplicities.

Proof. By logarithmic differentiation of (2.14), (2.6), and (2.19), we get

ζ′(s)
ζ(s)

=
−1

s− 1
− 1

s
+ log

√
π − Γ

′(s/2)
2Γ(s/2)

+
ξ′(s)
ξ(s)

−Γ
′(s)
Γ(s)

=
1
s
+ γ +

∞
∑

n=1

(

1
s+ n

− 1
n

)

ξ′(s)
ξ(s)

= B+
∑

ρ

(

1
s− ρ +

1
ρ

)

.

Combining these three formulas, we obtain (2.20) withB1 = log
√
π + 1

2γ + B, whereγ is Euler’s
constant andB is the constant appearing in (2.19). �

Theorem 2.19.Suppose that s= σ + it, −1 ≤ σ ≤ 2. Then

ζ′(s)
ζ(s)

=
−1

s− 1
+

∑

| Im ρ−t|≤1

1
s− ρ +O(log(|t| + 2)). (2.21)

Proof. We writeτ = |t| + 2. Under the hypotheses of the theorem, we have

∞
∑

n=1

∣

∣

∣

∣

1
s+ 2n

− 1
2n

∣

∣

∣

∣

≤
∑

n≤τ

3
2n
+

∑

n>τ

|s|
n2
� logτ.

Substituting this into (2.20), we obtain

ζ′(s)
ζ(s)

=
−1

s− 1
+

∑

ρ

(

1
s− ρ +

1
ρ

)

+O(logτ). (2.22)

We now apply (2.22) tos= 2+ it. Logarithmic differentiation of the Euler product (2.2) yields
∣

∣

∣

∣

ζ′(2+ it)
ζ(2+ it)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

p

log p
p2+it − 1

∣

∣

∣

∣

≤
∑

p

log p
p2 − 1

,

so (2.22) withs= 2+ it gives

Re
∑

ρ

(

1
2+ it − ρ +

1
ρ

)

� logτ. (2.23)
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Writing a typical zero ofξ(s) in the formρ = β + iγ and noting that 0≤ β ≤ 1, we now find

Re
1

2+ it − ρ =
2− β

(2− β)2 + (t − γ)2
� 1

1+ (t − γ)2
, Re

1
ρ
=

β

β2 + γ2
≥ 0.

These inequalities and (2.23) give

∑

ρ

1
1+ (t − γ)2

� logτ. (2.24)

To prove (2.21) we subtract from (2.22) the respective formula for s= 2+ it and obtain

ζ′(s)
ζ(s)

=
−1

s− 1
+

∑

ρ

(

1
s− ρ −

1
2+ it − ρ

)

+O(logτ). (2.25)

By (2.24),

∑

| Im ρ−t|>1

∣

∣

∣

∣

1
s− ρ −

1
2+ it − ρ

∣

∣

∣

∣

≤
∑

| Im ρ−t|>1

3
(t − γ)2

≤
∑

ρ

6
1+ (t − γ)2

� logτ

and
∑

| Im ρ−t|≤1

∣

∣

∣

∣

1
2+ it − ρ

∣

∣

∣

∣

≤
∑

| Im ρ−t|≤1

1 ≤
∑

ρ

2
1+ (t − γ)2

� logτ.

Hence, (2.21) follows from (2.25). �

We conclude this section by recording a direct consequence of inequality (2.24).

Corollary 2.20. Suppose that T≥ 2. The number of the zeros ofζ(s) in the region

0 ≤ Re(s) ≤ 1, T ≤ | Im(s)| ≤ T + 1

is O(logT).

2.3 The zerofree region

Theorem 2.21 (de la Valĺee Poussin).There exists an absolute constant c1 > 0 such thatζ(s) has
no zeroρ = β + iγ with

β ≥ 1− c1

log(|γ| + 2)
. (2.26)

Proof. Suppose thats= σ + it with σ > 1. Taking real parts in Corollary 1.20, we obtain

−Re

(

ζ′(s)
ζ(s)

)

=

∞
∑

n=1

Λ(n)n−σ cos(t logn).
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Since for realθ,
3+ 4 cosθ + cos 2θ = 2(1+ cosθ)2 ≥ 0, (2.27)

we have

−3
ζ′(σ)
ζ(σ)

− 4 Re

(

ζ′(σ + it)
ζ(σ + it)

)

− Re

(

ζ′(σ + 2it)
ζ(σ + 2it)

)

≥ 0. (2.28)

We now consider a particular zeroρ = β0 + iγ0 and write inequalities for the terms on the left
side of (2.28) whent = γ0. Sinceζ(s) has a pole of residue 1 ats= 1, we have

−ζ
′(σ)
ζ(σ)

=
1

σ − 1
+O(1). (2.29)

In view of Exercise 10, we have|γ0| ≥ c2 > 0. Thus, we obtain from (2.21) that

−Re

(

ζ′(σ + iγ0)
ζ(σ + iγ0)

)

≤ −Re
∑

|γ−γ0|≤1

1
(σ − β) + i(γ0 − γ)

+ c3 log(|γ0| + 2)

≤ −1
(σ − β0)

+ c3 log(|γ0| + 2), (2.30)

and similarly,

−Re

(

ζ′(σ + 2iγ0)
ζ(σ + 2iγ0)

)

≤ c4 log(|γ0| + 2). (2.31)

Inserting (2.29)–(2.31) into (2.28), we deduce that forσ close to 1,

4(σ − β0)
−1 − 3(σ − 1)−1 ≤ c5 log(|γ0| + 2).

Choosing

σ = 1+
1

2c5 log(|γ0| + 2)
,

we obtain

β0 ≤ 1− 1
14c5 log(|γ0| + 2)

,

which establishes (2.26) when|γ0| ≥ c2. We dispense with the last condition by noting that there
are onlyO(1) zeros with|γ0| ≤ c2 and that none of them can be too close to the pole ats= 1. �

As we mentioned in the Introduction, there are more precise estimates for the zerofree region
of ζ(s) than that in Theorem 2.21. While their proofs are too technical to present here in full
detail, we will describe briefly the main idea. In the proof ofTheorem 2.21, we derived bounds
for ζ′(s)/ζ(s) from Theorem 2.19, which in turn relied on estimates forΓ′(s)/Γ(s). The more
sophisticated approach towards the zerofree region boundsζ′(s)/ζ(s) using estimates for the sum

∑

n≤N

nit =
∑

n≤N

exp(it logn).

In fact, both Littlewood’s and the Vinogradov–Korobov improvements on Theorem 1 (recall (0.8)
and (0.9)) stem from improved estimates for this exponential sum. Those interested in learning
more about those results should consult the specialized monographs on the theory of the zeta-
function, e.g., Ivić [31], Karatsuba and Voronin [37], or Titchmarsh [50].
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2.4 Proof of the prime number theorem

Our proof of Theorem 2.1 combines Theorem 2.21 and the following result, known as theRiemann–
Mangoldt explicit formulafor ψ(x). An alternative proof is sketched in Exercise 17.

Theorem 2.22.Suppose that2 ≤ T ≤ x and{x} = 1/2. Then

ψ(x) = x−
∑

| Im ρ|≤T

xρ

ρ
+O

(

x(log x)2

T

)

, (2.32)

where the summation is over the nontrivial zeros ofζ(s) with | Im ρ| ≤ T.

Proof. We apply Corollary 1.14 withf (s) = −ζ′(s)/ζ(s) andα = 1+ (log x)−1. In view of Corol-
lary 1.20, this gives

ψ(x) =
1

2πi

∫ α+iT

α−iT

(

−ζ
′(s)
ζ(s)

)

xs

s
ds+O

(

x
T

∞
∑

n=1

Λ(n)
nα| log(x/n)|

)

.

The error term is easily seen to be

� x log x
T

(

∑

n≤x/2

1
n
+

∑

x/2<n≤2x

1
|x− n| +

∑

n>2x

1
nα

)

� x(log x)2

T
.

Hence,

ψ(x) =
1

2πi

∫ α+iT

α−iT

(

−ζ
′(s)
ζ(s)

)

xs

s
ds+O

(

x(log x)2

T

)

. (2.33)

Observe that, by Corollary 2.20, we can always choose a number T of a certain size so that
∣

∣T − |γ|
∣

∣ � (logT)−1 (2.34)

for all zerosρ = β + iγ of ζ(s). With such a value ofT we move the path of integration to the
contourC on Fig. 2.1. The contribution from the poles of the integrandlying between the two
contours is

x−
∑

|ρ|≤T

xρ

ρ
− ζ

′(0)
ζ(0)

,

so it remains to show that the integral alongC is negligible. To this end, we note that by Theo-
rem 2.19 and Corollary 2.20,

∣

∣

∣

∣

ζ′(s)
ζ(s)

∣

∣

∣

∣

� (logT)2

whenevers ∈ C. Hence,
∣

∣

∣

∣

∫

C

(

−ζ
′(s)
ζ(s)

)

xs

s
ds

∣

∣

∣

∣

� (logT)2

(

1
T

∫ α

−1/2
xu du+

∫ T

−T

x−1/2 dy
1+ |y|

)

� xT−1(logT)2 + x−1/2(logT)3 � xT−1(log x)2.

Once (2.32) has been established forT subject to (2.34), removing that constraint by means of
Corollary 2.20 is straightforward. �
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α + iT

α − iT

−1
2 + iT

−1
2 − iT

Figure 2.1:

Proof of Theorem 2.1.Suppose thatT ≥ 10 and setδ = c1(logT)−1, wherec1 > 0 is the constant
from Theorem 2.21. By Corollary 2.20 and Theorem 2.21, the sum over the zeros on the right of
(2.32) is

� x1−δ
∑

r≤2 logT

2−r
∑

| Im ρ|≤2r

1� x1−δ(logT)2.

Thus, the result follows from (2.32) on choosing

logT = (log x)1/2 +O(1).

�

Exercises

1. Prove identities (2.9).

2. Prove Stirling’s formula.

3. Suppose that Re(s) > 0 andN ∈ N. Prove that

ζ(s) =
∑

n≤N

n−s +
N1−s

1− s
− s

∫ ∞

N
{u}u−s−1 du.

4. Prove Corollary 2.15.

5. Prove that the convergence of the series
∑

n |an|−2 implies the uniform convergence on compact sets of the
product

∞
∏

n=1

(

1− s
an

)

es/an.
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6. Suppose thatf (s) is an entire function of order 1 withf (0) , 0 anda1, a2, a3, . . . are its zeros, labeled as in
Theorem 2.16. Prove that:

(a)
∑

|an|≤R

|an|α �α,ε Rα+1+ε + 1 for anyε > 0;

(b)
∑

|an|>R

|an|α �α,ε Rα+1+ε for anyα < −1 and 0< ε < −α − 1.

7. Prove thatζ(0) = −1/2 andζ(−1) = −1/12.

8. Prove that the Laurent expansion ofζ′(s)/ζ(s) abouts= 1 is

ζ′(s)
ζ(s)

=
−1

s− 1
+ γ + · · · ,

whereγ is Euler’s constant.
[

H: Use (2.16).
]

9. Prove that the value ofB in (2.19) isB = 1
2 log 4π − 1

2γ − 1, whereγ is Euler’s constant.

10. Prove that any zeroρ of the functionξ(s) satisfies

| Imρ| ≥
√
−B−1 − 1 > 6.503695. . . ,

whereB is the constant appearing in (2.19) (and in the last problem).

11. The purpose of this problem is to show that the value of theconstantB in Theorem 1.9 is

B = γ −
∑

p

(

1
p
+ log

(

1− 1
p

))

, (∗)

whereγ is Euler’s constant. Note that combining this identity and the result of Exercise 1.8, we find that the
constantC in Exercise 1.7 equalse−γ.

(a) LetS(x) denote the sum on the left side (1.5) and definef (s) =
∑

p p−s. Prove that if Re(s) > 1, then

f (s) = (s− 1)
∫ ∞

1
S(x)x−s dx.

(b) Suppose thatσ > 1. Combining Theorem 1.9 and part (a), prove that

f (σ) = − log(σ − 1)− γ + B+O(−(σ − 1) log(σ − 1)).

(c) Suppose that Re(s) > 1. Prove thatf (s) = logζ(s) + g(s), whereg(s) is holomorphic in the half-plane
Re(s) > 1/2.

(d) Derive (∗) from parts (b) and (c).

12. Suppose thatT ≥ 10 andN(T) denotes the number of zerosρ of ξ(s) with 0 < Im ρ ≤ T. Prove that

N(T) =
T
2π

log

(

T
2πe

)

+O(logT).

[

H: Apply the argument principle toξ(s) and the rectangle with vertices−1± iT, 2± iT. Use the results in
§2.2 to estimate the contribution from the horizontal lines.Use the functional equation to replace the integral
over the line Re(s) = −1 by an integral over the line Re(s) = 2. Finally, use that on the line Re(s) = 2,
ζ′(s)/ζ(s) has a Dirichlet series representation.

]
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13. Suppose thatρ1, ρ2, ρ3, . . . are the zeros ofξ(s) in the upper half-plane, listed according to multiplicities and
arranged so that 0< γ1 ≤ γ2 ≤ γ3 ≤ · · · , whereγn = Im ρn. Prove that

lim
n→∞

γn logn
2πn

= 1.

14. Prove Theorem 2.22 for an arbitraryx ≥ 2.
[

H: Use Lemma 2.18.
]

15. Defineψ0(x) = 1
2

{

ψ(x+) + ψ(x−)
}

. Prove that forx > 1,

ψ0(x) = x−
∑

ρ

xρ

ρ
− ζ

′(0)
ζ(0)

− 1
2

log
(

1− x−2
)

.

Here
∑

ρ = lim
T→∞

∑

|ρ|≤T.

16. Defineψ1(x) =
∑

n≤x(x− n)Λ(n). Prove that forx > 1,

ψ1(x) =
x2

2
−

∑

ρ

xρ+1

ρ(ρ + 1)
− x

ζ′(0)
ζ(0)

+
ζ′(−1)
ζ(−1)

−
∞

∑

k=1

x1−2k

2k(2k− 1)
.

17. The purpose of this exercise is to deduce the PNT directlyfrom (2.33) instead from the explicit formula (2.32).
Starting with (2.33) move the integration to a polygonal contourC that is similar to the contour displayed on
Fig. 2.1 but has vertices atα± iT andη± iT, whereη = 1− 1

2c1(logT)−1. Estimate the integral overC to obtain
the PNT.
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Chapter 3

Prime numbers in arithmetic progressions

In this chapter we study Dirichlet characters andL-functions and prove Theorem 2.

3.1 Characters

3.1.1 Characters of finite abelian groups

Let G be a finite abelian group of orderm, written multiplicatively. A group homomorphism
χ : G→ C× is called acharacterof G, that is,

χ(xy) = χ(x)χ(y) for all x, y ∈ G.

In particular,χ(e) = 1 and (by Lagrange’s theorem on finite groups)χ(x)m = χ(xm) = χ(e) = 1.
That is,χ(x) is anmth root of unity.

The characters ofG form a groupĜ under pointwise multiplication:

(χ1χ2)(x) = χ1(x)χ2(x) for all x ∈ G.

The identity element of̂G is the trivial character

χ0(x) = 1 for all x ∈ G,

and the inverse ofχ is its complex-conjugate character ¯χ.

Theorem 3.1.Ĝ � G.

Proof. Suppose first thatG is cyclic,G = 〈g〉. Writing a generic elementx of G asx = gy, we find
that every characterχ ∈ Ĝ must be of the form

χa(x) = χa(g
y) = e(ay/m) (a ∈ Z),

that is,Ĝ is a cyclic group of ordermgenerated byχ1.
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Now, suppose thatG is an arbitrary finite abelian group. By the structural theorem for finite
abelian groups,G can be written as the direct product of cyclic groups,G = C1 × C2 × · · · × Ck.
Given anx = x1x2 · · · xk, xj ∈ C j, we define a characterχ ∈ Ĝ by

χ(y) = χ1(y1)χ2(y2) · · ·χk(yk) for y = y1y2 · · · yk ∈ G, yj ∈ C j;

hereχ j is the character in̂C j corresponding toxj under the above isomorphism. Since the map
x 7→ χ is an isomorphism of abelian groups, the result follows. �

Corollary 3.2. Suppose that G is a finite abelian group and x is an element of G other than the
identity. Then there is a characterχ ∈ Ĝ such thatχ(x) , 1.

Proof. This is a consequence of the proof of the theorem. As in that proof, we writeG as the direct
product of cyclic groups,G = C1 ×C2 × · · · ×Ck. Thenx = x1x2 · · · xk, xj ∈ C j, and somexj is not
the identity. Without loss of generality, we may assume thatx1 , e. Let g be the generator ofC1.
The characterχ corresponding toge· · ·eunder the isomorphism from the proof of the theorem has
the desired property. �

Lemma 3.3. Let G be a finite abelian group and denote by e andχ0 the identity element and the
trivial character of G. Then the following two orthogonality relations hold:

∑

x∈G
χ(x) =

{

|G| if χ = χ0,

0 otherwise;
(3.1)

and
∑

χ∈Ĝ

χ(x) =

{

|G| if x = e,

0 otherwise.
(3.2)

Proof. Suppose thatχ , χ0. Then for somex0 ∈ G, χ(x0) , 1. We now observe that

χ(x0)
∑

x∈G
χ(x) =

∑

x∈G
χ(x0x) =

∑

y∈x0G

χ(y) =
∑

y∈G
χ(y).

Sinceχ(x0) , 1, the sum on the right must be equal to 0. This establishes (3.1) whenχ is nontrivial;
the alternative case is straightforward.

Now suppose thatx , e. By Corollary 3.2, there is a characterχ0 ∈ Ĝ such thatχ0(x) , 1. But

χ0(x)
∑

χ∈Ĝ

χ(x) =
∑

χ∈Ĝ

χ0χ(x) =
∑

ψ∈χ0Ĝ

ψ(x) =
∑

ψ∈Ĝ

ψ(x),

and sinceχ0(x) , 1, the sum on the right must be equal to 0. Again, the remainingcase is
straightforward. �
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3.1.2 Dirichlet characters

Let q ≥ 1 be an integer. ThenZ/qZ is a commutative ring. LetGq = (Z/qZ)× denote the multiplica-
tive group ofZ/qZ. (Recall that a residue class inZ/qZ is invertible if and only if it is relatively
prime to the modulusq.) ThenGq is an abelian group of orderφ(q), whereφ(q) is Euler’s function.
Of course, a character ofGq is a homomorphismχ : Gq → C×. It will be convenient to extend the
domain of each character to all elements of the ringZ/qZ by setting

χ(n) = 0 if gcd(n, q) > 1.

This extended function will be called aDirichlet character modulo q, or simply aDirichlet char-
acter. We will often regard each Dirichlet character moduloq as aq-periodic functionχ : Z→ C.
Although Dirichlet characters are not group homomorphisms, they are still completely multiplica-
tive:

χ(mn) = χ(m)χ(n) for all m, n ∈ Z. (3.3)

We refer to the extension of the trivial group characterχ0 as theprincipal character modulo q;
we will denote the principal character byχ0. The orthogonality relations in Lemma 3.3 yield the
following orthogonality relations among Dirichlet characters.

Lemma 3.4. Suppose that q≥ 1. If χ is a Dirichlet character modulo q, then

q
∑

n=1

χ(n) =

{

φ(q) if χ = χ0,

0 otherwise.
(3.4)

Furthermore,
∑

χ modq

χ(n) =

{

φ(q) if n ≡ 1 (modq),

0 otherwise,
(3.5)

where the sum on the right side is over all Dirichlet characters modulo q.

Let χ be a non-principal Dirichlet character moduloq, let q1 be a proper divisor ofq, and letχ1

be a non-principal character moduloq1 such that

χ(n) = χ1(n)χ0(n) for all n ∈ Z, (3.6)

whereχ0 is the principal character moduloq. Then we say thatχ1 inducesχ. If χ is a non-
principal Dirichlet character moduloq and there exists a characterχ1 as in (3.6), thenχ is called
imprimitive; otherwise,χ is calledprimitive. Note that principal characters are neither primitive,
nor imprimitive. If χ is an imprimitive Dirichlet character moduloq, we define1 its conductor
to be the least modulusq∗ such that there exists a (necessarily primitive) characterχ∗ moduloq∗

which inducesχ. If χ is primitive, we define its conductor to be equal to the modulusq, and ifχ is
principal, we define the conductor to be equal to 1.

1This definition requires some justification; see Exercise 2.

41



3.1.3 Gaussian sums

We now introduce theGaussian sum. If χ is a Dirichlet character moduloq anda is an integer, we
define

τ(χ, a) =
∑

m modq

χ(m)e(am/q), (3.7)

where the summation is over any complete system of residues moduloq.

Lemma 3.5. Letχ be a Dirichlet character modulo q and suppose that eithergcd(a, q) = 1 or χ is
primitive. Then

τ(χ, a) = χ̄(a)τ(χ, 1). (3.8)

Proof. First, suppose that (a, q) = 1. Then

τ(χ, a) = χ̄(a)
∑

m modq

χ(am)e(am/q) = χ̄(a)
∑

n modq

χ(n)e(n/q) = χ̄(a)τ(χ, 1).

Here, we used that ifm runs through a complete system of residues moduloq, then so doesam.
Now, suppose thatχ is primitive and (a, q) = k > 1. We writea = ka1, q = kq1, and note that

there exists an integerb such that

(b, q) = 1, b ≡ 1 (modq1), χ(b) , 1.

Then
χ(b)τ(χ, a) =

∑

m modq

χ(bm)e(a1m/q1) =
∑

m modq

χ(bm)e(a1bm/q1) = τ(χ, a).

Sinceχ(b) , 1, it follows thatτ(χ, a) = 0, which establishes the second claim of the lemma.�

Identity (3.8) is useful for transforming exponential sumsinto character sums andvice versa.
However, for such applications it is crucial to be sure thatτ(χ, 1) is nonzero. The next lemma
determines exactly the characters for which this is the case.

Lemma 3.6. Letχ be a Dirichlet character modulo q induced by a primitive characterχ∗ modulo
q∗. Then

τ(χ, 1) = µ

(

q
q∗

)

χ∗
(

q
q∗

)

τ(χ∗, 1). (3.9)

Moreover, ifχ is primitive, then|τ(χ, 1)| = √q.

Proof. Assume first thatχ is primitive. Summing (3.8) over alla moduloq, we get

|τ(χ, 1)|2
∑

a modq

|χ(a)|2 =
∑

a modq

|τ(χ, a)|2

=
∑

a modq

∑

m modq

χ(m)e(am/q)
∑

n modq

χ̄(n)e(−an/q)

=
∑

m modq

∑

n modq

χ(m)χ̄(n)
∑

a modq

e(a(m− n)/q). (3.10)
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The innermost sum on the right side of (3.10) isq or 0 according asa ≡ b (modq) or not. Hence,

|τ(χ, 1)|2
∑

a modq

|χ(a)|2 = q
∑

m modq

|χ(m)|2.

This proves the second claim of the lemma.
We now turn to (3.9). Using Lemma 1.2, we can write the principal characterχ0 moduloq as

χ0(n) =
∑

d|(n,q)

µ(d).

Thus,

τ(χ, 1) =
∑

m modq

χ∗(m)χ0(m)e(m/q) =
∑

m modq

χ∗(m)e(m/q)
∑

d|(m,q)

µ(d)

=
∑

d|q
µ(d)

∑

n modq/d

χ∗(nd)e(nd/q)

=
∑

d|q
µ(d)χ∗(d)

∑

n modq/d

χ∗(n)e(nd/q).

Note that the terms with (d, q∗) > 1 do not contribute to the last sum. Thus, we may restrict the
summation overd to the divisors ofq0 = q/q∗:

τ(χ, 1) =
∑

d|q0

µ(d)χ∗(d)
∑

n modq/d

χ∗(n)e(nd/q).

We now write the summation variablen moduloq/d asq∗v + u, whereu runs over a complete
system of residues moduloq∗ andv runs over a complete system of residues moduloq/dq∗ = q0/d.
We get

τ(χ, 1) =
∑

d|q0

µ(d)χ∗(d)
∑

u modq∗

∑

v modq0/d

χ∗(q∗v+ u)e((q∗v+ u)d/q)

=
∑

d|q0

µ(d)χ∗(d)
∑

u modq∗

χ∗(u)e(ud/q)
∑

v modq0/d

e(vd/q0).

Since the innermost sum vanishes whenq0/d > 1, the result follows. �

3.1.4 The Ṕolya–Vinogradov theorem

Suppose thatχ is a non-principal character moduloq. From the orthogonality relation (3.4),
∣

∣

∣

∣

∑

M<n≤M+N

χ(n)

∣

∣

∣

∣

≤ φ(q)/2

for all M,N ≥ 1. In this section, we will improve on this trivial bound. Thenext result was
obtained independently in 1918 by Pólya [45] and I. M. Vinogradov [56] and is known as the
Pólya–Vinogradov inequality.
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Theorem 3.7.Suppose that M,N are positive integers andχ is a non-principal character modulo
q. Then

∣

∣

∣

∣

∑

M<n≤M+N

χ(n)

∣

∣

∣

∣

≤
√

3q logq. (3.11)

Proof. First, suppose thatχ is primitive. Then, by (3.8),

τ(χ̄, 1)
∑

M<n≤M+N

χ(n) =
∑

M<n≤M+N

∑

m modq

χ̄(m)e(nm/q) =
∑

m modq

χ̄(m)
∑

M<n≤M+N

e(mn/q).

Hence, we deduce from Lemma 3.6 that

∣

∣

∣

∣

∑

M<n≤M+N

χ(n)

∣

∣

∣

∣

≤ q−1/2
q−1
∑

m=1

∣

∣

∣

∣

∑

M<n≤M+N

e(mn/q)

∣

∣

∣

∣

.

On noting that the modulus of the inner sum is| sin(πmN/q)/ sin(πm/q)|, we get the inequality

∣

∣

∣

∣

∑

M<n≤M+N

χ(n)

∣

∣

∣

∣

≤ q1/2
q−1
∑

m=1

csc(πm/q).

We now use apply the inequality csc(πx) ≤ (2x)−1 for 0 < x ≤ 1/2. Whenq = 2k, we obtain

q−1
∑

m=1

csc(πm/q) ≤ q
k−1
∑

m=1

m−1 + 1 ≤ q
k−1
∑

m=1

log

(

2m+ 1
2m− 1

)

+ 1

= q log(q− 1)+ 1 ≤ q logq;

and whenq = 2k+ 1,

q−1
∑

m=1

csc(πm/q) ≤ q
k

∑

m=1

m−1 ≤ q
k

∑

m=1

log

(

2m+ 1
2m− 1

)

= q logq.

This establishes (3.11) for primitive characters.
On the other hand, ifχ is induced by a primitive characterχ∗ modulor, r < q, we have

∑

M<n≤M+N

χ(n) =
∑

M<n≤M+N

χ∗(n)
∑

d|(q,n)

µ(d) =
∑

d|q
µ(d)χ∗(d)

∑

M/d<m≤(M+N)/d

χ∗(m).

Sinceχ∗ is primitive, the sum overm is bounded above byr1/2 log r. Hence,
∣

∣

∣

∣

∑

M<n≤M+N

χ(n)

∣

∣

∣

∣

≤ r1/2 log r
∑

d|q
|χ∗(d)| ≤ d(q/r)r1/2 log r,

where the last step uses that the terms with (d, r) > 1 do not contribute to the sum overd. The
desired result now follows from the elementary boundd(n) ≤

√
3n. �
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3.2 Dirichlet L-functions

If χ is a Dirichlet character moduloq, we define theDirichlet L-function L(s, χ) by

L(s, χ) =
∞

∑

n=1

χ(n)n−s (Re(s) > 1). (3.12)

Since|χ(n)| ≤ 1, this series converges absolutely and uniformly on the compact subsets of the half-
plane Re(s) > 1. Furthermore, whenχ is a non-principal character, the series in (3.12) converges
uniformly (but not absolutely) on the compact subsets of Re(s) > 0:

L(s, χ) =
∫ ∞

1/2
S(x)sx−s−1 dx, S(x) =

∑

n≤x

χ(n). (3.13)

Thus,L(s, χ) is holomorphic in the half-plane Re(s) > 1, and for non-principalχ even in Re(s) > 0.
By Lemma 1.16, everyL-function has an Euler product:

L(s, χ) =
∏

p

(

1− χ(p)p−s
)−1

(Re(s) > 1). (3.14)

In particular, (3.14) implies thatL(s, χ) , 0 when Re(s) > 1.
Next, we want to obtain an analytic continuation ofL(s, χ) to a meromorphic function onC.

We observe that it suffices to consider the case whenχ is primitive. Indeed, ifχ is an imprimitive
character moduloq induced by a primitive characterχ∗ moduloq∗, then (3.14) yields

L(s, χ) =
∏

p

(

1− χ(p)p−s
)−1
=

∏

p-q

(

1− χ∗(p)p−s
)−1
= L(s, χ∗)

∏

p|q

(

1− χ∗(p)p−s
)

.

Therefore, the analytic continuation ofL(s, χ) is a straightforward consequence from the analytic
continuation ofL(s, χ∗) and the holomorphy of the finite product on the right. Similarly, if χ0 is
the principal character moduloq, we have

L(s, χ0) = ζ(s)
∏

p|q

(

1− p−s
)

,

soL(s, χ0) is holomorphic inC − {1} and has a simple pole ats= 1 with residue

Res
(

L(s, χ0); 1
)

=
∏

p|q

(

1− p−1
)

=
φ(q)

q
.

We now turn toward primitive characters.

Lemma 3.8. Suppose thatχ is a primitive Dirichlet character modulo q, a∈ {0, 1}, and define

θa(x; χ) =
∞

∑

n=−∞
naχ(n) exp

(

− πxn2/q
)

.

Then for all x> 0,
τ(χ̄, 1)θa(x

−1; χ) = (ix)a(qx)1/2θa(x; χ̄). (3.15)
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Proof. Suppose thata = 0. Becauseχ is primitive, we can use Lemma 3.5 to obtain

τ(χ̄, 1)θa(x
−1; χ) =

∞
∑

n=−∞
τ(χ̄, n) exp

(

− πn2/qx
)

=
∑

k modq

χ̄(k)
∞

∑

n=−∞
exp

(

− πn2/qx
)

e(kn/q).

Introducing the theta-seriesϑ(z;α) defined in (2.3), we can write this identity as

τ(χ̄, 1)θa(x
−1; χ) =

∑

k modq

χ̄(k) exp
(

πk2x/q
)

ϑ
(

(qx)−1;−ikx
)

.

We now appeal to Lemma 2.2 and get

τ(χ̄, 1)θa(x
−1; χ) = (qx)1/2

∑

k modq

χ̄(k)ϑ(qx; k/q)

= (qx)1/2
∑

k modq

χ̄(k)
∞

∑

n=−∞
exp

(

− πx(nq+ k)2/q
)

= (qx)1/2
∑

k modq

χ̄(k)
∑

m≡k (modq)

exp
(

− πxm2/q
)

= (qx)1/2θa(x; χ̄).

The proof fora = 1 is similar, except that instead of Lemma 2.2 it uses the identity
∞

∑

n=−∞
(n+ α)e−πx(n+α)2

= −ix−3/2
∞

∑

n=−∞
nexp

(

−πn2x−1 + 2πiαn
)

,

which follows from (2.4) via term-by-term differentiation with respect toα. �

Theorem 3.9. Suppose thatχ is a primitive Dirichlet character modulo q and choose a∈ {0, 1}
so thatχ(−1) = (−1)a. Then the Dirichlet L-function L(s, χ) can be extended to an entire function
satisfying the functional equation

(q
π

)(s+a)/2
Γ

(s+ a
2

)

L(s, χ) =
iaq1/2

τ(χ, 1)

(q
π

)(1−s+a)/2
Γ

(

1− s+ a
2

)

L(1− s, χ̄). (3.16)

Proof. As in the proof of Theorem 2.10, we start with a change of variables in the integral repre-
sentation for the gamma-function:

Γ

( s+ a
2

)

= ms

(

π

q

)(s+a)/2 ∫ ∞

0
ma exp

(

− πxm2/q
)

x(s+a)/2−1 dx.

Multiplying this identity by (q/π)(s+a)/2χ(m)m−s and then summing overm, we get

(q
π

)(s+a)/2
Γ

(s+ a
2

)

L(s, χ) =
∞

∑

m=1

χ(m)
∫ ∞

0
ma exp

(

− πxm2/q
)

x(s+a)/2−1 dx

=
1
2

∫ ∞

0
θa(x, χ)x(s+a)/2−1 dx, (3.17)
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sincemaχ(m) is an even function. By a change of variables and an appeal toLemma 3.8,

∫ 1

0
θa(x, χ)x(s+a)/2−1 dx=

∫ ∞

1
θa(t

−1, χ)t−(s+a)/2−1 dt

=
iaq1/2

τ(χ̄, 1)

∫ ∞

1
θa(t, χ̄)t−(s−a)/2−1/2 dt. (3.18)

Combining (3.17) and (3.18), we find that the left side of (3.16) equals

1
2

∫ ∞

1
θa(x, χ)x(s+a)/2−1 dx+

iaq1/2

2τ(χ̄, 1)

∫ ∞

1
θa(x, χ̄)x−(s−a)/2−1/2 dx. (3.19)

Sinceθa(x, χ) decays exponentially forx → ∞, this expression represents an entire function and
thus provides an analytic continuation ofL(s, χ) to C. Furthermore, the substitutions 7→ 1 − s
transforms (3.19) into

1
2

∫ ∞

1
θa(x, χ)x−(s−a)/2−1/2 dx+

iaq1/2

2τ(χ̄, 1)

∫ ∞

1
θa(x, χ̄)x(s+a)/2−1 dx. (3.20)

Noting that whenχ is primitive

τ(χ, 1)τ(χ̄, 1) = χ(−1)q = (−1)aq, (3.21)

we see that (3.20) is equal to

τ(χ̄, 1)
iaq1/2

{

1
2

∫ ∞

1
θa(x, χ̄)x(s+a)/2−1 dx+

iaq1/2

2τ(χ, 1)

∫ ∞

1
θa(x, χ)x−(s−a)/2−1/2 dx

}

.

This establishes the functional equation (3.16). �

3.3 The zeros ofL(s, χ)

Again, we want to use the logarithmic derivativeL′(s, χ)/L(s, χ), so we need first to study the
zeros and the poles of the DirichletL-functions. As we already mentioned in the previous section,
L(s, χ) is entire, unlessχ is principal, in which caseL(s, χ) has a single singularity—a simple pole
at s = 1. We already know (from (3.14)) thatL(s, χ) is non-zero in the half-plane Re(s) > 1.
Furthermore, using the functional equation (3.16), we can show that the only zeros ofL(s, χ) in the
half-plane Re(s) < 0 are simple zeros at the even or odd integers, depending on the sign ofχ(−1).
Also, if χ is a non-principal character withχ(−1) = 1, we see thats = 0 must be a zero. To study
the zeros ofL(s, χ) in the strip 0≤ Re(s) ≤ 1, we introduce the entire function

ξ(s, χ) =
(q
π

)(s+a)/2
Γ

( s+ a
2

)

L(s, χ),

which will play the same role the functionξ(s) defined by (2.13) played in the study of the zeros
of the zeta-function.
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Theorem 3.10.If χ is a Dirichlet character modulo q, then L(1, χ) , 0.

Proof. For principal characters the result is trivial (theL-function has a pole ats = 1), so we may
assume thatχ is non-principal. The case whenχ is complex is easy. Suppose thatL(1, χ) = 0 for
a complex characterχ. Thenχ̄ is another character moduloq with

L(1, χ̄) = L(1, χ) = 0.

Therefore, the product
f (s) =

∏

χ modq

L(s, χ)

represents an entire function, which vanishes ats= 1. On the other hand, whenσ > 1, we have

∑

χ modq

logL(σ, χ) =
∑

χ modq

∑

p

∞
∑

m=1

χ(pm)
mpmσ

=
∑

p

∞
∑

m=1
pm≡1 (modq)

φ(q)
mpmσ

≥ 0.

Hence, f (σ) ≥ 1 for σ > 1, which is inconsistent withf (1) = 0. Thus, our assumption must be
false.

To prove the lemma for a non-principal real character, we consider the function

f (s) =
L(s, χ)L(s, χ0)

L(2s, χ0)
,

whereχ0 is the principal character moduloq. If L(1, χ) = 0, this function is holomorphic in
the half-plane Re(s) > 1/2 and vanishes ats = 1/2 (since the denominator has a pole and the
numerator is entire). On the other hand, when Re(s) > 1, (3.14) yields

f (s) =
∏

χ(p)=1

(

ps + 1
ps − 1

)

=

∞
∑

n=1

ann
−s.

Note that the coefficientsan are nonnegative. We now look at the Taylor expansion off (s) in
|s− 2| < 3/2. We have

f (s) =
∞

∑

m=0

f (m)(2)
m!

(s− 2)m,

where from the Dirichlet series representation,

f (m)(2) = (−1)m
∞

∑

n=1

an(logn)mn−2 = (−1)mbm, say.

Thus,

f (s) = f (2)+
∞

∑

m=1

bm

m!
(2− s)m,

with non-negative coefficientsbm. Letting s→ 1/2, we find that all the coefficients on the right
are zero (sincef (1/2) = 0), and in particular, thatf (2) = 0. This, however, contradicts the Euler
product representation off (s). �
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We now commence our investigation of the zeros ofξ(s, χ). The following two results are
analogues of Lemma 2.11 and Theorem 2.17.

Lemma 3.11. Suppose thatχ is a primitive character modulo q. There is an absolute constant
c1 > 0 such that

|ξ(s, χ)| � ec1|s| log(q|s|). (3.22)

Proof. Becauseξ(s, χ) satisfies the functional equation

ξ(s, χ) = w(χ)ξ(1− s, χ̄), |w(χ)| = 1,

it suffices to prove (3.22) when Re(s) ≥ 1/2. For suchs, the desired bound follows from the
definition ofξ(s, χ), Stirling’s formula, and the estimate

|L(s, χ)| � q|s|.

�

Theorem 3.12.Suppose thatχ is a primitive character modulo q. Then the functionξ(s, χ) has
infinitely many zeros in the strip0 ≤ Re(s) ≤ 1 and can be written as

ξ(s, χ) = eA+Bs
∏

ρ

(

1− s
ρ

)

es/ρ.

Here A= A(χ) and B= B(χ) are constants depending only on the characterχ and the product is
over the zeros ofξ(s, χ) listed according to their multiplicities.

Corollary 3.13. Suppose thatχ is a primitive character modulo q and a∈ {0, 1} is such that
χ(−1) = (−1)a. Then

L′(s, χ)
L(s, χ)

= B(χ) − 1
2

log(q/π) − 1
2
Γ′((s+ a)/2)
Γ((s+ a)/2)

+
∑

ρ

(

1
s− ρ +

1
ρ

)

. (3.23)

Here B(χ) is the constant appearing in Theorem 3.12.

Proof. This follows from Theorem 3.12 by logarithmic differentiation. �

Corollary 3.14. The constant B(χ) satisfies

ReB(χ) = −Re
∑

ρ

1
ρ
. (3.24)

Proof. We first observe that, by the functional equation ofξ(s, χ), if ρ is a zero ofξ(s, χ), then so
is 1− ρ̄, while ρ̄ and 1− ρ are zeros ofξ(s, χ̄). From Theorem 3.12,

ξ′(s, χ)
ξ(s, χ)

= B(χ) +
∑

ρ

(

1
s− ρ +

1
ρ

)

, (3.25)
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and from the functional equation,

ξ′(s, χ)
ξ(s, χ)

= −ξ
′(1− s, χ̄)
ξ(1− s, χ̄)

.

Substitutings= 0, we get

B(χ) =
ξ′(0, χ)
ξ(0, χ)

= −ξ
′(1, χ̄)
ξ(1, χ̄)

= −B(χ̄) −
∑

ρ

(

1
1− ρ̄ +

1
ρ̄

)

. (3.26)

Note that sinceξ(s, χ) = ξ(s, χ), (3.25) impliesB(χ) = B(χ). Thus, by (3.25) and our starting
remark,

2 ReB(χ) = B(χ) + B(χ̄) = −
∑

ρ

(

1
ρ
+

1
ρ̄

)

= −2 Re
∑

ρ

1
ρ
.

�

Theorem 3.15.Suppose thatχ is a primitive character modulo q and s= σ + it, −1/2 ≤ σ ≤ 2.
Then

L′(s, χ)
L(s, χ)

=
−1

s+ a
+

∑

| Im ρ−t|≤1

1
s− ρ +O(logq(|t| + 2)), (3.27)

where a∈ {0, 1} is such thatχ(−1) = (−1)a.

Proof. We writeτ = q(|t|+2). The starting point is (3.23). The term involving the gamma-function
can be estimated as

1
s+ a

+O(logτ).

Thus, (3.23) may be rewritten as

L′(s, χ)
L(s, χ)

= B(χ) − 1
s+ a

+
∑

ρ

(

1
s− ρ +

1
ρ

)

+O(logτ). (3.28)

We view this approximate equation as an analogue of (2.22) and want to deduce from it an analogue
of (2.21). We lets = 2 + it and take real parts. Then the left side of (3.28) is bounded, so using
(3.24), we obtain

Re
∑

ρ

1
2+ it − ρ � logτ.

Sinceρ = β + iγ, 0 ≤ β ≤ 1, we have

Re
1

2+ it − ρ =
2− β

(2− β)2 + (t − γ)2
� 1

1+ (t − γ)2
,

whence
∑

ρ

1
1+ (t − γ)2

� logτ. (3.29)
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Subtracting from (3.28) the corresponding equation withs= 2+ it, we deduce that

L′(s, χ)
L(s, χ)

=
−1

s+ a
+

∑

ρ

(

1
s− ρ −

1
2+ it − ρ

)

+O(logτ).

When|γ − t| > 1,
∣

∣

∣

∣

1
s− ρ −

1
2+ it − ρ

∣

∣

∣

∣

� 1
(t − γ)2

.

Hence, in view of (3.29),

L′(s, χ)
L(s, χ)

=
−1

s+ a
+

∑

|γ−t|≤1

(

1
s− ρ −

1
2+ it − ρ

)

+O(logτ).

Using (3.29) once more, we see that the terms (2+ it − ρ)−1 are also superfluous, and so (3.27)
follows from the last equation. �

From (3.29), we obtain the following result.

Corollary 3.16. Suppose that T≥ 2. The number of zeros of L(s, χ) in the region

0 ≤ Res≤ 1, T ≤ | Im s| ≤ T + 1

is O(logqT).

Theorem 3.17.Suppose thatχ is a primitive character modulo q. There exists an absolute constant
c2 > 0 such that at most one zeroρ = β + iγ of the function L(s, χ) does not satisfy

β ≤ 1− c2

logq(|γ| + 2)
.

If such a zero does exist, the characterχ must be real and the zero itself must be simple and real.

Proof. As in the proof of Theorem 2.21, we deduce from (2.27) that

−3
L′(σ, χ0)
L(σ, χ0)

− 4 Re
L′(σ + it, χ)
L(σ + it, χ)

− Re
L′(σ + 2it, χ2)
L(σ + 2it, χ2)

≥ 0. (3.30)

Here,σ > 1 andχ0 is the principal character moduloq. Let ρ = β0 + iγ0 be a particular zero
of L(s, χ) and writeτ = q(|γ0| + 2). We now estimate the left side of (3.30) whent = γ0. From
Theorem 3.15,

−Re
L′(σ + iγ0, χ)
L(σ + iγ0, χ)

≤ −Re
∑

| Im ρ−γ0|≤1

1
σ + iγ0 − ρ

+O(logτ) ≤ −1
σ − β0

+O(logτ). (3.31)

To estimate the term involvingχ2, we observe that ifχ2 is induced by a characterχ1 moduloq1,
then

L′(s, χ2)
L(s, χ2)

− L′(s, χ1)
L(s, χ1)

�
∑

(m,q)>1

Λ(m)m−σ �
∑

p|q
log p

(

p−σ + p−2σ + · · ·
)

� logq. (3.32)
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Moreover, a similar relation holds forL′(s, χ0)/L(s, χ0) andζ′(s)/ζ(s). In particular, combining
that relation with (2.29), we obtain

−L′(σ, χ0)
L(σ, χ0)

≤ 1
σ − 1

+O(logq). (3.33)

Whenχ2 is non-principal, (3.27) and (3.32) give

−Re
L′(σ + 2iγ0, χ

2)
L(σ + 2iγ0, χ2)

� logτ. (3.34)

Combining (3.30), (3.31), (3.33), and (3.34), we deduce that

4(σ − β0)
−1 ≤ 3(σ − 1)−1 + c3 logτ. (3.35)

On choosingσ = 1+ (2c3 logτ)−1, this establishes the theorem in the case of complex characters.
We now turn to real charactersχ (so thatχ2 = χ0). In this case, we replace (3.34) by

−Re
L′(σ + 2iγ0, χ0)
L(σ + 2iγ0, χ0)

≤ σ − 1
(σ − 1)2 + 4γ2

0

+O(logτ), (3.36)

the extra term accounting for the pole ats= 1. Accordingly, (3.35) becomes

4
σ − β0

≤ 3
σ − 1

+
σ − 1

(σ − 1)2 + 4γ2
0

+ c4 logτ.

Thus, if |γ0| ≥ δ(logτ)−1, the desired conclusion follows on choosing

σ = 1+ c5(logτ)−1, 0 < c5 < min
(

(4c4)
−1, 4c4δ

2
)

.

Finally, suppose that|γ0| ≤ δ(logq)−1. Forσ > 1, Theorem 3.15 yields

−L′(σ, χ)
L(σ, χ)

≤
∑

| Im ρ|≤1

−1
σ − ρ + c6 logq. (3.37)

(Note that for a real characterχ, ρ andρ̄ are both zeros ofL(s, χ), so the sum on the right is real.)
On the other hand,

−L′(σ, χ)
L(σ, χ)

=

∞
∑

n=1

Λ(n)χ(n)n−σ ≥ −
∞

∑

n=1

Λ(n)n−σ =
ζ′(σ)
ζ(σ)

. (3.38)

Combining (2.29), (3.37), and (3.38), we obtain

∑

| Im ρ|≤1

1
σ − ρ ≤

1
σ − 1

+ c7 logq. (3.39)
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We now assume, as we may, thatδ < (10c7)−1 and setσ = 1 + 2δ(logq)−1. If ρ = β0 + iγ0

is a complex zero or a double real zero, we estimate the left side of (3.39) from below by the
contribution fromρ andρ̄ or by the doubled contribution fromρ. We get

2(σ − β0)
(σ − β0)2 + γ2

0

≤ 0.6δ−1 logq. (3.40)

Also, by our choices,

σ − β0

(σ − β0)2 + γ2
0

≥ σ − β0

(σ − β0)2 + δ2(logq)−2
≥ 0.8
σ − β0

.

Combining this inequality with (3.40), we obtain

1.6(σ − β0)
−1 ≤ 0.6δ−1 logq ⇒ β0 < 1− 0.5δ(logq)−1.

Finally, if β0 is a real zero andβ1 is another real zero, we replace (3.40) by

(σ − β0)
−1 + (σ − β1)

−1 ≤ 0.6δ−1 logq,

whence
min(β0, β1) ≤ 1− δ(logq)−1.

�

3.4 The exceptional zero

The possible real zero appearing in Theorem 3.17 is known as an exceptional zero, a Siegel zero,
or aSiegel–Landau zero. The purpose of this section is to show that such zeros cannotlie too close
to 1. First, we prove that if twoL-functions both have exceptional zeros, one of them must have a
modulus that is much larger than the modulus of the other.

Theorem 3.18 (Landau).Let χ1 andχ2 be distinct primitive real characters modulo q1 and q2,
respectively. Suppose thatβ1 andβ2 are real numbers such that

L(β1, χ1) = L(β2, χ2) = 0.

There exists an absolute constant c8 > 0 such that

min(β1, β2) ≤ 1− c8(logq1q2)
−1.

Proof. Using the inequality
(1+ χ1(m))(1+ χ2(m)) ≥ 0,

we find that

−ζ
′(σ)
ζ(σ)

− L′(σ, χ1)
L(σ, χ1)

− L′(σ, χ2)
L(σ, χ2)

− L′(σ, χ1χ2)
L(σ, χ1χ2)

≥ 0. (3.41)

Sinceχ1 andχ2 are distinct,χ1χ2 is non-principal and we can deduce the theorem from (3.41) by
referring to (2.29), (3.31), and an obvious analogue of (3.34). �
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Corollary 3.19. Let Q> 1. There is an absolute constant c9 > 0 such that no L-function L(s, χ)
modulo q, q≤ Q, has a zeroρ = β + iγ with

β < 1− c9(logQ(|γ| + 2))−1, (3.42)

except possibly at a pointβ0 on the real axis, where L(s, χ) may have a simple zero. Furthermore,
any characterχ modulo q, q≤ Q, for which this zero does occur is real and induced by the same
primitive real character.

So far, we know from Theorem 3.10 that the exceptional zero (if it exists) is less than 1, but
we have no quantitative form of this result. By a classical result of Dirichlet—the analytic class
number formula (see Davenport [14,§6, (15)]), for a primitive quadratic characterχ moduloq, we
have

L(1, χ) = C(χ)h(q)q−1/2,

whereC(χ) ≥ 1 andh(q) is a positive integer (the number of “classes” of binary quadratic forms
of discriminantq). Using the trivial observation thath(q) ≥ 1, we conclude that, in fact, we may
strenghten Theorem 3.10 to

L(1, χ) � q−1/2,

which in turn leads to the following bound for the exceptional zeroβ0:

β0 ≤ 1− c10q
−1/2(logq)−2. (3.43)

The following remarkable result of Siegel’s provides a muchstronger bound onβ0.

Theorem 3.20 (Siegel).Let ε > 0 be fixed. There is a constant c0(ε) > 0 such that ifχ is a
primitive real character modulo q, then L(s, χ) , 0 in the region

| Im(s)| ≤ 1, Re(s) ≥ 1− c0(ε)q
−ε . (3.44)

Proof. We consider primitive real charactersχ1 andχ2 with moduli q1 andq2, respectively, and
introduce the function

F(s) = ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2). (3.45)

Sinceχ1χ2 is a non-principal (though not necessarily primitive) character moduloq1q2, F(s) is
holomorphic everywhere except ats= 1, where it has a simple pole with residue

λ = L(1, χ1)L(1, χ2)L(1, χ1χ2).

We now proceed to show that

F(σ) > 1/2− c11λ(q1q2)
8(1−σ)(1− σ)−1 for 7/8 < σ < 1. (3.46)

When Re(s) > 1, we can writeF(s) as a Dirichlet series

F(s) =
∞

∑

n=1

ann
−s.
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It follows from the Euler product representations of the factors in (3.45) thata1 = 1 and thatan ≥ 0
for all n = 1, 2, . . . . When|s− 2| < 1, F(s) has also a Taylor expansion

F(s) =
∞

∑

n=0

bn(2− s)n,

where

bn = (−1)nF(n)(2)/n! =
∞

∑

m=1

am(logm)nm−2 ≥ 0.

Hence,

G(s) = F(s) − λ(s− 1)−1 =

∞
∑

n=0

(bn − λ)(2− s)n, (3.47)

and this representation is, in fact, valid in the larger disk|s− 2| ≤ 3/2, becauseG(s) is an entire
function. We now estimate the coefficients of the series in (3.47). On the circleC : |s− 2| = 3/2,
we have

|ζ(s)| � 1, |s− 1|−1 � 1, and |L(s, χ)| � q

for any non-principal characterχ moduloq. Thus,

G(s)� (q1q2)
2 (s ∈ C).

We now use Cauchy’s formula for the Taylor coefficients. Integrating alongC, we find that

|bn − λ| =
∣

∣

∣

∣

1
2πi

∫

C

G(s)
(s− 2)n+1

ds

∣

∣

∣

∣

�
(

2
3

)n

(q1q2)
2.

WhenN > 1 and 7/8 ≤ σ ≤ 1, this gives

∞
∑

n=N

|bn − λ|(2− σ)n � (q1q2)
2(3/4)N � (q1q2)

2e−N/4.

Hence,

F(σ) − λ(σ − 1)−1 ≥
N−1
∑

n=0

(bn − λ)(2− σ)n − c12(q1q2)
2e−N/4

≥ 1− λ
N−1
∑

n=0

(2− σ)n − c12(q1q2)
2e−N/4,

upon noting thatb0 = F(2) ≥ 1. Thus, choosingN so that

c12(q1q2)
2e−N/4 < 1/2 ≤ c12(q1q2)

2e−(N−1)/4,

we obtain
F(σ) ≥ 1/2− λ(2− σ)N(1− σ)−1,
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and (3.46) follows from the inequality

(2− σ)N ≤ exp
(

N(1− σ)
)

≤ c13(q1q2)
8(1−σ).

We may assume thatL(s, χ) has a real zeroβ0 ≥ 1− (logq)−1 and that there is some primitive
characterχ2 such thatL(s, χ2) has a real zeroβ2 with

1− ε/10≤ β2 < 1.

We then considerF(s) with χ1 = χ andχ2 being this special character. SinceF(β2) = 0, (3.46)
yields

λq8(1−β2) �ε 1; (3.48)

here the constant depends on the choice ofχ2, and hence, onε. By the bounds in Exercise 12,

λ�ε L(1, χ) logq. (3.49)

Furthermore, Lagrange’s mean-value theorem and another appeal to Exercise 12 give

L(1, χ) = L(1, χ) − L(β0, χ) = (1− β0)L
′(σ, χ)� (1− β0)(logq)2,

for someσ ∈ (β0, 1). Combining this estimate, (3.48) and (3.49), we obtain

1�ε (1− β0)q
8(1−β2)(logq)3 �ε (1− β0)q

ε ,

and (3.44) follows. �

Remark. Theorem 3.20 isineffective. That is, givenε > 0, the proof does not allow us to calculate
the constantc0(ε). Indeed, in the above proof, we essentially used a possiblecounterexample to a
strong conjecture2 (i.e.,β2) to show that any possible counterexample to a weaker conjecture does
not fail that conjecture too miserably. In particular, in order to computec0(ε), we must exhibit a
particular characterχ2 as in the proof of Siegel’s theorem. Of course, if GRH is true—as is the
popular belief—neitherβ0 nor β2 exist and we will never find an actual characterχ2 that we can
use to calculatec0(ε).

3.5 The prime number theorem for arithmetic progressions

For a Dirichlet characterχ, define

ψ(x, χ) =
∑

n≤x

Λ(n)χ(n). (3.50)

The next theorem is an analogue of Theorem 2.22.

2Namely, that all real zerosβ of L-functions with real characters satisfyβ ≤ 1− ε/10.
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Theorem 3.21.Suppose thatχ is a non-principal character modulo q and2 ≤ T ≤ x, where
{x} = 1/2. Then

ψ(x, χ) = −
∑

| Im ρ|≤T

xρ

ρ
+O

((

xT−1 + q1/2
)

(logqx)2
)

, (3.51)

where the summation is over the nontrivial zerosρ of L(s, χ) with | Im ρ| ≤ T.

Proof. First, suppose thatχ is primitive. As in the proof of Theorem 2.22, we setα = 1+(logqx)−1

and apply Corollary 1.14 withf (s) = −L′(s, χ)/L(s, χ). Then an argument similar to that leading
to (2.33) yields

ψ(x, χ) =
1

2πi

∫ α+iT

α−iT

(

−L′(s, χ)
L(s, χ)

)

xs

s
ds+O

(

x(logqx)2

T

)

. (3.52)

Because of Corollary 3.16, we may assume thatT is chosen so that
∣

∣| Im ρ| − T
∣

∣ � (logqT)−1 wheneverL(ρ, χ) = 0. (3.53)

It then follows from Theorem 3.15 and Corollary 3.16 that theinequality
∣

∣

∣

∣

L′(s, χ)
L(s, χ)

∣

∣

∣

∣

� (logqT)2

holds on the contourC shown on Fig. 2.1. Thus,
∫

C

(

−L′(s, χ)
L(s, χ)

)

xs

s
ds� x(logqx)2

T
, (3.54)

the details being similar to those in the proof of the respective bound in the proof of Theorem 2.22.
Combining (3.52) and (3.54), we find that

ψ(x, χ) = Σ +O

(

x(logqx)2

T

)

,

whereΣ is the sum of the residues of the function
(

−L′(s, χ)
L(s, χ)

)

xs

s

at its poles lying betweenC and the vertical line Re(s) = α. This function has simple poles at the
zeros ofL(s, χ) in the critical strip and a simple or double pole ats = 0 (according asL(0, χ) , 0
or L(0, χ) = 0). Hence,

ψ(x, χ) = −
∑

| Im ρ|≤T

xρ

ρ
+C(χ) +O

(

x(logqx)2

T

)

, (3.55)

whereC(χ) is the residue at 0. It remains to estimateC(χ).
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Let b(χ) be the constant term in the Laurent expansion ofL′(s, χ)/L(s, χ) nears. Then

C(χ) =

{

b(χ) if L(0, χ) , 0,

b(χ) + log x if L(0, χ) = 0.

From (3.27),

b(χ) =
∑

|ρ|≤1

−1
ρ
+O(logq).

By Theorem 3.17, the last sum containsO(logq) terms and each of them, except for possibly one,
is O(logq). The exceptional term occurs only whenχ is a real character such thatL(s, χ) has an
exceptional zero; furthermore, by (3.43), the exceptionalterm is� q1/2(logq)2. Altogether, we
have

C(χ) � q1/2(logqx)2.

The desired result follows from this estimate and (3.55).
Finally, we remove the restriction to primitive characters. Suppose thatχ is a character modulo

q induced by a primitive characterχ∗ modulor, 1< r < q. Then

ψ(x, χ) − ψ(x, χ∗) ≤
∑

n≤x
(n,q)>1

Λ(n) ≤
∑

p|q

(log p)
∑

k:
pk≤x

1� (logqx)2. (3.56)

Hence,

ψ(x, χ) = −
∑

| Im ρ|≤T

xρ

ρ
+O

((

xT−1 + r1/2
)

(logqx)2
)

,

where the summation is over the nontrivial zeros ofL(s, χ∗). Thus, (3.51) follows on noting that
L(s, χ) andL(s, χ∗) have the same nontrivial zeros. �

Theorem 3.22.Suppose that x≥ 2, q ≥ 1, and(a, q) = 1. There is an absolute constant c14 > 0
such that

ψ(x; q, a) =
x

φ(q)
− δq

χ1(a)
φ(q)

xβ1

β1
+O

(

xexp
(

− c14
√

log x
))

, (3.57)

whereδq = 1 if there is a real characterχ1 modulo q such that L(s, χ1) has an exceptional zeroβ1

andδq = 0 otherwise.

Proof. We assume, as we may, thatc14 < 1/2. It suffices to consider the case

1 ≤ q ≤ exp
(√

log x
)

,

for otherwise (3.57) is trivial. By (3.5),

ψ(x; q, a) =
1
φ(q)

∑

χ modq

χ̄(a)ψ(x, χ). (3.58)
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Suppose thatχ is a nonprincipal character moduloq and set

T = exp
(√

log x
)

, δ(T) = c9(2 logT)−1.

By Corollary 3.19,
Reρ ≤ 1− c9(logqT)−1 ≤ 1− δ(T)

for all zeros ofL(s, χ), except possibly for the exceptional zeroβ1. Thus, (3.51) yields

ψ(x, χ) = −δ(χ)
xβ1

β1
+O

(

x1−δ(T)
∑

| Im ρ|≤T

1
|ρ|

)

+O
(

xT−1(log x)2
)

,

whereδ(χ) is 1 or 0 according asχ = χ1 or not. Using Corollary 3.16 to bound the last sum, we
deduce that

∑′

χ modq

χ̄(a)ψ(x, χ) = −δqχ1(a)
xβ1

β1
+O

(

φ(q)xexp
(

− c15
√

log x
))

, (3.59)

where the summation on the right side is restricted to the non-principal characters moduloq. Fur-
thermore, by a variant of (3.56) and Theorem 2.1,

ψ(x, χ0) = ψ(x) +O
(

(log x)2
)

= x+
(

xexp
(

− c16
√

log x
))

(3.60)

Clearly, the desired result follows from (3.58)–(3.60). �

Note that the constantc14 is effective, but Theorem 3.22 itself is not, since in general we donot
know whether the exceptional zero exists.

Proof of Theorem 2.We now deduce Theorem 2 from Theorem 3.22. We use Siegel’s theorem
with ε = (2A)−1. It gives

β1 ≤ 1− c0(A)q−1/(2A) ≤ 1− c0(A)(log x)−1/2, (3.61)

whence
xβ1/β1� xexp

(

− c1(A)
√

log x
)

.

Therefore, even if there is an exceptional zero, the corresponding term on the right side of (3.57)
is superfluous and

ψ(x; q, a) =
x

φ(q)
+O

(

xexp
(

− c2(A)
√

log x
))

. (3.62)

Theorem 2 now follows by partial summation. �

Remark. Observe that the constantsc0(A), c1(A), . . . above depend on the constantc0(ε) in Theo-
rem 3.20 and are therefore ineffective.
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Exercises

1. Suppose thatq ≥ 1 is an integer andf : Z → C is a nontrivial,q-periodic, completely multiplicative function
such thatf (n) = 0 whenever gcd(n, q) > 1. Prove thatf is a Dirichlet character moduloq.

2. Suppose that the characterχ moduloq is induced by the charactersχ1 moduloq1 andχ2 moduloq2. Write
q3 = gcd(q1, q2). Prove thatχ is induced also by a characterχ3 moduloq3.

3. Suppose that gcd(q1, q2) = 1, χ1 is a character moduloq1, andχ2 is a character moduloq2. Prove that the
characterχ1χ2 moduloq1q2 is primitive if and only if bothχ1 andχ2 are primitive.

4. (a) Suppose thatp is an odd prime. Prove that there is no primitive real character modulopα, α ≥ 2, and
that the only primitive real character modulop is the Legendre symbol

(

n
p

)

=

{

+1 if n ≡ � (mod p),

−1 if n . � (mod p).

(b) Prove that there is no primitive real character modulo 2α, α ≥ 4.

(c) Prove that the only primitive real character modulo 4 is the characterχ4 given by

χ4(n) =

{

+1 if n ≡ 1 (mod 4),

−1 if n ≡ 3 (mod 4).

(d) Prove that the only primitive real characters modulo 8 areχ8 andχ4χ8, whereχ8 is given by

χ8(n) =

{

+1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).

5. Suppose thatm is a positive integer and define the exponential sum

G(m) =
m

∑

n=1

e
(

n2/m
)

.

(a) Define the functionf : R→ C by

f (x) =
f0(x− 0)+ f0(x+ 0)

2
, f0(x) =

{

e
(

x2/m
)

if 0 ≤ x ≤ m,

0 otherwise.

We can apply tof the Poisson summation formula (see Zygmund [59, eq. (II.13.4)]):

∑

n∈Z
f (n) =

∑

n∈Z
f̂ (n), f̂ (t) =

∫

R

f (x)e(−xt) dx.

Use this to prove that

G(m) = m
∑

n∈Z
e
(

−mn2/4
)

∫ −n/2+1

−n/2
e
(

my2
)

dy.

(b) Using the result of (a), show that

G(m) = C
(

1+ i−m
)√

m, whereC =
∫ ∞

−∞
e
(

t2
)

dt.
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(c) Deduce that

G(m) =
1+ i−m

1+ i−1

√
m.

(d) Deduce the formula for the Fresnel integrals:

∫ ∞

0
cos

(

x2
)

dx=
∫ ∞

0
sin

(

x2
)

dx=

√

π

2
.

6. The purpose of this problem is to establish the law of quadratic reciprocity:
(

p
q

) (

q
p

)

= (−1)(p−1)(q−1)/4 (∗)

for all pairs of distinct odd primesp, q.

(a) LetG(m) be the exponential sum defined in the last problem. Prove that

G(pq) =

(

p
q

) (

q
p

)

G(p)G(q).

(b) Deduce (∗) from part (a) and the explicit formula forG(m).

7. Suppose thatχ is a character moduloq induced by a primitive characterχ∗ moduloq∗. Suppose also thata is
an integer and writeq1 = q/(a, q), a1 = a/(a, q). Prove that:

(a) If q∗ - q1, thenτ(χ, a) = 0.

(b) If q∗ | q1, then

τ(χ, a) = µ

(

q1

q∗

)

χ∗
(

q1

q∗

)

φ(q)
φ(q1)

τ(χ∗, a1).

8. Suppose that gcd(q1, q2) = 1,χ1 is a character moduloq1, andχ2 is a character moduloq2. Prove that

τ(χ1χ2, 1) = χ1(q2)χ2(q1)τ(χ1, 1)τ(χ2, 1).

9. (a) Suppose thatp is an odd prime andχ is the primitive real character modulop (i.e., χ is the Legendre
symbol (·/p)). Prove thatτ(χ, 1) = G(p), whereG(m) is the exponential sum defined in Problem 5.

(b) Suppose thatq is an odd squarefree integer andχ is the primitive real character moduloq. Prove that

τ(χ, 1) = εq
√

q, εq =

{

1 if q ≡ 1 (mod 4),

i if q ≡ 3 (mod 4).

10. Verify (3.21).

11. If χ1 andχ2 are two characters moduloq, theJacobi sumis defined by

J(χ1, χ2) =
∑

n modq

χ1(n)χ2(1− n).

(a) Prove that whenχ1χ2 is primitive,τ(χ1, 1)τ(χ2, 1) = J(χ1, χ2)τ(χ1χ2, 1).

(b) Prove that whenχ is primitive, J(χ, χ̄) = χ(−1)µ(q).

12. Suppose thatχ is a non-principal character moduloq, k ≥ 0, andσ ≥ 1− (logq)−1. Prove that:
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(a)
q

∑

n=1

χ(n)(logn)kn−σ � (logq)k+1.

(b)
∞

∑

n=q+1

χ(n)(logn)kn−σ � (logq)k.

(c) L(k)(σ, χ)� (logq)k+1.

13. The purpose of this exercise is to establishDirichlet’s theorem on primes in arithmetic progressions:if a and
q are integers with gcd(a, q) = 1, then the arithmetic progressiona mod q contains infinitely many prime
numbers.

(a) Suppose that gcd(a, q) = 1 and Re(s) > 1. Observe that

∑

p≡a (modq)

p−s =
1
φ(q)

∑

χ modq

χ̄(a)
∑

p

χ(p)p−s.

(b) Suppose that Re(s) > 1 andχ is a Dirichlet character. Show that

∑

p

χ(p)p−s = logL(s, χ) + f (s, χ),

where f (s, χ) is holomorphic in Re(s) > 1/2.

(c) Suppose thatχ is non-principal. ThenL(s, χ) is holomorphic in Re(s) > 0. Together with Theorem 3.10,
this establishes that logL(s, χ) is holomorphic nears = 1. Combine this observation with the results of
(a) and (b) to conclude that when Re(s) > 1,

∑

p≡a (modq)

p−s =
1
φ(q)

logζ(s) + g(s),

whereg(s) is holomorphic nears= 1.

(d) Prove that
∑

p≡a (modq)

p−1 diverges. This establishes Dirichlet’s theorem.
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Chapter 4

The large sieve

In modern analytic number theory we use the term “large sieve” to describe any among several
analytic lemmas, none of which is really a “sieve” (in the usual sense attached to that word in
number theory). Suppose that we have a sequenceA = (an) of some arithmetic interest and that
we want to study its distribution in a certain sense. A typical example is the case whereA is an
integer sequence and we want to understand its distributionin arithmetic progressions or in short
intervals. Often such problems can be reduced to the estimation of generating functions

∑

a∈A
X(a), (4.1)

where the functionX belongs to a suitably chosen classX of “harmonics”; nontrivial bounds for the
sums (4.1) then lead to information about the distribution of the sequenceA. For example, in the
proof of Theorem 2 we used this approach to establish that theprimes are uniformly distributed
among the reduced residue classes moduloq. In that case, the “harmonics” were the Dirichlet
characters moduloq and the generating functions (4.1) were the sumsψ(x, χ), withχ non-principal.

In a large-sieve inequality, we seek estimates for mean-square averages overX of general linear
forms in the “harmonics”X ∈ X. That is, we want to bound

∑

X∈X

∣

∣

∣

∣

∑

n≤N

anX(n)

∣

∣

∣

∣

2

,

for any choice of the coefficientsan. In this chapter, we prove several estimates of the form

∑

X∈X

∣

∣

∣

∣

∑

n≤N

anX(n)

∣

∣

∣

∣

2

≤ C(X,N)
∑

n≤N

|an|2,

where the harmonics are additive characterse(αm), Dirichlet charactersχ(m), or powersm−it. In
the next chapter, we will see several applications of these results to the distribution of primes in
progressions and in intervals.
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4.1 Two results from analysis

We say that an entire functionf (z) is of exponential typeτ, if

| f (z)| �ε e(τ+ε)|z| for all fixed ε > 0.

The entire functions of exponential typeτ whose restrictions to the real line are inL2(R) are
characterized by the Paley–Wiener theorem (see Boas [4,§6.8] or Zygmund [59,§XVI.7]): an
entire functionf (z) has these two properties if and only if its Fourier transform on the real line,

f̂ (t) =
∫ ∞

−∞
f (x)e(−xt) dx,

is supported in the interval|t| ≤ τ/(2π).
Consider the entire function

B(z) =
sin2 πz
π2

{ ∞
∑

n=−∞

sgn(n)
(z− n)2

+ z−2 + 2z−1

}

,

where for a real numberx,

sgn(x) =











+1 if x > 0,

0 if x = 0,

−1 if x < 0.

This function, discovered by Beurling in 1930 and then rediscovered by Selberg in 1974, has the
following three important properties:

(B1) sgn(x) ≤ B(x) for all x ∈ R;

(B2) the Fourier transform of the functionB(x) − sgn(x) is a continuous function, supported in
[−1, 1];

(B3)
∫ ∞
−∞

(

B(x) − sgn(x)
)

dx= 1.

Furthermore, the functionB(z) is the unique entire function that satisfies (B1) and (B2) and min-
imizes the integral appearing in (B3). The proofs of these facts can be found in Graham and
Kolesnik [17, Appendix] or in Vaaler [51] (see also Exercise1 after the chapter). We can use the
functionB(z) to establish the following result.

Lemma 4.1. Suppose thatα, β, δ are real numbers such thatα < β and δ > 0. There exists an
entire function F(z) = F(z;α, β, δ) such that:

(i) F (x) ≥ �
(x;α, β), where

�
(x;α, β) is the characteristic function of the interval[α, β];

(ii) its Fourier transformF̂(t) is supported in[−δ, δ];

(iii) F̂(0) = β − α + δ−1.
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Proof. The function
F(z) = 1

2

(

B(δ(β − z)) + B(δ(z− α))
)

has all the desired properties. �

Lemma 4.2. Suppose that F(z) is an entire function of exponential typeτ. Suppose furhter that
F ∈ L2(R) and F(x) ≥ 0 for all real x. Then there exists an entire function f(z) of exponential type
τ/2 such that F(x) = | f (x)|2 when x is real.

Proof. This follows from the main result in Boas [4,§7.5]. Hypothesis (7.5.2) in [4] follows from
our hypothesis thatF ∈ L2(R) and the discussion in [4,§8.1]. �

Corollary 4.3. Suppose thatα, β, δ are real numbers such thatα < β andδ > 0. There exists an
entire function f(z) = f (z;α, β, δ) such that:

(i) | f (x)|2 = F(x) for all x ∈ R, where F(z) = F(z;α, β, δ) is the function from Lemma 4.1;

(ii) the Fourier transformf̂ (t) =
∫ ∞
−∞ f (x)e(−xt) dx is supported in[−δ/2, δ/2].

Proof. The functionF(z) is of exponential typeδ. Since by constructionF ∈ Lp(R) for all p ≥ 1,
we can apply Lemma 4.2 toF(z). The resulting functionf (z) has property (i), and therefore, is of
exponential typeδ/2 and square integrable. Hence, an appeal to the Paley–Wiener theorem proves
that f̂ is supported in [−δ/2, δ/2]. �

4.2 Large-sieve inequalities

Suppose thatξ1 < ξ2 < · · · < ξR are real numbers such that

T0 +
1
2δ ≤ ξr ≤ T0 + T − 1

2δ (4.2)

and
|ξr − ξs| ≥ δ > 0 wheneverr , s. (4.3)

Further, suppose thatν1 < ν2 < · · · < νK are real numbers such that

M ≤ νk ≤ M + N

and
|νk − νl | ≥ ∆ > 0 wheneverk , l. (4.4)

Lemma 4.4. Suppose thatξ1, ξ2, . . . , ξR andν1, ν2, . . . , νK are as above and define

S(α) =
K

∑

k=1

ake(ανk),

where a1, a2, . . . , aK are complex numbers. Then

R
∑

r=1

|S(ξr)|2 ≤
(

N + δ−1
) (

T + ∆−1
)

K
∑

k=1

|ak|2. (4.5)
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Proof. Assuming the notation of Lemma 4.1 and Corollary 4.3, we introduce the functions

G(z) = F(z; M,M + N, δ), g(z) = g(z; M,M + N, δ), H(z) = F(z; T0,T0 + T,∆).

and define the sum

S∗(α) =
K

∑

k=1

akg(νk)
−1e(ανk).

By Fourier inversion,

S(α) =
∫ ∞

−∞
ĝ(u)S∗(u+ α) du.

Recalling that ˆg(u) is supported in [−δ/2, δ/2], we obtain

|S(ξr)|2 ≤
(

∫ ∞

−∞
|ĝ(u)|2 du

) (
∫ δ/2

−δ/2
|S∗(u+ ξr)|2 du

)

.

Since, by Plancherel’s theorem,
∫ ∞

−∞
|ĝ(u)|2 du=

∫ ∞

−∞
|g(u)|2 du=

∫ ∞

−∞
G(u) du= Ĝ(0),

it follows that

|S(ξr)|2 ≤ Ĝ(0)
∫ ξr+δ/2

ξr−δ/2
|S∗(x)|2 dx.

Hence, by (4.2) and (4.3),

R
∑

r=1

|S(ξr)|2 ≤ Ĝ(0)
∫ T0+T

T0

|S∗(x)|2 dx. (4.6)

Next, we bound the integral on the right side of (4.6). Letbk = akg(νk)−1. We have
∫ T0+T

T0

|S∗(x)|2 dx≤
∫ ∞

−∞
H(x)|S∗(x)|2 dx=

K
∑

k=1

K
∑

l=1

bkb̄lĤ(νl − νk).

By (4.4),Ĥ(νl − νk) vanishes unlessk = l. Thus,
∫ T0+T

T0

|S∗(x)|2 dx≤ Ĥ(0)
K

∑

k=1

|bk|2 = Ĥ(0)
K

∑

k=1

|ak|2G(νk)
−1 ≤ Ĥ(0)

K
∑

k=1

|ak|2.

Combining this inequality and (4.6), we get

R
∑

r=1

|S(ξr)|2 ≤ Ĝ(0)Ĥ(0)
K

∑

k=1

|ak|2,

so the desired conclusion follows from the identities

Ĝ(0) = N + δ−1, Ĥ(0) = T + ∆−1.

�
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Corollary 4.5. Assume the notation of Lemma 4.4. Suppose that T≤ 1 and all νk’s are integers.
Then

R
∑

r=1

|S(ξr)|2 ≤
(

N + δ−1
)

K
∑

k=1

|ak|2.

Proof. Under the present hypotheses, we can estimate the right sideof (4.6) as

∫ T0+T

T0

|S∗(x)|2 dx≤
∫ 1

0
|S∗(x)|2 dx=

K
∑

k=1

|bk|2 ≤
K

∑

k=1

|ak|2,

where we have used Parseval’s identity. �

Corollary 4.6. Suppose that N,Q are positive integers and aM, . . . , aM+N are complex numbers.
Then

∑

q≤Q

∑

1≤b≤q
(b,q)=1

∣

∣

∣

∣

M+N
∑

n=M

ane(bn/q)

∣

∣

∣

∣

2

≤
(

N + Q2
)

M+N
∑

n=M

|an|2. (4.7)

Proof. WhenQ = 1, (4.7) follows from Cauchy’s inequality, so we may assume thatQ ≥ 2. Then,
we can view the double sum overq andb as a sum over all reduced fractionsb/q, q ≤ Q, such that

(b/q) ∈
[

Q−1, 1
]

⊂
[

2Q−2, 1
]

.

If b′/q′ andb′′/q′′ are two such fractions, we have
∣

∣

∣

∣

b′

q′
− b′′

q′′

∣

∣

∣

∣

=
|b′q′′ − b′′q′|

q′q′′
≥ 1

Q2
,

unlessb′ = b′′ andq′ = q′′. Thus, (4.7) follows from Corollary 4.5 withδ = Q−2. �

We now turn to averages of character sums.

Lemma 4.7. Suppose that q,M,N are positive integers and aM+1, . . . , aM+N are complex numbers.
Then

∑

χ modq

∣

∣

∣

∣

M+N
∑

n=M+1

anχ(n)

∣

∣

∣

∣

2

≤
(

N + φ(q)
)

M+N
∑

n=M+1

|an|2. (4.8)

Proof. The sum on the left of (4.8) equals
∑∗

m,n

amān

∑

χ modq

χ(m)χ̄(n) =
∑∗

m,n

amān

∑

χ modq

χ(mn̄),

where
∑∗

m,n denotes a summation restricted to integers relatively prime to q andm̄ is the multi-
plicative inverse ofm moduloq: mm̄≡ 1 (modq). By (3.5), the latter sum is

≤ φ(q)
∑

m≡n (modq)

|aman| ≤ φ(q)
∑

m≡n (modq)

1
2

(

|am|2 + |an|2
)

≤ φ(q)
(

Nq−1 + 1
)

∑

m

|am|2,

and (4.8) follows. �
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If we want to sum overq as well, we need to restrict our attention to primitive characters or to
impose some restrictions on the coefficientsan. The next lemma provides such a result.

Lemma 4.8. Suppose that Q,M,N are positive integers and aM+1, . . . , aM+N are complex numbers.
Then

∑

q≤Q

q
φ(q)

∑∗

χ modq

∣

∣

∣

∣

M+N
∑

n=M+1

anχ(n)

∣

∣

∣

∣

2

≤
(

N + Q2
)

M+N
∑

n=M+1

|an|2.

Proof. Whenχ is primitive, Lemmas 3.5 and 3.6 yield

q

∣

∣

∣

∣

M+N
∑

n=M+1

anχ(n)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

M+N
∑

n=M+1

anτ(χ̄, n)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∑

1≤b≤q
(b,q)=1

χ̄(b)S(b/q)

∣

∣

∣

∣

2

,

where

S(α) =
N

∑

n=1

ãne(αn), |ãn| = |an|.

Hence,

q
φ(q)

∑∗

χ modq

∣

∣

∣

∣

M+N
∑

n=M+1

anχ(n)

∣

∣

∣

∣

2

≤ 1
φ(q)

∑

χ modq

∣

∣

∣

∣

∑

1≤b≤q
(b,q)=1

χ̄(b)S(b/q)

∣

∣

∣

∣

2

=
1
φ(q)

∑

1≤b1,b2≤q
(b1b2,q)=1

S(b1/q)S(b2/q)
∑

χ modq

χ(b2b̄1) =
∑

1≤b≤q
(b,q)=1

|S(b/q)|2;

hereb̄1 denotes the multiplicative inverse ofb1 moduloq. Thus, the lemma follows from (4.7).�

Next, we consider averages of Dirichlet polynomials of the form

D(s) =
N

∑

n=1

ann
−s. (4.9)

Lemma 4.9. Suppose thatδ > 0 and t1 < t2 < · · · < tR are real numbers such that

T0 +
1
2δ ≤ tr ≤ T0 + T − 1

2δ

and
|tr1 − tr2| ≥ δ > 0 whenever r1 , r2.

Further, suppose that a1, . . . , aN are complex numbers and D(s) is defined by(4.9). Then

R
∑

r=1

|D(itr)|2 ≤
(

δ−1 + 1
2π logN

)(

T + 2πN
)

N
∑

n=1

|an|2. (4.10)
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Proof. We apply Lemma 4.4 withξr = tr andνn = − 1
2π logn. Then

− 1
2π logN ≤ νn ≤ 0,

and for 1≤ m< n ≤ N,

2π|νm− νn| = log(n/m) ≥
{

log 2 if n ≥ 2m,

N−1 if n < 2m.

We note that the estimate in the casem< n < 2m uses the inequalities

log
( n

m

)

≥ n−m
m

(

1− n−m
2m

)

≥ 1
N − 1

(

1− 1
2N − 2

)

≥ 1
N
.

Thus, in the application of Lemma 4.4,N = 1
2π logN and∆ = (2πN)−1 and (4.10) is an immediate

consequence of (4.5). �

Lemma 4.10.Suppose that a1, . . . , aN are complex numbers and D(s) is defined by(4.9). Then
∫ T0+T

T0

|D(it)|2 dt ≤
(

T + 2πN
)

N
∑

n=1

|an|2.

Proof. We argue similarly to the second part of the proof of Lemma 4.4. Let ∆ = (2πN)−1 and
G(z) = F(z; T0,T,∆), whereF(z) is the function from Lemma 4.1. Then

∫ T0+T

T0

|D(it)|2 dt ≤
∫ ∞

−∞
G(t)|D(it)|2 dt =

N
∑

m=1

N
∑

n=1

amānĜ
(

1
2π log(n/m)

)

.

Recalling from the proof of the previous lemma that1
2π | log(n/m)| ≥ ∆ unlessm= n, we get

∫ T0+T

T0

|D(it)|2 dt ≤ Ĝ(0)
N

∑

n=1

|an|2 =
(

T + 2πN
)

N
∑

n=1

|an|2.

�

4.3 Dirichlet polynomials with characters: a hybrid sieve

So far we have obtained large-sieve results in the form of inequalities with two terms on the right
side, one of which corresponds to the maximum size of the summands and the other to the mean
square of the function times the number of terms. In applications to the distribution of primes, we
sometimes consider Dirichlet polynomials of the form

D(s, χ) =
N

∑

n=1

anχ(n)n−s. (4.11)

We can sieveD(s, χ) overχ or over s; we can also sieve over bothχ and s and obtain a hybrid
result. Oftentimes, such hybrid results are superior to either of the estimates resulting from sieving
over one ofχ or sand then summing (or integrating) over the other.
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Lemma 4.11.Suppose that q,Q,N are positive integers, T0 and T are real, and D(s, χ) is defined
by (4.11). Then

∑

χ modq

∫ T0+T

T0

|D(it, χ)|2 dt�
(

N + φ(q)T
)

N
∑

n=1

|an|2 (4.12)

and
∑

q≤Q

q
φ(q)

∑∗

χ modq

∫ T0+T

T0

|D(it, χ)|2 dt�
(

N + Q2T
)

N
∑

n=1

|an|2. (4.13)

Proof. Let G(z) = F(z; T0,T,T−1) andg(z) = f (z; T0,T,T−1), whereF and f are the functions
from Lemma 4.1 and Corollary 4.3, respectively. Then

∫ T0+T

T0

|D(it, χ)|2 dt ≤
∫ ∞

−∞
G(t)|D(it, χ)|2 dt =

∫ ∞

−∞
|g(t)D(it, χ)|2 dt. (4.14)

Note that

g(−t)D(−it, χ) = Ŝχ(t), Sχ(x) =
N

∑

n=1

anχ(n)ĝ
(

x+ 1
2π logn

)

.

Applying Plancherel’s theorem to the right side of (4.14), we find that

∫ T0+T

T0

|D(it, χ)|2 dt ≤
∫ ∞

−∞
|Sχ(x)|2 dx.

Hence,
∑

χ modq

∫ T0+T

T0

|D(it, χ)|2 dt ≤
∫ ∞

−∞

∑

χ modq

|Sχ(x)|2 dx. (4.15)

Sinceĝ(x) is supported in the interval|x| ≤ (2T)−1, the summation inSχ(x) is supported in an
interval of length

≤ e−2πx
(

eπ/T − e−π/T
)

� T−1e−2πx = H(x), say.

Thus, an appeal to Lemma 4.7 gives

∑

χ modq

|S(x, χ)|2 �
(

H(x) + φ(q)
)

N
∑

n=1

∣

∣anĝ
(

x+ 1
2π logn

)
∣

∣

2
.

Inserting this bound into the right side of (4.15), we obtain

∑

χ modq

∫ T0+T

T0

|D(it, χ)|2 dt�
∫ ∞

−∞

(

H(x) + φ(q)
)

N
∑

n=1

∣

∣anĝ
(

x+ 1
2π logn

)
∣

∣

2
dx

�
N

∑

n=1

|an|2
∫ ∞

−∞

(

H(x) + φ(q)
)
∣

∣ĝ
(

x+ 1
2π logn

)
∣

∣

2
dx.
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We now observe that the last integral is supported in the interval
∣

∣x+ 1
2π logn

∣

∣ ≤ (2T)−1. For such
values ofx, we haveH(x) � nT−1, whence

∑

χ modq

∫ T0+T

T0

|D(it, χ)|2 dt�
N

∑

n=1

(

nT−1 + φ(q)
)

|an|2
∫ ∞

−∞

∣

∣ĝ
(

x+ 1
2π logn

)
∣

∣

2
dx. (4.16)

Finally, we observe that the integral on the right side of (4.16) equals
∫ ∞

−∞
|ĝ(x)|2 dx=

∫ ∞

−∞
|g(t)|2 dt =

∫ ∞

−∞
G(t) dt = 2T,

and so (4.12) follows from (4.16). The proof of (4.13) is similar, using Lemma 4.8 instead of
Lemma 4.7. �

An important alternative form of the hybrid large sieve is the following. Consider a collection
of Dirichlet characters, such as the collection of all characters moduloq or the collection of all
primitive characters to moduliq ≤ Q. Suppose that for each characterχ in that collection we have
selected real numberst1(χ) < t2(χ) < · · · < tR(χ), R= R(χ), such that

T0 + δ/2 ≤ tr(χ) ≤ T0 + T − δ/2

and
|tr(χ) − ts(χ)| ≥ δ > 0 wheneverr , s.

We will refer to such a collectionS of pairs (χ, tr(χ)) of characters and real numbers as aδ-spaced
set of points. When the given collection of characters is that of all characters moduloq or of all
primitive characters to moduliq ≤ Q, we further define

|S| = φ(q)T or |S| = Q2T,

respectively.

Lemma 4.12.Suppose that D(s, χ) is defined by(4.11)andS is a δ-spaced set of points(χ, tr(χ))
of one of the two special kinds described above. Then

∑

(χ,tr (χ))∈S
|D(itr(χ), χ)|2 �

(

δ−1 + logN
)(

N + |S|
)

N
∑

n=1

|an|2.

Proof. Fix a characterχ and consider the respective numberst1(χ), . . . , tR(χ). Following the proof
of Lemma 4.4 (withνn = logn, M = 0, N = logN, and∆ = N−1) up to (4.6), we get

R(χ)
∑

r=1

|D(itr(χ), χ)|2 ≤
(

δ−1 + logN
)

∫ T0+T

T0

|D∗(it, χ)|2 dt, (4.17)

where

D∗(s, χ) =
N

∑

n=1

bnχ(n)n−s,
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with coefficients satisfying
N

∑

n=1

|bn|2 ≤
N

∑

n=1

|an|2. (4.18)

Summing (4.17) over all characters appearing inS, we obtain

∑

(χ,tr (χ))∈S
|D(itr(χ), χ)|2 ≤

(

δ−1 + logN
)

∑

χ

∫ T0+T

T0

|D∗(it, χ)|2 dt. (4.19)

The desired result follows from (4.18), (4.19), and Lemma 4.11. �

Exercises

1. Forz ∈ C, define

H(z) =
sin2 πz
π2

{ ∞
∑

n=−∞

sgn(n)
(z− n)2

+ 2z−1

}

, K(z) =
(sinπz

πz

)2
.

The Beurling–Selberg functionB(z) from §4.1 is thenB(z) = H(z) + K(z).

(a) Letψ(x) = {x} − 1/2 andψ1(x) =
∫ x

0 ψ(u) du. Show that whenx > 0,

∞
∑

n=1

1
(x+ n)2

=
1
x
− 2

∫ ∞

0

{u}du
(u+ x)3

=
1
x
− 1

2x2
+ 6

∫ ∞

0

ψ1(u) du
(u+ x)4

.

(b) Prove that|H(x)| ≤ 1 for all x ∈ R.

(c) Prove that|H(x) − sgn(x)| ≤ K(x) for all x ∈ R.

(d) Prove thatB(x) satisfies property (B1) in §4.1.

(e) Prove thatB(z) has exponential type 2π.

(f) By part (c),B(x) − sgn(x) is integrable, and so

∫ ∞

−∞

(

B(x) − sgn(x)
)

dx= lim
N→∞

∫ N

−N

(

B(x) − sgn(x)
)

dx.

Use this to show that
∫ ∞

−∞

(

B(x) − sgn(x)
)

dx=
∫ ∞

−∞
K(x) dx.

(g) Show that

K(z) =
∫ 1

−1
(1− |t|)e(tz) dt and K̂(t) = max(1− |t|, 0).

Combine the latter identity and the result of part (f) to prove thatB(x) satisfies property (B3) in §4.1.

Remark. Note that we stopped just short of establishing property (B2) in §4.1: if B(x) belonged toL2(R),
we would be able to deduce (B2) from (e) above and the Paley–Wiener theorem, but of course,B(x) does not
belong toLp(R) for anyp < ∞. On the other hand, the functionF(z) constructed in Lemma 4.1 does belong to
L2(R), so the above properties ofB(z) suffice to prove that that function has all the desired properties.
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2. Suppose thatT > 0 andν1, ν2, . . . , νK are real numbers, and define

S(t) =
K

∑

k=1

ake(νkt),

wherea1, a2, . . . , aK are complex numbers. Prove that

∫ T

−T
|S(t)|2 dt ≤ (πT)2

∫ ∞

−∞

∣

∣

∣

∣

∑

|νk−x|≤(2T)−1

ak

∣

∣

∣

∣

2

dx.

[

H: Let δ = (2T)−1. Start by arguing similarly to the proof of (4.15), but choose g(t) = (sinπδt)/(πδt)
andG(t) = g(t)2. ThenG(t) ≥ 4π−2 for all t ∈ [−T,T] and ĝ(x) is the characteristic function of [−δ/2, δ/2],
normalized inL1(R).

]

3. Consider theRamanujan sum
cq(n) =

∑

1≤b≤q
(b,q)=1

e(bn/q).

(a) Prove thatcq(n) is multiplicative as a function ofq, that is,cq1q2(n) = cq1(n)cq2(n) whenever (q1, q2) = 1.

(b) Prove that

cq(n) = φ(q)µ

(

q
(q, n)

)

φ

(

q
(q, n)

)−1

.

4. (a) LetNx denote the set of integers not divisible by primesp > x. Prove that
∑

n≤x

µ(n)2φ(n)−1 =
∑

n∈Nx

n−1 ≥ log x.

(b) Suppose thatq is a positive integer. Prove that

∑

n≤x
(n,q)=1

µ2(n)φ(n)−1 ≥ φ(q)
q

∑

n≤x

µ(n)2φ(n)−1.

5. Suppose thatN is a set of positive integers contained in [M,M + N]. For eachq ≤ Q, define

Rq =
{

h ∈ Z : 1 ≤ h ≤ q, (n− h, q) = 1 for all n ∈ N
}

, ω(q) = |Rq|.

The purpose of this exercise is to prove that

|N| ≤
(

N + Q2
)

{

∑

q≤Q

µ(q)2
∏

p|q

(

ω(p)
p− ω(p)

)}−1

. (∗)

(a) Prove thatω(q) is multiplicative.

(b) Define
S(α) =

∑

n∈N
e(αn).

Use the result of Exercise 3 to show that
∑

h∈Rq

∑

1≤b≤q
(b,q)=1

S(b/q)e(−bh/q) = µ(q)ω(q)|N|.
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(c) Suppose thatq is squarefree. Prove that

∑

1≤b≤q
(b,q)=1

∣

∣

∣

∣

∑

h∈Rq

e(−bh/q)

∣

∣

∣

∣

2

= ω(q)2
∑

d|q

dµ(q/d)
ω(d)

= ω(q)
∏

p|q

(

p− ω(p)
)

.

(d) Show that

|N|2
∑

q≤Q

µ(q)2
∏

p|q

(

ω(p)
p− ω(p)

)

≤
∑

q≤Q

∑

1≤b≤q
(b,q)=1

|S(b/q)|2.

Use this inequality and Corollary 4.6 to establish (∗).

6. Suppose thatM,N,Q are positive integers withQ ≤ M and letN be the set of primes in [M+1,M+N]. Apply
the result of the previous exercise to show that

π(M + N) − π(M) ≤
(

N + Q2
)

{

∑

q≤Q

µ2(q)φ(q)−1

}−1

.

Deduce that
π(M + N) − π(M) ≤

(

N + Q2
)

(logQ)−1.

Upon choosingQ = N1/2(logN)−1/2, this provides a Chebyshev-type upper bound for primes in short intervals:

π(M + N) − π(M) ≤ N
logN

{

2+O

(

log logN
logN

)}

,

wheneverN > 2 andM ≥ N1/2.

7. Suppose thatM,N, q are positive integers anda is an integer with (a, q) = 1. Generalize the result of the
previous exercise to prove that

π(M + N; q, a) − π(M; q, a) ≤ N
φ(q) log(N/q)

{

2+O

(

log log(N/q)
log(N/q)

)}

,

wheneverN ≥ 3q andM ≥ (N/q)1/2. This result is one of the many versions of theBrun–Titchmarsh inequality.
The sharpest result in this direction was obtained by Montgomery and Vaughan [42]:

π(M + N; q, a) − π(M; q, a) ≤ 2N
φ(q) log(N/q)

,

wheneverN > q.
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Chapter 5

Applications of the large sieve

5.1 Sums over primes and double sums

Suppose that the functionf : N→ C is such that, whenx is large, the sums
∑

n≤x

f (n)

exhibit certain cancellation, and that we want to show that the same is true for the sums
∑

p≤x

f (p). (5.1)

The first general method for obtaining such results was developed by I. M. Vinogradov in the late
1930s. His starting point is the sieve of Eratosthenes. LetP(z) denote the product of all primes
p ≤ z and writePx = P(x1/2). Then

∑

n≤x
(n,Px)=1

f (n) = f (1)+
∑

x1/2<p≤x

f (p), (5.2)

since the only numbersn ≤ x that are not divisible by any prime≤ x1/2 are 1 and the primes in
(x1/2, x]. Using the properties of the Möbius function, we can writethe sum on the left side of (5.2)
as

∑

n≤x
(n,Px)=1

f (n) =
∑

n≤x

f (n)
∑

d|(n,Px)

µ(d) =
∑

d|Px

µ(d)
∑

m≤x/d

f (md).

The crux of Vinogradov’s method is a clever (and complicated) combinatorial argument that de-
composes the latter sum into several subsums of two major types:

• type I sums:double sums of the form
∑

m≤M

∑

n≤x/m

am f (mn), (5.3)

whereM is not too large and the coefficientsam are small on average, but otherwise arbitrary;
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• type II sums:double sums of the form
∑

m≤M

∑

n≤N

ambn f (mn), (5.4)

whereM andN are neither too small nor too large and the coefficientsam, bn are small on
average, but otherwise arbitrary.

This reduces the estimation of (5.1) to the estimation of type I and type II double sums.

In 1977 Vaughan [53] found an alternative way for decomposing sums over primes into double
sums that is much more straightforward than Vinogradov’s. His result is as follows.

Lemma 5.1 (Vaughan).Suppose that2 ≤ U,V < X. Then
∑

U<n≤X

Λ(n) f (n) = Σ1 − Σ2 − Σ3, (5.5)

where
Σ1 =

∑

m≤V

∑

U<mk≤X

µ(m)(logk) f (mk), Σ2 =
∑

m≤UV

∑

U<mk≤X

am f (mk),

and
Σ3 =

∑

m>U

∑

k>V
mk≤X

Λ(m)bk f (mk),

with coefficients|am| ≤ logm and|bk| ≤ d(k).

Proof. Our main tool is the identity

−ζ
′(s)
ζ(s)

= L(s) − M(s)ζ′(s) − L(s)M(s)ζ(s) +

(

− ζ
′(s)
ζ(s)

− L(s)

)

(

1− M(s)ζ(s)
)

, (5.6)

in which we chooseL(s) andM(s) to be the Dirichlet polynomials

L(s) =
∑

n≤U

Λ(n)n−s and M(s) =
∑

n≤V

µ(n)n−s.

Suppose thatn > U. Comparing the coefficients ofn−s in the Dirichlet series representations of the
left and right sides of (5.6) we obtain the following identity for Λ(n):

Λ(n) = −
∑

mk=n
m≤U

µ(m)(− logk) −
∑

uvk=n
u≤U,v≤V

Λ(u)µ(v) +
∑

mk=n
m>U,k>V

Λ(m)

(

−
∑

uv=k
u≤V

µ(u)

)

.

Multiplying both sides of byf (n) and summing overU < n ≤ X, we obtain (5.5) with

am =
∑

uv=m
u≤U,v≤V

Λ(u)µ(v), bk =
∑

uv=k
u≤V<uv

µ(u).

Clearly,|am| ≤
∑

u|mΛ(u) = logm and|bk| ≤ d(k). �
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Heath-Brown [22] proposed a different decomposition for von Mangoldt’s function, which
provides more flexibility than Lemma 5.1 and sometimes leadsto superior results. Like Vaughan’s,
Heath-Brown’s identity arises from an identity forζ′(s)/ζ(s). In this case, the underlying identity
is

ζ′(s)
ζ(s)

=

k
∑

j=1

(−1)j−1

(

k
j

)

ζ(s) j−1ζ′(s)M(s) j + ζ(s)−1(1− ζ(s)M(s))kζ′(s), (5.7)

herek ≥ 1 is an integer andM(s) is the Dirichlet polynomial

M(s) =
∑

n≤X

µ(n)n−s.

Suppose thatn is an integer withn ≤ Xk and consider the coefficients ofn−s on both sides of (5.7).
The coefficient ofn−s on the left side of (5.7) is−Λ(n) and the last term on the right side of (5.7)
does not contribute to the coefficient ofn−s. We thus find that

Λ(n) =
k

∑

j=1

(

k
j

)

(−1)j
∑

m1···m2 j=n
m1,...,mj≤X

(logm1)µ(mj+1) · · · µ(m2 j), (5.8)

whenevern ≤ Xk. We will come back to Heath-Brown’s identity when we discussthe distribution
of primes in short intervals later in this chapter.

5.2 The Bombieri–Vinogradov theorem

In this section we will use Vaughan’s identity, the large sieve for character sums in the form of
Lemma 4.8, and the Pólya–Vinogradov theorem to establish the following result equivalent to
Theorem 3.

Theorem 5.2.Suppose that2 ≤ Q ≤ x. Then, for any fixed A> 0,

∑

q≤Q

max
(a,q)=1

max
y≤x

∣

∣

∣
ψ(y; q, a) − y

φ(q)

∣

∣

∣
� x(log x)−A + Qx1/2(log x)5. (5.9)

5.2.1 Preparations

Define

δχ =

{

1 if χ is principal,

0 otherwise.

By (3.58),

ψ(y; q, a) − y
φ(q)

=
1
φ(q)

∑

χ modq

χ̄(a)
(

ψ(y, χ) − δχy
)

,
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whence

max
(a,q)=1

∣

∣

∣
ψ(y; q, a) − y

φ(q)

∣

∣

∣
≤ 1
φ(q)

∑

χ modq

∣

∣ψ(y, χ) − δχy
∣

∣.

Writing Σ(x,Q) for the left side of (5.9), we find that

Σ(x,Q) ≤
∑

q≤Q

1
φ(q)

∑

χ modq

max
y≤x

∣

∣ψ(y, χ) − δχy
∣

∣ = Σ0 + Σ1, say, (5.10)

whereΣ0 denotes the contribution from the principal characters andΣ1 denotes the contribution
from all the other characters. By (3.60) (that inequality holds for all q ≤ x) and the elementary
bound (see Exercise 1)

∑

n≤z

φ(mn)−1 � φ(m)−1 logz, (5.11)

we have

Σ0 � xexp
(

− c1
√

log x
)

∑

q≤Q

1
φ(q)

� x(log x)−A. (5.12)

As usual, for a non-principal characterχ moduloq, we denote byχ∗ the primitive character
inducingχ. By (3.56),

Σ1 �
∑

q≤Q

1
φ(q)

∑

χ modq

max
y≤x
|ψ(y, χ∗)| + Q(log x)2.

Rearranging the sum over the characters as to combine the contributions of all characters to moduli
q = rq1 ≤ Q induced by the same primitive characterχ modulor, we deduce that

Σ1 �
∑

r≤Q

∑∗

χ mod r

max
y≤x
|ψ(y, χ)|

∑

q1≤Q/r

1
φ(rq1)

+ Q(log x)2

� (log x)
∑

r≤Q

1
φ(r)

∑∗

χ mod r

max
y≤x
|ψ(y, χ)| + Q(log x)2, (5.13)

where we have used (5.11) again. We can estimate the contribution from the “small” modulir
using the Siegel–Walfisz theorem. Indeed, by (3.60) and (3.61), we have

max
y≤x
|ψ(y, χ)| � xexp

(

− c(A)
√

log x
)

for all primitive characters to modulir ≤ (log x)A+5 = Q0, say. Thus,
∑

r≤Q0

1
φ(r)

∑∗

χ mod r

max
y≤x
|ψ(y, χ)| � xQ0 exp

(

− c(A)
√

log x
)

� x(log x)−A−1.

Combining this inequality and (5.13), we obtain

Σ1 � (log x)Σ2 + x(log x)−A + Q(log x)2, (5.14)

where

Σ2 =
∑

Q0<r≤Q

1
φ(r)

∑∗

χ mod r

max
y≤x
|ψ(y, χ)|.
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5.2.2 Application of Vaughan’s identity

By (5.5) with f (n) = χ(n), X = y, andU = V ≤ x1/2 (we will specify our choice ofU later),

ψ(y, χ) = S1(y, χ) − S2(y, χ) − S3(y, χ) + ψ(U, χ),

whereS j(y, χ) denotes the sumΣ j on the right side of (5.5). Hence,

Σ2 � Σ3 + Σ4 + Σ5 + QU, (5.15)

where

Σ j =
∑

Q0<r≤Q

1
φ(r)

∑∗

χ mod r

max
y≤x
|S j−2(y, χ)| ( j = 3, 4, 5).

We can estimateΣ3 right away. By partial summation,

S1(y, χ) ≤
∑

m≤U

∣

∣

∣

∣

∑

U<mk≤y

(logk)χ(k)

∣

∣

∣

∣

� (logy)
∑

m≤U

∣

∣

∣

∣

∑

U<mk≤z

χ(k)

∣

∣

∣

∣

for somez with U < z≤ y. Thus, by the Pólya–Vinogradov inequality,

max
y≤x
|S1(y, χ)| � r1/2U(log x)2.

We conclude that
Σ3 � Q3/2U(log x)2. (5.16)

Next we estimateΣ5 using the large sieve. We then splitΣ4 into two subsums: one similar to
Σ3 and one similar toΣ5.

5.2.3 Estimation ofΣ5

Suppose thata1, . . . , aM andb1, . . . , bK are complex numbers. Then, by Cauchy’s inequality and
Lemma 4.8,

∑

r≤R

r
φ(r)

∑∗

χ mod r

∣

∣

∣

∣

M
∑

m=1

K
∑

k=1

ambkχ(mk)

∣

∣

∣

∣

�
{

∑

r≤R

r
φ(r)

∑∗

χ mod r

∣

∣

∣

∣

M
∑

m=1

amχ(m)

∣

∣

∣

∣

2}1/2{
∑

r≤R

r
φ(r)

∑∗

χ mod r

∣

∣

∣

∣

K
∑

k=1

bkχ(k)

∣

∣

∣

∣

2}1/2

�
(

M + R2
)1/2(

K + R2
)1/2

( M
∑

m=1

|am|2
)1/2( K

∑

k=1

|bk|2
)1/2

. (5.17)

We would like to apply this bound toΣ5, but before we can do that we must deal with the summation
conditionmk≤ y appearing in the definition ofS3(y, χ).
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We start by splitting the intervalU < m ≤ xU−1 into O(log x) subintervalsM < m ≤ M1 such
thatM1 ≤ 2M. Then, for some choice ofM,M1, we have

S3(y, χ) � (log x)

∣

∣

∣

∣

∑

M<m≤M1

∑

U<k≤y/m

Λ(m)bkχ(mk)

∣

∣

∣

∣

. (5.18)

Next, we use Perron’s formula (Lemma 1.13) withα = (log x)−1, T = x2, andu = y/(mk). We get

∑

M<m≤M1

∑

U<k≤y/m

Λ(m)bkχ(mk) =
1
2π

∫ T

−T
S(χ, t)

yα+it

α + it
dt+O(∆), (5.19)

where

S(χ, t) =
∑

M<m≤M1

∑

U<k≤xM−1

Λ(m)bkχ(mk)(mk)−α−it, ∆ =
yα

T

∑

M<m≤M1

∑

k≤yM−1

Λ(m)d(k)
| log(y/mk)| .

If we assume, as we may, that‖y‖ = 1
2, we have| log(y/mk)| ≥ y−1. Hence, by the PNT and

Theorem 1.22,
∆ � x−1

∑

M<m≤M1

∑

k≤yM−1

Λ(m)d(k)� log x.

Note also that
∫ T

−T
|α + it|−1 dt� log x.

Substituting these bounds into (5.19), we find that, for some|t0| ≤ T,
∑

M<m≤M1

∑

U<k≤y/m

Λ(m)bkχ(mk) �
(

|S(χ, t0)| + 1
)

log x.

SinceS(χ, t0) is independent ofy, combining this inequality and (5.18), we get

max
y≤x
|S3(y, χ)| � (log x)2

(

|S(χ, t0)| + 1
)

.

Thus,

Σ5 � (log x)2
∑

Q0<r≤Q

1
φ(r)

∑∗

χ mod r

|S(χ, t0)| + Q(log x)2. (5.20)

We now observe that
∑

M<m≤M1

Λ(m)2m−2α � M log x and
∑

U<k≤xM−1

d(k)2k−2α � xM−1(log x)3;

the former bound follows from the PNT and the latter from Theorem 1.23. Hence, (5.17) yields
∑

r≤R

r
φ(r)

∑∗

χ mod r

|S(χ, t0)| � (log x)2
(

x+ xRU−1/2 + x1/2R2
)

.

From this inequality and (5.20), we derive

Σ5 � (log x)4
(

xQ−1
0 + xU−1/2(log x) + x1/2Q

)

. (5.21)
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5.2.4 Completion of the proof

Suppose thatU = V ≤ x1/3. Then we can writeS2(y, χ) as

S2(y, χ) = S′2(y, χ) + S′′2 (y, χ),

whereS′2 is the portion ofS2 wherem≤ U andS′′2 is the portion whereU < m≤ UV ≤ xU−1. We
have

|S′2(y, χ)| ≤ (log x)
∑

m≤U

∣

∣

∣

∣

∑

U<mk≤y

χ(k)

∣

∣

∣

∣

,

so the contribution ofS′2 to Σ4 can be bounded similarly toΣ3. Moreover, we can estimate the
contribution ofS′′2 to Σ4 similarly toΣ5, and the resulting bound is slightly sharper, because in this
case we apply (5.17) with coefficientsam andbk subject to|am| ≤ logm and|bk| ≤ 1. Altogether,
we conclude that

Σ4 � (log x)4
(

Q3/2U + xQ−1
0 + xU−1/2 + x1/2Q

)

. (5.22)

Combining (5.10), (5.12), (5.14)–(5.16), (5.21), and (5.22), we get

Σ(x,Q) � (log x)5
(

Q3/2U + xQ−1
0 + xU−1/2(log x) + x1/2Q

)

,

whereU ≤ x1/3 is a parameter at our disposal. Any choice ofU subject to

(log x)2A+12 ≤ U ≤ (x/Q)1/2

then yields (5.9). This proves the theorem whenQ ≤ x(log x)−4A−24; in the alternative case, (5.9) is
worse than the trivial bound forΣ(x,Q). �

5.3 The Barban–Davenport–Halberstam theorem

Using the large sieve and reductions such as those leading to(5.10), we can also establish the
following result.

Theorem 5.3.Suppose that2 ≤ Q ≤ x. Then, for any fixed A> 0,

∑

q≤Q

∑

1≤a≤q
(a,q)=1

∣

∣

∣
ψ(x; q, a) − x

φ(q)

∣

∣

∣

2
� x2(log x)−A + Qxlog x. (5.23)

The first results of this form were obtained by Barban [3] and Davenport and Halberstam [15];
hence, the name of the theorem. Note that by (5.23), the errorterm in the prime number theorem
for arithmetic progressions isO

(

(x/q)1/2+ε
)

, at least on average over all progressions to moduli
q ≤ Q. Except when the modulusq is very small, so strong a bound for an individual progression
does not follow even from GRH! Furthermore, (5.23) appears to be (essentially) the best result
within the reach of present methods. Indeed, a substantial improvement of the first term on the
right side of (5.23) would yield a subsequent improvement onTheorem 2 (see Exercise 3). While
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such an improvement would represent a significant achievement in the field, it seems more likely
that it would occur independent of the above problem than as aconsequence to it. As to the second
term in the bound (5.23), Montgomery [41, Ch. 17] has shown that whenQ ≥ x(log x)−A,

∑

q≤Q

∑

1≤a≤q
(a,q)=1

∣

∣

∣
ψ(x; q, a) − x

φ(q)

∣

∣

∣

2
∼ Qxlog x asx→ ∞.

Thus, the second term on the right side of (5.23) is needed when Q is large.

5.4 The three primes theorem

Our goal in this section is to establish the following resultfrom additive prime number theory.

Theorem 5 (I. M. Vinogradov). For a positive integer n, define

R(n) =
∑

p1+p2+p3=n

(log p1)(log p2)(log p3),

where the summation is over all representations of n as the sum of three primes. Then, for any
given A> 0,

R(n) = 1
2n2S(n) +O

(

n2(logn)−A
)

, (5.24)

where
S(n) =

∏

p|n

(

1− (p− 1)−2
)

∏

p-n

(

1+ (p− 1)−3
)

. (5.25)

In particular, every sufficiently large odd integer is the sum of three primes.

This theorem was first proved in 1923 by Hardy and Littlewood [21] under the assumption
of GRH. In 1937 Vinogradov [57] applied his method for estimating sums over primes to the
exponential sumf (α) below to give an unconditional proof of the three primes theorem.

5.4.1 The Hardy–Littlewood circle method

Using the orthogonality relation

∫ 1

0
e(αm) dα =

{

1 if m= 0,

0 if m, 0,
(5.26)

we can expressR(n) as a Fourier integral. Indeed, by (5.26),

R(n) =
∑

p1,p2,p3≤n

(log p1)(log p2)(log p3)
∫ 1

0
e
(

α(p1 + p2 + p3 − n)
)

dα

=

∫ 1

0

(

∑

p≤n

(log p)e(αp)

)3

e(−αn) dα. (5.27)
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This identity is the starting point of the application of thecircle method: we will use it to derive
the asymptotic formula forR(n) from estimates for the exponential sum

f (α) =
∑

p≤n

(log p)e(αp). (5.28)

Our analysis is motivated by two observations:

• whenα is near a rational numbera/q with a small denominator,f (α) should be large and
should have certain asymptotic behavior, suggested by the behavior of f (a/q);

• otherwise, the numberse(αp), p ≤ n, should be approximately uniformly distributed on the
unit circle, and hence,f (α) should be “small”.

Let B = B(A) be a positive number to be chosen later and set

P = (logn)B. (5.29)

If a andq are integers, we define themajor arc1

M(q, a) =
[

a/q− P/(qn), a/q+ P/(qn)
]

. (5.30)

The integration in (5.27) can be taken over any interval of unit length, and in particular, over
[

Pn−1, 1+ Pn−1
]

. We partition this interval into two subsets:

M =
⋃

q≤P

⋃

1≤a≤q
(a,q)=1

M(q, a) and m =
[

Pn−1, 1+ Pn−1
]

\M, (5.31)

called respectively theset of major arcsand theset of minor arcs. Then, from (5.27) and (5.31),

R(n) =

(
∫

M

+

∫

m

)

f (α)3e(−αn) dα. (5.32)

In §5.4.2, we use the Siegel–Walfisz theorem to prove that
∫

M

f (α)3e(−αn) dα = 1
2n2S(n) +O

(

n2P−1
)

(5.33)

for any choice ofP. Then, in§5.4.3, we show that
∫

m

f (α)3e(−αn) dα � n2(logn)−A (5.34)

for B ≥ 3A+ 18. Clearly, the asymptotic formula (5.24) follows from (5.32)–(5.34).

1This term may seem a little peculiar, considering thatM(q, a) is in fact an interval. The explanation is that, in the
original version of the circle method, Hardy and Littlewoodused power series and Cauchy’s integral formula instead
of exponential sums and (5.26) (see Vaughan [54,§1.2]). In that setting, the role ofM(q, a) is played by a small
circular arc near the root of unitye(a/q); hence, the terminology.
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5.4.2 The major arcs

It is easy to see that the major arcs are comprised of mutuallydisjoint intervalsM(q, a). Thus,
∫

M

f (α)3e(−αn) dα =
∑

q≤P

∑

1≤a≤q
(a,q)=1

∫

M(q,0)
f (a/q+ β)3e

(

− (a/q+ β)n
)

dβ. (5.35)

We now proceed to approximatef (a/q+ β). We will prove the following result.

Lemma 5.4. Suppose that B> 0, 1 ≤ a ≤ q ≤ (logn)B, (a, q) = 1, |β| ≤ n−1(logn)B. Suppose also
that f(α) is defined by(5.28)and define

v(β) =
∫ n

0
e(βx) dx.

Then
f (a/q+ β) = µ(q)φ(q)−1v(β) +O

(

n(logn)−B
)

.

Proof. We split the summation inf (α) according to the residue ofp moduloq. We get

f (a/q+ β) =
∑

1≤h≤q

∑

p≤n
p≡h (modq)

(log p)e
(

(a/q+ β)p
)

=
∑

1≤h≤q

e(ah/q)
∑

p≤n
p≡h (modq)

(log p)e(βp)

=
∑

1≤h≤q
(h,q)=1

e(ah/q)
∑

p≤n
p≡h (modq)

(log p)e(βp) +O(q). (5.36)

When (h, q) = 1, we have
∑

p≤n
p≡h (modq)

(log p)e(βp) =
∑

m≤n
m≡h (modq)

Λ(m)e(βm) +O
(√

n
)

=

∫ n

0
e(βx) dψ(x; q, h) +O

(√
n
)

. (5.37)

By the Siegel–Walfisz theorem in the form of (3.62),

∆(x; q, h) = ψ(x; q, a) − x/φ(q) � n(logn)−3B,

for all x ≤ n. Hence,
∫ n

0
e(βx) d∆(x; q, h)� |∆(n; q, h)| + 1+ |β|

∫ n

2
|∆(x; q, h)| dx

� n(logn)−3B + |β|
∫ n

0
n(logn)−3B dx� n(logn)−2B.
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Combining this estimate and (5.37), we get

∑

p≤n
p≡h (modq)

(log p)e(βp) =
1
φ(q)

∫ n

0
e(βx) dx+O

(

n(logn)−2B
)

. (5.38)

Since (see Exercise 4.3)
cq(a) =

∑

1≤h≤q
(h,q)=1

e(ah/q) = µ(q),

the desired conclusion follows from (5.36) and (5.38). �

By Lemma 5.4 with 3B in place ofB,

f (a/q+ β)3 = µ(q)φ(q)−3v(β)3 +O
(

n3P−3
)

.

Since the measure ofM is O
(

P2n−1
)

, inserting this approximation into the right side of (5.35), we
obtain

∫

M

f (α)3e(−αn) dα =
∑

q≤P

µ(q)cq(−n)
φ(q)3

∫

M(q,0)
v(β)3e(−βn) dβ +O

(

n2P−1
)

. (5.39)

At this point, we extend the integration overβ to the whole real line. Since

v(β) � n(1+ n|β|)−1, (5.40)

the error we incur from doing this is

�
∑

q≤P

φ(q)−2

∫ ∞

P/(qn)

n3 dβ
(1+ nβ)3

� n2P−2
∑

q≤P

q2

φ(q)2
� n2P−1.

The last step uses the result of Exercise 5, which at the same time implies that
∑

q≤P

µ(q)cq(−n)φ(q)−3 �
∑

q≤P

φ(q)−2 � 1.

Hence, we deduce from (5.39) that
∫

M

f (α)3e(−αn) dα = S(n,P)J(n) +O
(

n2P−1
)

,

where

S(n,X) =
∑

q≤X

µ(q)cq(−n)φ(q)−3, J(n) =
∫ ∞

−∞
v(β)3e(−βn) dβ. (5.41)

By Fourier’s inversion formula,J(n) = 1
2n2, and by Exercise 5,

S(n,P) −S(n,∞)�
∑

q>P

φ(q)−2 � P−1.
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It follows that
∫

M

f (α)3e(−αn) dα = 1
2n2S(n,∞) +O

(

n2P−1
)

.

Finally, we remark thatS(n,∞) equals the productS(n) defined in (5.25). Indeed, this follows
from Lemma 1.16, on noting that the functiong(q) = µ(q)cq(−n)φ(q)−3 is multiplicative and

g(pu) =











(p− 1)−3 if u = 1 andp - n,

−(p− 1)−2 if u = 1 andp | n,
0 if u ≥ 2.

Thus, (5.33) is established.

5.4.3 The minor arcs

We now turn to (5.34). The modulus of the left side does not exceed

∫

m

| f (α)|3 dα ≤
(

sup
m

| f (α)|
)

∫ 1

0
| f (α)|2 dα. (5.42)

By Parseval’s identity and the PNT,

∫ 1

0
| f (α)|2 dα =

∑

p≤n

(log p)2 � n logn.

Thus, (5.34) will follow from (5.42), if we show that

sup
m

| f (α)| � n(logn)−A−1. (5.43)

We note that the trivial estimate forf (α) is

f (α)�
∑

p≤n

(log p) � n,

so our goal is to save a power of logn over the trivial estimate forf (α). We can do this using the
following lemma, which provides such a saving under the assumption thatα can be approximated
by a reduced fraction whose denominatorq is “neither too small, nor too large.”

Lemma 5.5. Suppose thatα, δ are real and a, q are integers satisfying

1 ≤ q ≤ n, (a, q) = 1, |α − a/q| ≤ δ.

Then
f (α) � (logn)5(1+ δn)

(

nq−1/2 + n5/6 + n2/3q1/3
)

.
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This estimate forf (α) is not quite the best known, but it has the advantage that it can be deduced
quickly from the work in§5.2. The sharpest known bound forf (α) is

f (α)� (logn)4
(

nq−1/2 + n4/5 + n1/2q1/2
)

; (5.44)

this holds under the standard assumption that|α − a/q| ≤ q−2. For the proof of (5.44) see Vaughan
[54, Theorem 3.1] or Exercise 7 after the chapter. It is also possible to apply more carefully the
ideas used in the proof of Lemma 5.5 to prove, again when|α − a/q| ≤ q−2, that

f (α)� (logn)4
(

nq−1/2 + n7/8q−1/8 + n3/4q1/8 + n1/2q1/2
)

.

For the proof of this result, see Vaughan [52]; that paper is also where identity (5.6) first appeared
and contains a proof of the (so far) strongest version of the Bombieri–Vinogradov theorem.

Proof. We will derive the lemma from the inequality

√
q

φ(q)

∑

χ modq

|ψ(x, χ)| � (logqx)5
(

xq−1/2 + x5/6 + x2/3q1/3
)

. (5.45)

First, we note that the contribution from the principal character moduloq is

≤ xq1/2φ(q)−1 � xq−1/2 log logq,

by Exercise 5(a). We estimate the average over the non-principal characters similarly to the sum
Σ2 in the proof of Theorem 5.2. In place of (5.15), we have

√
q

φ(q)

∑

χ modq
χ,χ0

|ψ(x, χ)| � q−1/2(logqx)
(

Σ′3 + Σ
′
4 + Σ

′
5 + qU

)

,

whereΣ′j is similar toΣ j and 1≤ U ≤ x1/3 is a parameter at our disposal. We can estimate eachΣ′j
analogously to the respectiveΣ j, the only difference being that instead of (5.17), we appeal to the
inequality

∑

χ modq

∣

∣

∣

∣

M
∑

m=1

K
∑

k=1

ambkχ(mk)

∣

∣

∣

∣

�
(

M + q
)1/2(

K + q
)1/2

( M
∑

m=1

|am|2
)1/2( K

∑

k=1

|bk|2
)1/2

.

Altogether, we obtain

√
q

φ(q)

∑

χ modq

|ψ(x, χ)| � (logqx)5
(

xq−1/2 + xU−1/2 + x1/2q1/2 + qU
)

.

We now choose
U = min

(

x1/3, (x/q)2/3
)

,
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so that

xU−1/2 � x5/6 + x2/3q1/3 and qU � x2/3q1/3.

Sincex1/2q1/2 ≤ x2/3q1/3, (5.45) follows.
We now turn to the estimation off (α). We have

f (α) =
∑

m≤n

Λ(m)e(αm) +O
(

n1/2
)

. (5.46)

By partial summation,

∑

m≤n

Λ(m)e(αm) �
(

1+ n|α − a/q|
)

∣

∣

∣

∣

∑

m≤x

Λ(m)e(am/q)

∣

∣

∣

∣

, (5.47)

for somex ≤ n. Similarly to (3.56) and (3.58), we obtain

∑

m≤x

Λ(m)e(am/q) =
∑

1≤h≤q
(h,q)=1

e(ah/q)ψ(x; q, h) +O
(

(logqx)2
)

=
1
φ(q)

∑

χ modq

∑

1≤h≤q
(h,q)=1

e(ah/q)χ̄(h)ψ(x, χ) +O
(

(logqx)2
)

=
1
φ(q)

∑

χ modq

τ(χ̄, a)ψ(x, χ) +O
(

(logqx)2
)

.

Since (a, q) = 1, it follows from Lemmas 3.5 and 3.6 that|τ(χ̄, a)| ≤ √q. Hence,

∑

m≤x

Λ(m)e(am/q) �
√

q

φ(q)

∑

χ modq

|ψ(x, χ)| + (logqx)2, (5.48)

and the desired conclusion follows from (5.45)–(5.48). �

Before we can derive (5.43) from Lemma 5.5, we need to state a simple lemma known as
Dirichlet’s theorem on Diophantine approximation.

Lemma 5.6 (Dirichlet). Letα and Q be real and Q≥ 1. There exist integers a and q such that

1 ≤ q ≤ Q, (a, q) = 1, |qα − a| < Q−1.

Proof. See Vaughan [54, Lemma 2.1] or Exercises 8 and 9. �

Proof of (5.43). Suppose thatα ∈ m. By Lemma 5.6 withQ = nP−1, there are integersa andq
such that

1 ≤ q ≤ nP−1, (a, q) = 1, |qα − a| < Pn−1.
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Sinceα < M, it is not possible to haveq ≤ P, and so,

P ≤ q ≤ nP−1, (a, q) = 1, |α − a/q| < n−1.

We now apply Lemma 5.5 (withδ = n−1) and obtain

f (α)� (logn)5
(

nq−1/2 + n5/6 + n2/3q1/3
)

� (logn)5
(

nP−1/2 + n5/6 + nP−1/3
)

� n(logn)5−B/3.

Thus, (5.43) follows on choosingB ≥ 3A+ 18. �

5.5 Primes in short intervals

In this section we discuss the following result mentioned inthe Introduction.

Theorem 6 (Huxley). Let ε > 0 be fixed. Then for x≥ x0(ε) and x7/12+ε ≤ y ≤ x,

ψ(x) − ψ(x− y) = y+O
(

y(log x)−1
)

. (5.49)

We deduce Huxley’s theorem from the following two results.

Theorem 5.7 (Korobov; I. M. Vinogradov). There is an absolute constant c1 > 0 such that

β ≥ 1− c1(log(|γ| + 3))−2/3(log log(|γ| + 3))−1/3.

Theorem 5.8 (Huxley).Given0 ≤ σ ≤ 1 and T≥ 2, define

N(σ,T) =
{

ρ = β + iγ : ζ(ρ) = 0, σ ≤ β ≤ 1, |γ| ≤ T
}

.

There is an absolute constant c2 > 0 such that

N(σ,T) � T2.4(1−σ)(logT)c2.

Theorem 5.7 is the Vinogradov–Korobov zerofree region underlying the modern error term
(0.9) in the PNT. The reader will find its proof in Ivić [31], Karatsuba and Voronin [37], or Titch-
marsh [50]. Theorem 5.8, whose proof forms the bulk of this section, is an example of azero-
density theorem. By virtue of Corollary 2.20, we have the trivial bound

N(σ,T) ≤ N(0,T) � T(logT). (5.50)

A zero-density theorem is an inequality of the form

N(σ,T) � TA(σ)(1−σ)(logT)c(σ), (5.51)

whereA(σ) andc(σ) are such that (5.51) represents an improvement over (5.50)for σ in some
subinterval of 1/2 ≤ σ ≤ 1 (whenσ ≤ 1/2, (5.50) is best possible). Results in whichA(σ) is a
constant are of particular interest for applications. Theorem 5.8 above was established by Hux-
ley [27] and is the sharpest known result of this type. It should be compared with the conjectural
bound

N(σ,T) � T2(1−σ)(logT)c3 (1/2 ≤ σ ≤ 1), (5.52)

which is known as the Density Hypothesis and in many situations can be used as a substitute
for RH.
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5.5.1 Proof of Theorem 6

By Theorem 2.22 withT = x5/12−ε/2,

ψ(x) − ψ(x− y) = y−
∑

| Im ρ|≤T

xρ − (x− y)ρ

ρ
+O

(

x7/12+ε/2(log x)2
)

. (5.53)

On writingρ = β + iγ, we have
∣

∣

∣

∣

xρ − (x− y)ρ

ρ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

x−y
uρ−1 du

∣

∣

∣

∣

≤ yxβ−1,

whence
∑

| Im ρ|≤T

xρ − (x− y)ρ

ρ
� y

∑

|γ|≤T

xβ−1. (5.54)

Clearly, (5.49) follows from (5.53), (5.54), and the inequality

∑

|γ|≤T

xβ−1 � (log x)−1, (5.55)

which we now proceed to prove.
Let

δ(T) = c1(logT)−2/3(log logT)−1/3,

wherec1 is the constant from Theorem 5.7. By Theorem 5.7 and partial integration,

∑

| Im ρ|≤T

xβ−1 = −
∫ 1−δ(T)

0
xσ−1 dN(σ,T)

= x−1N(0,T) + (log x)
∫ 1−δ(T)

0
N(σ,T)xσ−1 dσ.

We use (5.50) to boundN(0,T) and Theorem 5.8 to boundN(σ,T) under the sign of the integral.
We find that

∑

| Im ρ|≤T

xβ−1 � x−1T logT + (log x)c2+1

∫ 1−δ(T)

0

(

x−1T2.4
)1−σ

dσ

� x−1/2 + (log x)c2+1x−εδ(T) � (log x)−1,

on noting that
x−εδ(T) � exp

(

− εc4(log x)1/4
)

� (log x)−c2−2.

This establishes (5.55) and completes the proof of the theorem. �
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5.5.2 Huxley’s density theorem: zero detection

Without loss of generality we may assume that 7/12 ≤ σ ≤ 1 andT ≥ T0. We start from the
integral transform

e−x =
1

2πi

∫ 2+i∞

2−i∞
Γ(s)x−s ds (x > 0), (5.56)

which follows from (2.10) by Mellin inversion. We introduceparametersX andY, which we will
specify later. We define

MX(s) =
∑

m≤X

µ(m)m−s

and observe that, by Lemma 1.2,

FX(s) = ζ(s)MX(s) =
∞

∑

n=1

ann
−s = 1+

∑

n>X

ann
−s, an =

∑

k|n
k≤X

µ(k) � d(n).

Applying (5.56) withx = n/Y and summing the resulting identities overn, we get

e−1/Y +
∑

n>X

ann
−we−n/Y =

1
2πi

∫ 2+i∞

2−i∞
FX(w+ s)Γ(s)Ys ds (Re(w) > 0). (5.57)

Suppose thatρ = β + iγ is a zero ofζ(s) counted byN(σ,T). We move the integral in (5.57) to
the line Res = 1

2 − β. The only singularities of the integrand in the strip1
2 − β < Res < 2 are the

pole ofζ(s+ w) at s= 1− w and the pole ofΓ(s) at s= 0. Furthermore, whenw = ρ, ζ(ρ + s) has
a zero ats= 0 that cancels the pole of the gamma-function. Hence,

e−1/Y +
∑

n>X

ann
−ρe−n/Y = MX(1)Γ(1− ρ)Y1−ρ +

1
2πi

∫ 1/2−β+i∞

1/2−β−i∞
FX(ρ + s)Γ(s)Ys ds. (5.58)

In order to simplify this identity, we now suppose that

T0.01 ≤ X ≤ T10 and T0.01 ≤ Y ≤ T10. (5.59)

The terms withn ≥ Y(logT)2 contributeo(1) to the left side of (5.59). Also, by Corollary 2.8,
the first term on the right of (5.59) iso(1) unless|γ| ≤ (logT)2. Therefore, apart from the zeros
counted byN

(

σ, (logT)2
)

, all zeros counted byN(σ,T) fall in one of the following classes:

• Class I:zerosρ with
∣

∣

∣

∣

∑

X<n≤Y(logT)2

ann
−ρe−n/Y

∣

∣

∣

∣

> 1/3; (5.60)

• Class II: zerosρ with
∣

∣

∣

∣

∫ 1/2−β+i∞

1/2−β−i∞
FX(s+ ρ)Γ(s)Ys ds

∣

∣

∣

∣

> 1/3. (5.61)
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We subdivide the intervalX < n ≤ Y(logT)2 into O(logT) subintervalsN < n ≤ N1, N1 ≤ 2N, and
note that the number of zeros of class I does not exceedR1(logT), whereR1 is the number of zeros
ρ with

∣

∣

∣

∣

∑

N<n≤N1

ann
−ρe−n/Y

∣

∣

∣

∣

� (logT)−1. (5.62)

Furthermore, by Corollary 2.20,
R1 � |R1|(logT),

whereR1 is a set of zeros ofζ(s) that satisfy (5.62) and

| Im ρ1 − Im ρ2| ≥ 1 wheneverρ1 , ρ2, ρi ∈ R1. (5.63)

Similarly, the number of class II zeros is bounded by|R2|(logT), whereR2 is a set of zeros ofζ(s)
that satisfy (5.61) and (5.63). We conclude that

N(σ,T) � N
(

σ, (logT)2
)

+ |R1|(logT)2 + |R2|(logT)

� (|R1| + |R2| + logT)(logT)2. (5.64)

5.5.3 Huxley’s density theorem:1/2 ≤ σ ≤ 3/4

We first bound|R1|. We writebn = ane−n/Y(logn) and denote byS1 the set of imaginary partsγ of
zerosρ ∈ R1. Then

|R1| � (logT)2
∑

ρ∈R1

∣

∣

∣

∣

∑

N<n≤N1

bn

∫ ∞

β

n−u−iγ du

∣

∣

∣

∣

2

� (logT)2
∑

γ∈S1

{
∫ ∞

σ

∣

∣

∣

∣

∑

N<n≤N1

bnn
−u−iγ

∣

∣

∣

∣

du

}2

� (logT)2N−σ
∑

γ∈S1

∫ ∞

σ

Nu

∣

∣

∣

∣

∑

N<n≤N1

bnn
−u−iγ

∣

∣

∣

∣

2

du

� (logT)2N−σ
∫ ∞

σ

Nu
∑

γ∈S1

∣

∣

∣

∣

∑

N<n≤N1

bnn
−u−iγ

∣

∣

∣

∣

2

du.

An appeal to Lemma 4.12 withδ = 1 now gives

|R1| � N−σ(N + T)(logT)2

∫ ∞

σ

Nu
∑

N<n≤2N

|bn|2n−2u du

� N−2σ(N + T)(logT)
∑

N<n≤2N

d(n)2(logn)2 �
(

N2−2σ + TN1−2σ
)

(logT)6,

by Theorem 1.23 withk = 2. Recalling thatX ≤ N ≤ Y(logT)2, we deduce that

|R1| �
(

Y2−2σ + TX1−2σ
)

(logT)8. (5.65)
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We now turn to class II zeros. By (5.61),

|R2| �
∑

ρ∈R2

Y2(1−2β)/3

{
∫ ∞

−∞

∣

∣FX(1/2+ i(t + γ))Γ(1/2− β + it)
∣

∣ dt

}4/3

. (5.66)

Since 7/12≤ β ≤ 1, Lemmas 2.4 and 2.5 and Corollary 2.8 yield

Γ(1/2− β + it)� e−|t|. (5.67)

Thus, by (5.66) and Hölder’s inequality,

|R2| � Y2(1−2σ)/3
∑

γ∈S2

{
∫ ∞

−∞

∣

∣FX(1/2+ i(t + γ))
∣

∣e−|t| dt

}4/3

� Y2(1−2σ)/3
∑

γ∈S2

∫ ∞

−∞

∣

∣FX(1/2+ i(t + γ))
∣

∣

4/3
e−|t| dt

� Y2(1−2σ)/3Σ
1/3
1 Σ

2/3
2 , (5.68)

whereS2 denotes the set of imaginary parts of the zeros inR2,

Σ1 =
∑

γ∈S2

∫ ∞

−∞

∣

∣ζ(1/2+ i(t + γ))
∣

∣

4
e−|t| dt,

Σ2 =
∑

γ∈S2

∫ ∞

−∞

∣

∣MX(1/2+ i(t + γ))
∣

∣

2
e−|t| dt.

We have

Σ2 =
∑

γ∈S2

∞
∑

m=−∞

∫ m+1/2

m−1/2

∣

∣MX(1/2+ i(t + γ))
∣

∣

2
e−|t| dt

�
∞

∑

m=−∞
e−|m|

∑

γ∈S2

∫ m+1/2

m−1/2

∣

∣MX(1/2+ i(t + γ))
∣

∣

2
dt

�
∞

∑

m=−∞
e−|m|

∫ m+T+1

m−T−1

∣

∣MX(1/2+ iu)
∣

∣

2
du, (5.69)

the last inequality being a consequence of (5.63). Since Lemma 4.10 yields
∫ m+T+1

m−T−1

∣

∣MX(1/2+ iu)
∣

∣

2
du� (X + T)

∑

n≤X

n−1 � (X + T)(logT),

we conclude that

Σ2 � (X + T)(logT)
∞

∑

m=−∞
e−|m| � (X + T)(logT). (5.70)

For the estimation ofΣ1, we use the following result.
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Theorem 5.9.Suppose that T≥ 2. Then

∫ T

0

∣

∣ζ
(

1
2 + it

)
∣

∣

4
dt� T(logT)4. (5.71)

Proof. See Ivić [31, Ch. 5], Montgomery [41, Ch. 10], or Titchmarsh[50, §7.5 and§7.6]. �

By a variant of (5.69),

Σ1 �
∞

∑

m=−∞
e−|m|

∫ U(m)

−U(m)

∣

∣ζ
(

1/2+ iu
)
∣

∣

4
du,

whereU(m) = |m| + T + 1. Hence, we derive from (5.71) that

Σ1 �
∞

∑

m=−∞
e−|m|(T + |m|)(log(T + |m|))4 � T(logT)4. (5.72)

Combining (5.68), (5.70), and (5.72), we obtain

|R2| � Y2(1−2σ)/3
(

X2/3T1/3 + T
)

(logT)2. (5.73)

We now chooseX = T, which is consistent with (5.59). Then, by (5.64), (5.65), and (5.73),

N(σ,T) �
(

Y2−2σ + T2−2σ + Y2(1−2σ)/3T + 1
)

(logT)10.

Finally, we putY = T3/(4−2σ) (note thatY ≥ T) and obtain

N(σ,T) � T3(1−σ)/(2−σ)(logT)10.

In particular, we have

N(σ,T) � T2.4(1−σ)(logT)10 whenever 1/2 ≤ σ ≤ 3/4. (5.74)

5.5.4 The Haĺasz–Montgomery method

We consider the Dirichlet polynomial

D(s) =
∑

N<n≤2N

ann
−s,

wherean are complex numbers. Suppose thats1, . . . , sR, sr = σr + itr , are complex numbers such
that

T0 ≤ t1 < t2 < · · · < tR ≤ T0 + T, tr+1 − tr ≥ 1, α ≤ σr ≤ 1, (5.75)

and
|D(sr)| ≥ V for all r = 1, . . . ,R. (5.76)
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We choose complex numbersb1, . . . , bR such that|br | = 1 and|D(sr)| = br D(sr). Then
∑

1≤r≤R

|D(sr)| =
∑

1≤r≤R

br

∑

N<n≤2N

ann
−sr =

∑

N<n≤2N

an

∑

1≤r≤R

brn
−sr

≤
{

∑

N<n≤2N

∣

∣

∣

∣

∑

1≤r≤R

brn
−sr

∣

∣

∣

∣

2}1/2{
∑

N<n≤2N

|an|2
}1/2

=

{

∑

N<n≤2N

∑

1≤r,q≤R

br b̄qn
−sr−s̄q

}1/2{
∑

N<n≤2N

|an|2
}1/2

≤
{

∑

1≤r,q≤R

|br b̄q|
∣

∣

∣

∣

∑

N<n≤2N

n−sr−s̄q

∣

∣

∣

∣

}1/2{
∑

N<n≤2N

|an|2
}1/2

=

{

∑

1≤r,q≤R

∣

∣

∣

∣

∑

N<n≤2N

n−σr−σq+i(tq−tr )

∣

∣

∣

∣

}1/2{
∑

N<n≤2N

|an|2
}1/2

. (5.77)

By partial summation, for someN < M ≤ 2N,

∑

N<n≤2N

n−σr−σq+i(tq−tr ) � N−σr−σq

∣

∣

∣

∣

∑

N<n≤M

ni(tq−tr )

∣

∣

∣

∣

� N−2α

∣

∣

∣

∣

∑

N<n≤M

ni(tq−tr )

∣

∣

∣

∣

. (5.78)

We deal with the sum overn by means of the following exponential sum estimate.

Lemma 5.10. Suppose that N≥ 2, X > 0, and f : [N, 2N] → R has two continuous derivatives
that satisfy the conditions

X� | f ′(x)| � X and XN−1 � | f ′′(x)| � XN−1

for all x ∈ [N, 2N]. Then, for any interval I⊆ [N, 2N],
∑

n∈I
e( f (n))� (XN)1/2 + X−1.

Whenr , q, we apply the lemma withf (x) = 1
2π (tq − tr) log x. We haveX = |tq − tr |N−1, so

∑

N<n≤M

ni(tq−tr ) =
∑

N<n≤M

e( f (n)) � |tq − tr |1/2 + N|tq − tr |−1.

Because of (5.75), we can put this inequality in the form
∑

N<n≤M

ni(tq−tr ) � |tq − tr |1/2 + N(|tq − tr | + 1)−1, (5.79)

in which it is valid even whenr = q. Inserting (5.79) into the right side of (5.78), we find that
∑

N<n≤2N

n−σr−σq+i(tq−tr ) � N−2αT1/2 + N1−2α(|tq − tr | + 1)−1.
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Thus,

∑

1≤r,q≤R

∣

∣

∣

∣

∑

N<n≤2N

n−σr−σq+i(tq−tr )

∣

∣

∣

∣

� N1−2αΣ3 + N−2αR2T1/2, (5.80)

where

Σ3 =
∑

1≤r,q≤R

(|tr − tq| + 1)−1 ≤
∑

1≤r≤R

∑

|m|≤T

(|m| + 1)−1 � R(logT). (5.81)

Combining (5.75)–(5.77), (5.80), and (5.81), we deduce that

R2V2 �
(

RN(logT) + R2T1/2
)

N−2αG, G =
∑

N<n≤2N

|an|2. (5.82)

Let T1 = c4N4αV4G−2 for some sufficiently small constantc4 > 0. WhenT ≤ T1, (5.82) yields

R� GN1−2αV−2(logT).

WhenT ≥ T1, we first partition the interval [T0,T0 + T] into O(T/T1 + 1) subintervals of length at
mostT1 and then bound the number oftr ’s in each subinterval using (5.82). We find that

R�
(

T/T1 + 1
)

GN1−2αV−2(logT) �
(

GN1−2αV−2 +G3TN1−6αV−6
)

(logT). (5.83)

5.5.5 Huxley’s density theorem:3/4 ≤ σ ≤ 1

In §5.5.3, we estimated|R1| and |R2| using the large sieve and Theorem 5.9. In this section we
derive alternative bounds for|R1| and |R2| using the Halász–Montgomery large value method. To
bound|R1| we apply the Halász–Montgomery method to the Dirichlet polynomial on the right side
of (5.62). By (5.83) withV = (logT)−1 andα = σ,

|R1| �
(

GN1−2σ +G3TN1−6σ
)

(logT)c5,

where
G ≤

∑

N<n≤N1

|an|2 �
∑

n≤2N

d(n)2� N(logN)3.

Hence, when 2/3 ≤ σ ≤ 1,

|R1| �
(

Y2−2σ + TX4−6σ
)

(logT)c6. (5.84)

We now proceed with the estimation of|R2|. By (5.61) and (5.67), a class II zeroρ = β + iγ
satisfies the inequality

∫ 10 logT

−10 logT

∣

∣FX(1/2+ i(t + γ))
∣

∣ dt� Yσ−1/2.
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Let U be a parameter to be chosen later. We partitionR2 into two subsets: the setR2,1 of zeros
ρ ∈ R2 such that

∣

∣MX(1/2+ i(t + γ))
∣

∣ ≤ U−1Yσ−1/2

for all t with |t| ≤ 10 logT; and the setR2,2 of the remaining zeros. For zerosρ ∈ R2,1, we have

U �
∫ 10 logT

−10 logT

∣

∣ζ(1/2+ i(t + γ))
∣

∣ dt,

whence

U4 �
{

∫ 10 logT

−10 logT

∣

∣ζ(1/2+ i(t + γ))
∣

∣ dt

}4

� (logT)3

∫ 10 logT

−10 logT
|ζ(1/2+ i(t + γ))|4 dt.

Thus,

|R2,1| � U−4(logT)3
∑

ρ∈R2,2

∫ 10 logT

−10 logT
|ζ(1/2+ i(t + γ))|4dt

� U−4(logT)3

∫ 2T

−2T
|ζ(1/2+ iu)|4

{

∑

ρ∈R2,1
|γ−u|≤10 logT

1

}

du

� U−4(logT)5

∫ 2T

−2T
|ζ(1/2+ iu)|4 du.

Using Theorem 5.9, we obtain
|R2,1| � TU−4(logT)9. (5.85)

If ρ is a zero inR2,2, there exists a real numbertγ, |tγ − γ| ≤ 10 logT, such that
∣

∣MX(1/2+ itγ)
∣

∣ ≥ U−1Yσ−1/2.

We partition the interval [1,X] into O(logX) subintervals [N,N1], N1 < 2N, some of which must
satisfy

∣

∣

∣

∣

∑

N<n≤N1

µ(n)n−1/2−itγ

∣

∣

∣

∣

� U−1Yσ−1/2(logX)−1. (5.86)

LetS(N) denote the subset ofR2,1 containing those zerosρ for which (5.86) holds. Then

|R2,2| � |S(N)|(logT) (5.87)

for someN, 1 ≤ N ≤ X. By (5.83) withα = 1/2 andV = U−1Yσ−1/2(logT)−1,

|S(N)| �
(

NV−2 + NTV−6
)

logT. (5.88)

From (5.85), (5.87), and (5.88),

|R2| �
(

TU−4 + XY1−2σU2 + TXY3−6σU6
)

(logT)c7. (5.89)
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Upon choosing
U =

(

X−1Y−3(1−2σ)
)1/10

,

(5.89) becomes
|R2| �

(

TX2/5Y6(1−2σ)/5 + X4/5Y2(1−2σ)/5
)

(logT)c7.

Combining this inequality with (5.64) and (5.84), we find that

N(σ,T) �
(

Y2−2σ + TX4−6σ + TX2/5Y6(1−2σ)/5 + X4/5Y2(1−2σ)/5
)

(logT)c8. (5.90)

Under the assumption that
X2Y4(2σ−1) ≤ T5,

the third term on the right side of (5.90) dominates the fourth, and so

N(σ,T) �
(

Y2−2σ + TX4−6σ + TX2/5Y6(1−2σ)/5
)

(logT)c8.

Setting
X = Y(2σ−1)/(5σ−3),

we derive
N(σ,T) �

(

Y2−2σ + TY(4−6σ)(2σ−1)/(5σ−3)
)

(logT)c8, (5.91)

provided that
Y ≤ T

1
2 (5σ−3)/(2σ−1)2 . (5.92)

Finally, we take
Y = T

1
2 (5σ−3)/(σ2+σ−1),

which satisfies (5.92) for 2/3 ≤ σ ≤ 1 and turns the bound (5.91) into

N(σ,T) � T(5σ−3)(1−σ)/(σ2+σ−1)(logT)c8.

In particular,
N(σ,T)� T2.4(1−σ)(logT)c8 whenever 3/4 ≤ σ ≤ 1.

Together with (5.74), this completes the proof of Huxley’s theorem. �

5.6 Primes in almost all short intervals

In this section, we use Huxley’s density theorem (Theorem 5.8) to prove the following result.

Theorem 7. LetE(X, δ) denote the set of real numbers x∈ [X, 2X] such that
∣

∣ψ(x) − ψ(x− δx) − δx
∣

∣ ≥ δx(log x)−1. (5.93)

Suppose thatε > 0 and A> 0 are fixed, X≥ X0(ε,A), and X−5/6+ε ≤ δ ≤ 1. Then

|E(X, δ)| �A X(logX)−A,

the left side representing the Lebesgue measure ofE(X, δ).
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Proof. We have

|E(X, δ)| � (δX)−2(logX)2

∫ 2X

X

∣

∣ψ(x) − ψ(x− δx) − δx
∣

∣

2
dx,

so it suffices to show that
∫ 2X

X

∣

∣ψ(x) − ψ(x− δx) − δx
∣

∣

2
dx� δ2X3(logX)−A−2. (5.94)

By Theorem 2.22 withT = X5/6−ε/2,

ψ(x) − ψ(x− δx) − δx =
∑

| Im ρ|≤T

xρ − (x− δx)ρ

ρ
+O

(

X1/6+ε/2(logX)2
)

=
∑

| Im ρ|≤T

xρω(ρ) +O
(

X1/6+2ε/3
)

, ω(ρ) =
∫ 1

1−δ
uρ−1 du.

Hence,
∫ 2X

X

∣

∣ψ(x) − ψ(x− δx) − δx
∣

∣

2
dx�

∫ 2X

X

∣

∣

∣

∣

∑

| Im ρ|≤T

xρω(ρ)

∣

∣

∣

∣

2

dx+ δ2X3−ε/2. (5.95)

Upon noting that|ω(ρ)| ≤ δ, we obtain

∫ 2X

X

∣

∣

∣

∣

∑

| Im ρ|≤T

xρω(ρ)

∣

∣

∣

∣

2

dx=
∑

| Im ρ1|≤T

∑

| Im ρ2|≤T

ω(ρ1)ω(ρ2)
∫ 2X

X
xρ1+ρ̄2 dx

� δ2
∑

| Im ρ1|≤T

∑

| Im ρ2|≤T

∣

∣

∣

∣

∫ 2X

X
xρ1+ρ̄2 dx

∣

∣

∣

∣

. (5.96)

We now appeal to the inequality

∫ 2X

X
xβ1+β2+i(γ1−γ2) dx� Xβ1+β2+1

|γ1 − γ2| + 1
,

which follows by partial integration. Using this to bound the right side of (5.96), we get

∫ 2X

X

∣

∣

∣

∣

∑

| Im ρ|≤T

xρω(ρ)

∣

∣

∣

∣

2

dx� δ2
∑

|γ1|≤T

∑

|γ2|≤T

Xβ1+β2+1

|γ1 − γ2| + 1

� δ2
∑

|γ1|≤T

∑

|γ2|≤T

X2β1+1

|γ1 − γ2| + 1
� δ2(logT)

∑

|γ|≤T

X2β+1. (5.97)
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We now writeθ(T) = (logT)−3/4. By Theorems 5.7 and 5.8 and (5.50),

∑

|γ|≤T

X2β+1 = −
∫ 1−θ(T)

0
X2σ+1 dN(σ,T)

� XN(0,T) + (logX)
∫ 1−θ(T)

0
X2σ+1N(σ,T) dσ

� XT(logT) + (logX)c2+1

∫ 1−θ(T)

0
X2σ+1T2.4(1−σ) dσ

� X3−εθ(T)(logX)c2+1 � X3(logX)−A−3. (5.98)

The desired bound (5.94) follows from (5.95), (5.97), and (5.98). �

5.7 The linear sieve

This section is a (very) brief introduction to sieve methods, without proofs and in the special case
of a “linear sieve”.

5.7.1 The fundamental problem of sieve theory

LetA be a finite integer sequence. We will be concerned with the existence of elements ofA that
are primes or, more generally,almost primes Pr , that is, integers having at mostr prime divisors,
counted according to multiplicity. We consider a set of prime numbersP and a real parameter
z≥ 2 and define thesifting function

S(A,P, z) = #
{

a ∈ A : (a,P(z)) = 1
}

, P(z) =
∏

p<z
p∈P

p. (5.99)

In applications, the setP is usually taken to be the set of possible prime divisors of the elements
ofA, so the sifting function (5.99) counts the elements ofA free of prime divisorsp < z.

For our first attempt at boundingS(A,P, z), we recall Lemma 1.2. It yields

S(A,P, z) =
∑

a∈A

∑

d|(a,P(z))

µ(d) =
∑

d|P(z)

µ(d)|Ad|, (5.100)

where
|Ad| = #

{

a ∈ A : a ≡ 0 (modd)
}

.

To this end, we suppose that there exist a (large) quantityX and a multiplicative functionω(d)
such that|Ad| can be approximated byXω(d)/d, and we writer(A, d) for the remainder in this
approximation:

|Ad| = X
ω(d)

d
+ r(A, d). (5.101)
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We expectr(A, d) to be ‘small’, at least in some average sense overd. Substituting (5.101) into
the right side of (5.100), we find that

S(A,P, z) = XV(z) + R(A, z), (5.102)

where

V(z) =
∑

d|P(z)

µ(d)
ω(d)

d
, R(A, z) =

∑

d|P(z)

µ(d)r(A, d). (5.103)

We would like to believe that, under ‘ideal circumstances’,(5.103) is an asymptotic formula for
the sifting functionS(A,P, z), XV(z) being the main term andR(A, z) the error term. However,
such expectations turn out to be unrealistic (see Exercise 10). Therefore, we need to adjust our
strategy.

Let D > 0 be a parameter to be chosen later in terms ofX. Suppose thatΛ+(d) andΛ−(d) are
real-valued functions supported on the squarefree integersd such that

|Λ±(d)| ≤ 1 and Λ±(d) = 0 for d ≥ D. (5.104)

Furthermore, suppose that

∑

d|n

Λ−(d) ≤
∑

d|n

µ(d) ≤
∑

d|n

Λ+(d) for all n ∈ A. (5.105)

Using (5.100), (5.101), and the left inequality in (5.105),we obtain

S(A,P, z) ≥
∑

a∈A

∑

d|(a,P(z))

Λ−(d) =
∑

d|P(z)

Λ−(d)|Ad|

=
∑

d|P(z)

Λ−(d)

(

X
ω(d)

d
+ r(A, d)

)

≥ XM− − R,

where

M± =
∑

d|P(z)

Λ±(d)
ω(d)

d
, R =

∑

d|P(z)
d<D

|r(A, d)|. (5.106)

In a similar fashion, we can use the right inequality in (5.105) to estimate the sifting function from
above. That is, we have

XM− − R ≤ S(A,P, z) ≤ XM+ + R. (5.107)

We are now in a position to overcome the difficulty caused by the “error term” in (5.100). The
sumR is similar to the error termR(A, z) defined in (5.101), but unlikeR(A, z) we can use the
parameterD to control the number of terms inR. Thus, our general strategy will be to construct
functionsΛ±(d) which satisfy (5.104) and (5.105) and for which the sumsM± are of the same
order as the sumV(z) defined in (5.102). There are various constructions of suchfunctionsΛ±(d).
We will simply state one of the modern sieves in a form suitable for application in§5.8.
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5.7.2 The Rosser–Iwaniec sieve

The basic form of this sieve method appeared for the first timein an unpublished manuscript by
Rosser, and the full-fledged version was developed independently by Iwaniec [32, 33]. Suppose
that the multiplicative functionω(d) in (5.101) satisfies the condition

∏

w1≤p<w2

(

1− ω(p)
p

)−1

≤
(

logw2

logw1

)κ (

1+
K

logw1

)

(2 ≤ w1 < w2), (5.108)

whereκ > 0 is an absolute constant known as thesieve dimensionandK > 0 is independent of
w1 andw2. This inequality is usually interpreted as an average boundfor the values taken byω(p)
when p is prime, since it is consistent with the inequalityω(p) ≤ κ. In the applications we are
interested in, (5.108) holds withκ = 1, so we will state the Rosser–Iwaniec sieve in this special
case: this is the so-called thelinear sieve.

Suppose thatω(p) satisfies (5.108) withκ = 1 and that

0 < ω(p) < p whenp ∈ P and ω(p) = 0 whenp < P. (5.109)

We putΛ±(1) = 1 andΛ±(d) = 0 if d is not squarefree. Ifd > 1 is squarefree and has prime
decompositiond = p1 · · · pr , p1 > p2 > · · · > pr , we define

Λ+(d) =

{

(−1)r if p1 · · · p2l p3
2l+1 < D whenever 0≤ l ≤ (r − 1)/2,

0 otherwise,
(5.110)

Λ−(d) =

{

(−1)r if p1 · · · p2l−1p3
2l < D whenever 1≤ l ≤ r/2,

0 otherwise.
(5.111)

It can be shown (see Greaves’ book [18] or Iwaniec’s originalpaper [33]) that these two functions
satisfy conditions (5.104) and (5.105). Furthermore, if the quantitiesM± are defined by (5.106)
with Λ±(d) given by (5.110) and (5.111), we have

V(z) ≤ M+ ≤ V(z)
(

F(s) +O
(

e−s(logD)−1/3
))

for s≥ 1, (5.112)

V(z) ≥ M− ≥ V(z)
(

f (s) +O
(

e−s(logD)−1/3
))

for s≥ 2, (5.113)

wheres= logD/ logzand the functionsf (s) andF(s) are the continuous solutions of the following
system of differential delay equations:

f (s) = 0 if 0 < s≤ 2,

F(s) = 2eγs−1 if 0 < s≤ 3,

(s f(s))′ = F(s− 1) if s> 2,

(sF(s))′ = f (s− 1) if s> 3.

Hereγ is Euler’s constant. The analysis of this system reveals that the functionF(s) is strictly
decreasing fors> 0, that the functionf (s) is strictly increasing fors> 2, and that

0 < f (s) < 1 < F(s) for s> 2. (5.114)

102



Furthermore, both functions are very close to 1 for larges: they satisfy

F(s), f (s) = 1+O(s−s) ass→ ∞. (5.115)

Substituting (5.112) and (5.113) into (5.107), we obtain

S(A,P, z) ≤ XV(z)
(

F(s) +O
(

(logD)−1/3
))

+ R for s≥ 1, (5.116)

S(A,P, z) ≥ XV(z)
(

f (s) +O
(

(logD)−1/3
))

− R for s≥ 2. (5.117)

5.7.3 Two applications

Example 5.7.1.Suppose that 2≤ y ≤ x, wherex is a (large) real number. We chooseA to be the
sequence of integersn ∈ (x− y, x] andP to be the set of all primes. Then

|Ad| =
∑

x−y<md≤x

1 =
[ x

d

]

−
[ x− y

d

]

=
y
d
−

{ x
d

}

+

{ x− y
d

}

,

so (5.101) holds with

X = y, ω(d) = 1, and r(A, d) = −
{ x

d

}

+

{x− y
d

}

,

and in (5.117), one has

XV(z) = y
∏

p<z

(

1− p−1
)

� y(logz)−1 and R � D.

Hence, combining (5.114) and (5.117), we obtain

S(A,P, z)� y(log x)−1, (5.118)

provided that
D ≤ y1−ε and z≤ D1/2−ε

for some fixedε > 0.
Choosingy = xθ, D = y1−ε , andz = D1/2−ε , we find that there are� y(log x)−1 integers

n ∈ (x − xθ, x] that have no prime divisor smaller thanxθ/2−2ε . Since the numbers in question do
not exceedx, each of the elements ofA counted on the left side of (5.118) has at most 2/θ prime
divisors. In particular, we are able to conclude that:

For sufficiently large x, the interval(x− x1/2, x] contains a P4-number.

Note that in this case we just miss to show the existence ofP3-numbers in (x − x1/2, x]. If we
increase the length of the intervals just slightly, we obtain:

For δ > 0 and x≥ x0(δ), the interval(x− x1/2+δ, x] contains a P3-number.

�
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Example 5.7.2.Suppose thatn is a (large) even integer and set

A =
{

n− p : 2 < p < n
}

and P =
{

p : p - n
}

.

Then (5.101) is expected to hold with

X = Li n and ω(d) =

{

d/φ(d) if (d, n) = 1,

0 otherwise.

The main term in (5.117) is

XV(z) = (Li n)
∏

p<z
p-n

(

1− (p− 1)−1
)

� (Li n)(logz)−1, (5.119)

and the error termR is bounded by

D +
∑

d≤D

max
(a,d)=1

∣

∣

∣

∣

π(n; d, a) − Li n
φ(d)

∣

∣

∣

∣

.

In particular, whenD ≤ n1/2−ε , the Bombieri–Vinogradov theorem yields

R � n(logn)−3. (5.120)

We now chooseD = n0.49 andz= n2/9, so that we have

s=
logD
logz

> 2.2.

Combining (5.114), (5.117), (5.119), and (5.120), we find that

S(A,P, z)� n(logn)−2. (5.121)

That is, there are� n(logn)−2 elements ofA that have no prime divisors smaller thann2/9. Since
the numbers inA do not exceedn, the elements ofA counted on the left side of (5.121) have at
most four prime divisors each, that is, the left side of (5.121) counts solutions ofn− p = P4. We
conclude that:

Every sufficiently large even integer n can be represented as the sum of aprime and a
P4-number.

�

The results of both examples can be strengthened significantly. Chen [9, 10] has proved the
following two theorems.

Theorem 8 (Chen).For sufficiently large x, the interval(x− x1/2, x] always contains a P2-number.
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Theorem 9 (Chen). Every sufficiently large even integer n can be represented as the sum of a
prime and a P2-number.

Obviously, Theorem 9 is the best possible result of its kind,short of a proof of the binary
Goldbach conjecture. Its proof is too involved to include inthese lectures, but those interested can
find all the details in Halberstam and Richert [19, Ch. 11]. Wepresent the proof of Theorem 8 in
§5.8. However, unlike Theorem 9, Theorem 8 can and has been improved on (several times). The
best result to date is due to Liu [39] and states that all intervals of the form (x− x0.436, x], x ≥ x0,
contain aP2-number.

5.7.4 The bilinear form of the error term in the linear sieve

Assume thatA is an integer sequence such that (5.101) holds with a functionω subject to (5.108)
with κ = 1 and

∑

w1≤p<w2

∑

ν≥2

ω(pν)
pν
≤ L

log 3w1
(2 ≤ ω1 < ω2),

whereL > 0 is independent ofw1,w2. Inspired by Chen’s original proof of Theorem 8, Iwaniec [32]
obtained the following more flexible form of the linear Rosser–Iwaniec sieve.

Theorem 5.11 (Iwaniec).Suppose that0 < ε < 1/3, M,N ≥ 2, D = MN. Then

S(A,P, z) ≤ XV(z) (F(s) + E(ε,D,K, L)) + R+(M,N), (5.122)

S(A,P, z) ≥ XV(z) ( f (s) − E(ε,D,K, L)) − R+(M,N), (5.123)

where s= logD/ logz, E(ε,D,K, L) � ε + ε−8eK+L(logD)−1/3, and

R±(M,N) =
∑

j≤J

∑

m≤M
m|P(z)

∑

n≤N
n|P(z)

a±m, jb
±
n, jr(A,mn), J = exp

(

8ε−3
)

.

The coefficients a±m, j, b
±
n, j depend at most onε,M,N (but not onA) and satisfy|a±m, j | ≤ 1, |b±n, j | ≤ 1.

The importance of this result is that it allows us to replace the error termR defined by (5.106)
with a bounded number of sums of the form

∑

m≤M

∑

n≤N

ambnr(A,mn),

where |am| ≤ 1, |bn| ≤ 1. In many applications, one can exploit the arithmetic properties of
the sequenceA to estimate such double sums more effectively. To illustrate this, we return to
Example 5.7.1. Suppose thaty = xθ, 2/5 < θ < 3/5. We will show (see Lemma 5.13 below) that
in this situation one can obtain a satisfactory bound forR±(M,N) under the hypotheses

M ≤ xθ−6ε , MN2 ≤ x(5θ−1)/2−10ε .

Therefore, upon choosing 0< ε < ε0(δ), M = xθ−6ε , andN = x(3θ−1)/4−2ε in Theorem 5.11, we can
replace the parameterD = xθ−ε in Example 5.7.1 byD = MN = x(7θ−1)/4−8ε to obtain:

For δ > 0 and x≥ x0(δ), the interval(x− x3/7+δ, x] contains a P3-number.
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5.8 Almost primes in short intervals

In this section we establish Theorem 8. That result and its subsequent improvements rest on two
new ideas: more sophisticated sieve machinery and the Fourier analysis of the remaindersr(A, d).

5.8.1 The remaindersr(A, d)

In Example 5.7.1 we estimated the error term in (5.117) trivially. In this section, we use Fourier
analytic techniques to exploit the oscillation of the remaindersr(A,mn) in (5.122) and (5.123).

Lemma 5.12. Suppose thatε > 0, x2ε ≤ y ≤ x, 2 ≤ M < M1 ≤ 2M, 2 ≤ N < N1 ≤ 2N,
y ≤ MN ≤ x, and am, bn are complex numbers with|am| ≤ 1, |bn| ≤ 1. We define

r(x, y; d) =
[ x

d

]

−
[ x− y

d

]

− y
d
.

There exist a real number X∈ [x/2, 2x] and (complex) coefficients a∗m, b
∗
n, with |a∗m| ≤ 1, |b∗n| ≤ 1,

such that

∑

M<m≤M1

∑

N<n≤N1

ambnr(x, y; mn)� y(MN)−1

∣

∣

∣

∣

∑

M<m≤M1

∑

N<n≤N1

∑

1≤h≤H

a∗mb∗ne

(

Xh
mn

)
∣

∣

∣

∣

+ yx−ε ,

with H = MNy−1x3ε .

Proof. Let f be aC∞-function, supported in [x− y− yx−2ε , x+ yx−2ε ] and such that

f (u) = 1 (x− y ≤ u ≤ x) and f ( j)(u) � (yx−2ε )− j ( j ≥ 0). (5.124)

(See Exercise 12 for one possible construction of such a function.) Then, by Lemma 1.21,

∑

M<m≤M1

∑

N<n≤N1

∑

x−y<kmn≤x

ambn −
∑

M<m≤M1

∑

N<n≤N1

∑

k

ambn f (kmn)

�
∑

x−y−yx−2ε<u≤x−y

d(u)2 +
∑

x<u≤x+yx−2ε

d(u)2� yx−ε ,

that is,

∑

M<m≤M1

∑

N<n≤N1

ambn

([ x
mn

]

−
[ x− y

mn

])

=
∑

M<m≤M1

∑

N<n≤N1

∑

k

ambn f (kmn) +O(yx−ε). (5.125)

Let gr(u) = f (ur). Applying the Poisson summation formula (see Zygmund [59,eq. (II.13.4)]) to
the sum overk, we obtain

∑

k

f (kmn) =
∑

k

gmn(k) =
∑

h

ĝmn(h) = (mn)−1
∑

h

f̂

(

h
mn

)

,
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where f̂ is the Fourier transform off . Hence, we can rewrite (5.125) as

∑

M<m≤M1

∑

N<n≤N1

ambn

([ x
mn

]

−
[ x− y

mn

])

=
∑

M<m≤M1

∑

N<n≤N1

∑

h

ambn

mn
f̂

(

h
mn

)

+O(yx−ε). (5.126)

The contribution to the right side from the terms withh = 0 is

f̂ (0)
∑

M<m≤M1

∑

N<n≤N1

ambn

mn
= y

∑

M<m≤M1

∑

N<n≤N1

ambn

mn
+O(yx−ε),

so it follows from (5.126) that

∑

M<m≤M1

∑

N<n≤N1

ambnr(x, y; mn) =
∑

M<m≤M1

∑

N<n≤N1

∑

h,0

ambn

mn
f̂

(

h
mn

)

+O(yx−ε). (5.127)

We now proceed to estimate the tails of the series overh. Choose an integerr ≥ 3 + ε−1. By
(5.124) andr-fold partial integration,

f̂ (t) = (−2πit)−r

∫ ∞

−∞
f (r)(u)e(−ut) du� y(yx−2ε |t|)−r (r ≥ 0).

Thus, the contribution to the right side of (5.127) from terms with |h| > H is

� y
∑

|h|>H

(

yx−2ε |h|
MN

)−r

� yH

(

yx−2εH
MN

)−r

� MNx(3−r)ε � 1.

Therefore, (5.127) yields

∑

M<m≤M1

∑

N<n≤N1

ambnr(x, y; mn)�
∫ ∞

−∞

∣

∣

∣

∣

∑

M<m≤M1

∑

N<n≤N1

∑

0<|h|≤H

ambn

mn
e

(

−uh
mn

)
∣

∣

∣

∣

| f (u)| du+ yx−ε .

Recalling thatf is supported on a subset of [x/2, 2x] of measureO(y), we conclude that

∑

M<m≤M1

∑

N<n≤N1

ambnr(x, y; mn)� y(MN)−1

∣

∣

∣

∣

∑

M<m≤M1

∑

N<n≤N1

∑

1≤h≤H

a∗mb∗ne

(

Xh
mn

)
∣

∣

∣

∣

+ yx−ε ,

where|a∗m| ≤ 1, |b∗n| ≤ 1, andx/2 ≤ X ≤ 2x. �

Lemma 5.13. Suppose thatε > 0, x2ε ≤ y ≤ x, 2 ≤ M < M1 ≤ 2M, 2 ≤ N < N1 ≤ 2N,
y ≤ MN ≤ x, and am, bn are complex numbers with|am| ≤ 1, |bn| ≤ 1. Also, suppose that

M ≤ yx−6ε , MN ≤ y1/2x1/2−3ε , MN2 ≤ y5/2x−1/2−10ε . (5.128)

Then
∑

M<m≤M1

∑

N<n≤N1

ambnr(x, y; mn)� yx−ε ,

where r(x, y; mn) is the function defined in Lemma 5.12.
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Proof. Let H = MNy−1x3ε. By Lemma 5.12, it suffices to show that

S(H,M,N) =
∑

M<m≤M1

∑

N<n≤N1

∑

1≤h≤H

a∗mb∗ne

(

Xh
mn

)

� MNx−ε . (5.129)

Herea∗m, b
∗
n, andX are as in Lemma 5.12. By Cauchy’s inequality,

|S(H,M,N)|2 � M
∑

M<m≤2M

∣

∣

∣

∣

∑

N<n≤N1

∑

1≤h≤H

b∗ne

(

Xh
mn

)
∣

∣

∣

∣

2

� M
∑

N<n1,n2≤2N

∑

1≤h1,h2≤H

∣

∣

∣

∣

∑

M<m≤2M

e

(

X
m

(

h1

n1
− h2

n2

))
∣

∣

∣

∣

. (5.130)

We now group the quadruples (h1, h2, n1, n2) according to the value of the determinant∆ = h1n2 −
h2n1. When∆ = 0, we bound the sum overm in (5.130) trivially byM. When∆ , 0, we appeal to
Lemma 5.10 withf (m) = ∆X(n1n2m)−1. We get

∑

M<m≤2M

e

(

∆X
mn1n2

)

�
(

|∆|X
MN2

)1/2

+
M2N2

|∆|X .

Writing δ(k) for the number of quadruples with∆ = k, we conclude that

|S(H,M,N)|2 � δ(0)M2 +
∑

0<|k|≤2HN

δ(k)

( (

|k|X
MN2

)1/2

+
M2N2

|k|X

)

. (5.131)

For |k| ≤ 2HN, we have

δ(k) ≤
∑

N<n≤2N

∑

1≤h≤H

d(hn+ |k|) � (HN)1+ε/2,

so (5.131) yields

(HN)−ε |S(H,M,N)|2� M2NH + X1/2M1/2N3/2H5/2 + X−1M3N3H

� M2N2
(

My−1x3ε + MN2y−5/2x1/2+7.5ε + M2N2y−1x−1+3ε
)

. (5.132)

Since (HN)ε ≤ xε/2, (5.129) follows from (5.132) and the hypotheses (5.128). �

5.8.2 Proof of Theorem 8

Let y = x1/2, z= xδ,P be the set of all primes,A the sequence of integersn ∈ (x− y, x]. We write
S(A,w) for S(A,P,w),

P(w) =
∏

p<w

p, V(w) =
∏

p<w

(

1− p−1
)

.
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Our starting point is the sum

Σ(α, β, δ) =
∑

x−y<n≤x
(n,P(z))=1

(

1−
∑

p|n

(

α − β log p
log x

) )

,

whereα, β, δ are positive absolute constants to be chosen later. On the one hand, we have

Σ(α, β, δ) ≤
∑

x−y<n≤x
(n,P(z))=1

(

β + 1− α
∑

p|n
1

)

.

Hence, if we assume that
3α ≥ β + 1, (5.133)

only P2-numbersn will contribute positive terms toΣ(α, β, δ). In particular, the theorem will follow
if we show that

Σ(α, β, δ) > 0

for someα, β, δ satisfying (5.133). On the other hand,

Σ(α, β, δ) = S(A, z) −
∑

p≥z

(

α − β log p
log x

)

S(Ap, z)

≥ S(A, z) −
∑

z≤p≤xα/β

(

α − β log p
log x

)

S(Ap, z). (5.134)

First, we proceed to obtain a lower bound forS(A, z). Put ε0 = 10−6. By Lemma 5.13 with
M ≤ x1/2−6ε0 andN ≤ x1/8−2ε0, we have

∑

M<m≤M1

∑

N<n≤N1

ambnr(A,mn)� yx−ε0 (5.135)

for any choice ofM1 ≤ 2M, N1 ≤ 2N, |am| ≤ 1, |bn| ≤ 1. We now appeal to Theorem 5.11 with
M = x1/2−6ε0, N = x1/8−2ε0, X = y, z= xδ. It yields

S(A, z) ≥ yV(z)
(

f
(

δ−1(5/8− 8ε0)
)

− c9ε −Oε

(

(log x)−1/3
))

.

Note that we have used (5.135) to estimate the remainderR−(M,N) in (5.123). Choosingε =
(2000c9)−1, we deduce that, forx→ ∞,

S(A, z) ≥ yV(z)
(

f
(

δ−1(5/8− 8ε0)
)

− 0.001
)

. (5.136)

Next, we turn to the sum on the right side of (5.134). To this end we require that

α/β ≤ 1/2− 7ε0. (5.137)
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Using a dyadic argument, we split the interval [z, xα/β] into O(log x) subintervals [xu,Cxu], C ≤ 2.
For p ∈ [xu,Cxu], we apply Theorem 5.11 withM = Mu = x1/2−u−6ε0, N = x1/8−2ε0, X = Xp = yp−1,
z= xδ:

S(Ap, z) ≤ XpV(z)

(

F

(

5/8− u− 8ε0

δ

)

+ c9ε +Oε

(

(log x)−1/3
)

)

+ Rp(Mu,N), (5.138)

where
Rp(Mu,N) =

∑

j≤J

∑

m≤Mu
m|P(z)

∑

n≤N
n|P(z)

am, jbn, jr(Ap,mn).

Here, the coefficientsam, j, bn, j independent ofp and satisfy|am, j | ≤ 1, |bn, j | ≤ 1. Whenm andn are
divisors ofP(z) andp ≥ z, we haver(Ap,mn) = r(A,mnp). Hence, on writingk = pm, we get

∑

xu<p≤Cxu

(

α − β log p
log x

)

Rp(Mu,N) �ε

∣

∣

∣

∣

∑

k≤K

∑

n≤N

ckbnr(A, kn)

∣

∣

∣

∣

,

whereK = 2x1/2−6ε0, |ck| ≤ 1, |bn| ≤ 1. Thus, by (5.135),

∑

xu<p≤Cxu

(

α − β log p
log x

)

Rp(Mu,N) �ε yx−ε0/2. (5.139)

Furthermore, whenxu ≤ p ≤ 2xu, we have

F

(

5/8− u− 8ε0

δ

)

− F

(

5/8− 8ε0

δ
− log p

logz

)

� (log x)−1. (5.140)

Combining (5.138)–(5.140), we find that

∑

z≤p≤xα/β

(

α − β log p
log x

)

S(Ap, z) ≤ yV(z)
(

σ1 + σ2c9ε +Oε

(

σ2(log x)−1/3
))

,

where

σ1 =
∑

xδ≤p≤xα/β

1
p

(

α − β log p
log x

)

F

(

5/8− 8ε0

δ
− log p

logz

)

,

σ2 =
∑

xδ≤p≤xα/β

1
p

(

α − β log p
log x

)

.

By Theorem 1.9,σ2 � 1, so choosingε sufficiently small, we conclude that whenx→ ∞,

∑

z≤p≤xα/β

(

α − β log p
log x

)

S(Ap, z) ≤ yV(z)(σ1 + 0.001). (5.141)
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Finally, we evaluateσ1. Let g(u) = x−u(α − βu)F
(

δ−1(5/8− 8ε0 − u)
)

and note that

g(u) � x−u and g′(u) � x−u(log x).

Using Stieltjes integration by parts and the PNT, we obtain

σ1 =

∫ α/β

δ

g(u) d
(

π(xu) − π(xδ)
)

= −
∫ α/β

δ

(

π(xu) − π(xδ)
)

g′(u) du

= −
∫ α/β

δ

∫ xu

xδ

dt
log t

dg(u) +O
(

(log x)−1
)

=

∫ α/β

δ

g(u)xu(log x)
log(xu)

du+O
(

(log x)−1
)

=

∫ α/β

δ

u−1(α − βu)F
(

δ−1(5/8− 8ε0 − u)
)

du+O
(

(log x)−1
)

.

From the last calculation, (5.134), (5.136), and (5.141), we deduce that

Σ(α, β, δ) ≥ yV(z)(σ3 − 0.003),

where

σ3 = f
(

δ−1(5/8− 8ε0)
)

−
∫ α/β

δ

u−1(α − βu)F
(

δ−1(5/8− 8ε0 − u)
)

du.

Hence, it remains to chooseα, β, δ satisfying (5.133) and (5.137) and such thatσ3 > 0.003. In
order to simplify the calculations, we choose

δ = 5/32− 2ε0, α = 4/3, β = 3,

although a slightly better choice would have been

δ = 5/32− 2ε0, α = (β + 1)/3, β = 2.1. (5.142)

Then (5.133) and (5.137) hold and

σ3 = f (4)− 1
3

∫ 4/9

δ

u−1(4− 9u)F
(

4− δ−1u
)

du

= 2eγ
(

ln 3
4
− 1

3

∫ 4/9

δ

4− 9u
u(4− δ−1u)

du

)

= 2eγ
(

ln 3
4
− 1

3
ln

(

3
9δ − 1

)

+ 3δ ln

(

6.75δ
9δ − 1

) )

≥ 0.11eγ > 0.11.

This completes the proof of Chen’s theorem. �
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Remark. It is not difficult to obtainsomeimprovement on Theorem 8. Indeed, after changing the
choice ofy to y = xθ, we alter our choices so that

δ = (7θ − 1)/16− 2ε0, α/β ≤ θ − 7ε0. (5.143)

Choosing firstα = (β + 1)/3 and thenβ so that the second inequality in (5.143) is nearly exact (cf.
(5.142)), we derive a lower bound

Σ(α, β, δ) ≥ xθV(z)(σ4(θ) − 0.003),

whereσ4(θ) is a function ofθ similar toσ3 above. Finally, we try to chooseθ so thatσ4(θ) > 0.003.
Following this strategy, one easily finds that one can replace the interval (x− x1/2, x] in Theorem 8
by (x− x0.46, x]. As we mentioned at the end of§5.7.3, further improvements arise from the use of
sharper exponential sum estimates and/or more sophisticated versions of the sumΣ(α, β, δ) above.
Such matters, however, go beyond the scope of these lectures. �

Exercises

1. Prove (5.11).

2. Prove Theorem 5.3.

3. (a) Suppose thatf (x)(log x)−1→ ∞ and

∑

q≤Q

max
(a,q)=1

∣

∣

∣

∣

ψ(x; q, a) − x
φ(q)

∣

∣

∣

∣

� x f(x)−1.

Show that the asymptotic formula

ψ(x; q, a) =
x

φ(q)

(

1+ o(1)
)

asx→ ∞ (∗)

holds for all arithmetic progressionsa mod q, with 1 ≤ q ≤ min
(

Q, f (x)(log x)−1
)

and (a, q) = 1. In
particular, a version of the Bombieri–Vinogradov theorem with xexp

(

−2(logx)δ
)

, δ > 0, in place of the
term x(log x)−A on the right side of (5.9) would establish (∗) for all arithmetic progressions with moduli
q ≤ exp

(

(log x)δ
)

, thus yielding an improvement on the Siegel–Walfisz theorem.

(b) Obtain a variant of the result of part (a) relating to the Barban–Davenport–Halberstam theorem.

4. Prove (5.40).

5. Prove that:

(a) φ(n)� n(log logn)−1 for all n ≥ 10;

(b)
∑

n≤x

n2

φ(n)2
� x;

(c)
∑

n>x

φ(n)−2� x−1.

6. Let J(n) be defined by (5.41). Prove thatJ(n) = 1
2n2.
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7. The point of this exercise is to establish (5.44).

(a) Use Lemma 5.1 withU = V to decomposef (α) into type I sums of the form (5.3) withf (n) = e(αn)
andM � U2 and type II sums of the form (5.4) with the samef (n) andU � M,N � xU−1.

(b) LetΣ1 be any of the type I sums arising from the decomposition in part (a). Prove that

Σ1 � (logn)
∑

m≤U2

min
(

n/m, ‖αm‖−1
)

.

(c) LetΣ2 be any of the type II sums arising from the decomposition in part (a). Prove that

|Σ2|2 � M(logn)7
∑

u≤nM−1

∑

v≤nM−1

min
(

M, ‖α(u− v)‖−1
)

,

for someM with U ≤ M ≤ xU−1.

(d) Suppose thatM,N, α are real numbers withM,N ≥ 1, and that|α − a/q| ≤ q−2 with (a, q) = 1. Then

∑

m≤M

min
(

MNm−1, ‖αm‖−1
)

�
(

MNq−1 + M + q
)

(log 2MNq).

[

H: See Vaughan [54, Lemma 2.2].
]

(e) Suppose that|α − a/q| ≤ q−2. Using the results of parts (b)–(d), show that

Σ1 � (logn)2
(

nq−1 + U2 + q
)

and
Σ2 � (logn)4

(

nq−1/2 + nU−1/2 + n1/2U1/2 + n1/2q1/2
)

.

Noting thatU = n2/5 is the choice that optimizes these bounds, deduce (5.44).

8. The purpose of this exercise is to establish Lemma 5.6. LetN = [Q] and consider the numbers

0, {α}, {2α}, . . . , {Nα}, 1. (∗)

Show that some interval
[

(k− 1)(N+ 1)−1, k(N+ 1)−1
]

, 1 ≤ k ≤ N+ 1, contains at least two of the numbers (∗).
From this, deduce Dirichlet’s theorem.

9. The purpose of this exercise is to give an alternative proof of Lemma 5.6.

(a) Show that Dirichlet’s theorem is equivalent to the inequality

δα = min
{

‖nα‖ : 1 ≤ n ≤ N
}

≤ (N + 1)−1. (∗)

(b) Suppose that 0< δ ≤ 1
2 and define the 1-periodic function

fδ(x) = max(δ − ‖x‖, 0).

Prove that thenth Fourier coefficient of fδ is given by

f̂δ(n) =

{

δ2 if m= 0,

(sinπδm)2/(πm)2 if m, 0.
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(c) Suppose thatδα > 0 and setδ = δα. Observe that

δ =
∑

|n|≤N

(

1− |n|
N + 1

)

fδ(nα).

Deduce that

δ =

∞
∑

m=−∞
f̂δ(m)KN(mα),

whereKN(x) is the Fejér kernel

KN(x) =
∑

|n|≤N

(

1− |n|
N + 1

)

e(nx) =
1

N + 1

(

sinπ(N + 1)x
sinπx

)2

.

(d) Use the result of part (c) to prove (∗).

10. LetA be the set of integersn ≤ X, P the set of all primes,z = X1/2. Observe that with these choices, (5.102)
takes the form

S(A,P, z) = X
∏

p<z

(

1− p−1
)

+ R(A, z).

Hence, under the hypothesis
R(A, z) = o

(

X(logX)−1
)

asX→ ∞, (∗)
one obtains

π(X) ∼ X
∏

p<z

(

1− p−1
)

∼ e−γX
logz

=
2e−γX
logX

,

which contradicts the PNT. Therefore, (∗) must be false.

11. Fill the details of Example 5.7.2.

12. The purpose of this exercise is to construct aC∞-function f with the properties required in the proof of
Lemma 5.12.

(a) Define the function

g(x) =

{

exp
(

(x− 1)−1 − x−1
)

if 0 < x < 1,

0 otherwise.

Show thatg ∈ C∞(R).

(b) LetG(x) =
∫ x
−∞ g(t) dt, whereg is the function from part (a). Show that the functionh(x) = G(x)/G(1)

is a non-decreasingC∞-function such thath(x) = 0 whenx ≤ 0 andh(x) = 1 whenx ≥ 1.

(c) Suppose thatα < β andδ > 0. Leth(x) be the function from part (b) and define

f (x) = h((x− α)/δ + 1)− h((x− β)/δ).

Then f is aC∞-function, supported in [α − δ, β + δ] and such that

f (x) = 1 (α ≤ x ≤ β) and f ( j)(x) � δ− j ( j ≥ 0).

13. Prove (5.140).

14. In the remark at the end of§5.8, we sketched the proof of the following result:

For sufficiently largex, the interval (x− x0.46, x] always contains aP2-number.

Fill the details of the proof.
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