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Abstract

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set
of values attained by the form

λ1x
3
1 + · · ·+ λsx

3
s

when x1 has at most 6 prime divisors and the remaining variables are
prime. In the case s = 4, we establish that most real numbers are “close”
to an element of S. We then prove that if s = 8, S is dense on the real
line.

1 Introduction and preliminaries

Let λ1, . . . , λs be non-zero real numbers with λ1/λ2 irrational, and let Ps denote
the set of integer points in Rs all coordinates of which are prime. We will be
concerned with the distribution of the values taken by the form

(1.1) λ1x
3
1 + · · ·+ λsx

3
s

on Ps. The (optimistic) conjecture is that if s ≥ 4, they are dense on R, but our
factual knowledge on the topic is much worse. Back in 1963, W. Schwarz [13]
showed that if s ≥ 9, the values of (1.1) on Ps are dense, and although sharper
quantitative versions of this result have been obtained (see R. C. Vaughan [16]
and R. C. Baker and G. Harman [1]), it seems that reducing the minimum value
of s is beyond the limit of the present methods. On the other hand, in the similar
situation with the classical Waring–Goldbach problem for cubes K. F. Roth [11]
showed that if one allows x to take arbitrary integer values, the equation

(1.2) x3 + p31 + p32 + p33 = n

is solvable for almost all integer n (in the sense usually adopted in additive num-
ber theory). Let Pr denote the set of integers having at most r prime divisors
counted with multiplicities. J. Brüdern [3] proved that if n ≡ 4 (mod 18) one
can restrict the variable x in (1.2) to the set P4, and K. Kawada [9] replaced
P4 by P3 via Chen’s reversal of rôles. The main goal of the present paper is to
carry Brüdern’s result to Diophantine inequalities. We shall prove
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Theorem 1. Let λ1, . . . , λ4 be non-zero real numbers with λ1/λ2 irrational.
For δ > 0, let E(N) denote the Lebesgue measure of the set of real numbers
ν ∈ [−N,N ] for which the inequality

(1.3) |λ1x31 + λ2x
3
2 + λ3x

3
3 + λ4x

3
4 − ν| < (max |xj |)−δ

has no solution in prime x2, . . . , x4 and x1 ∈ P6. Then, for sufficiently small
δ > 0, there exist arbitrarily large values of N such that E(N)� N1−η for some
η > 0 (depending at most on δ). Furthermore, if λ1/λ2 is also algebraic, the
assertion is true for all sufficiently large N.

We can deduce from Theorem 1 the following

Theorem 2. If λ1, . . . , λ8 are non-zero and λ1/λ2 is irrational, the values taken
by the form

λ1x
3
1 + · · ·+ λ8x

3
8

at the points (x1, . . . , x8) ∈ P6 × P7 are dense on the real line.

The effect of having almost primes with (possibly) more prime factors than
in the result on the corresponding “equation problem”, although undesirable,
is not unexpected. For example, when dealing with the analogue of the binary
Goldbach problem, R. C. Vaughan [17] managed to show that reals can be
approximated by the values taken by a linear form when one of the variables is
prime and the other is in P4. Later, using a method that draws havily on the
fact that only two variables are present, G. Harman [7] succeeded in replacing
P4 by P3 in Vaughan’s result, but even this is weaker than Chen’s theorem (all
sufficiently large even integers are the sum of a prime and an element of P2).

Through the rest of this section we use the linear sieve to derive Theorem 1
from Propositions 1 and 2 below. The Propositions are proved in Sections 2–4
and the proof of Theorem 2 is given in Section 5.

Without loss of generality we can assume that λ1 and ν are positive. Let
a/q be a convergent to the continued fraction of λ1/λ2 with q being sufficiently
large, and choose N so that

(1.4) N3/20+6δ+21η ≤ q ≤ N1/2−2δ−9η

(this can always be done provided that δ and η are sufficiently small). Note
that if λ1/λ2 is an algebraic irrationality, by Roth’s theorem on Diophantine
approximation, the denominators of two consecutive convergents to its continued
fraction satisfy qm+1 � q1+εm (hereafter ε denotes a positive number that can
be taken arbitrarily small). Hence, in this case all sufficiently large N satisfy
(1.4) for some q, and so both parts of the theorem will follow, if we show that
E(N)� N1−η whenever N satisfies (1.4).

Define P , P1, and Q by

P 3 =
1

2
N, 8|λ2|P 3

1 =
1

4
N, Q = P 4/5,
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and let L = logN , τ = P−δL−2. Also, for N < ν ≤ 2N , define r∗(ν) as the
number of solutions of

(1.5) |λ1m3 + λ2p
3
2 + λ3p

3
3 + λ4p

3
4 − ν| < τL

in prime p2, p3, p4 and m ∈ P6 subject to

(1.6) P < m ≤ 2P, P1 < p2 ≤ 2P1, Q < p3, p4 ≤ 2Q.

We shall prove that r∗(ν) > 0 for almost all ν ≤ N (by the phrase “for almost
all ν ≤ N” we will mean “with the possible exceptions ν ∈ (N, 2N ] forming a
set of Lebesgue measure O(N1−η)”).

We first bring in the function K(x) = e−πx
2

to “smooth” the condition (1.5)
in the definition of r∗(ν). The important properties of K(x) are

(1.7) K̂(x) :=

∫ ∞
−∞

K(ξ) e(−xξ) dξ = K(x),

and

(1.8) e−πχ(−1,1)(x) ≤ K(x) ≤ χ(−1,1)(x/ρ) + e−πρ
2

(ρ > 0).

It is also convenient to weight the primes p2, p3, p4 by logarithms. Thus, defining
the weights

w(ν;m) =
∑

P1<p2≤2P1
Q<p3,p4≤2Q

log p2 · · · log p4K

(
|λ1m3 + λ2p

3
2 + λ3p

3
3 + λ4p

3
4 − ν|

τ

)
,

we have, by (1.8) with ρ = L,

r∗(ν)� L−3
∑

P<m≤2P
m∈P6

w(ν;m).

Hence, it suffices to show that, for example,

(1.9)
∑

P<m≤2P
m∈P6

w(ν;m) ≥ 1

for almost all ν ≤ N . Let r(ν) be the last sum with the condition m ∈ P6

omitted and rd(ν) be the subsum of r(ν) with m ≡ 0 (mod d). Let also X
approximate r(ν) , and for a squarefree d define the remainders R(d) by

(1.10) R(d) := rd(ν)−X/d.

(X will be defined explicitly by (4.3); at this point we will use only the estimate
X � τP−1Q2 � τN1/5.)
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To prove (1.9) we will use the weighted linear sieve of G. Greaves [5, 6]. For
a particular ν, (1.9) follows from the results in [5], provided that the next two
conditions hold

(A1) If θ < 1
5 , ξd are complex numbers of modulus ≤ 1, and µ(d) is the

Möbius function, then ∑
d≤P θ

µ2(d) ξdR(d)� XL−2.

(A2) There exists a ρ > 0 such that∑
p>P 1/10

rp2(ν)� X1−ρ.

The upper bound for θ in axiom (A1) is often referred to as the level of
distribution and is closely related to the number of prime divisors of the almost
prime variable. In particular, Brüdern (Lemma 1 in [3]) has θ < 1

3 in place
of θ < 1

5 , whence P4 in place of P6 in the final result. The reason that we
cannot achieve the same level of distribution as Brüdern is that the Davenport–
Heilbronn method is much more sensitive to “imparities” among the variables
than the classical form of the circle method. In particular, there is no analogue
(that the author is aware of) of the Vaughan’s result from [18], which was an
essential part of the proofs of most mean value estimates used in Brüdern’s
work. Instead, we are forced to rely on the weaker Lemma 9 in [4], leading to a
lower level of distribution.

We shall be able to verify the axioms for almost all ν ≤ N by proving the
following results

Proposition 1. Let θ < 1
5 , D = P θ, and R(d) be defined by (1.10). Let also

ξd be complex numbers of modulus ≤ 1. Then, for any A > 0, the values of
ν ∈ (N, 2N ] for which the estimate∑

d≤D

ξdR(d)� τP−1Q2L−A

does not hold form a set of Lebesgue measure O(N1−η).

Proposition 2. If γ > 4δ/3 and η is sufficiently small,∫ 2N

N

∣∣∣∣∣∣
∑
p>Pγ

rp2(ν)

∣∣∣∣∣∣
2

dν � τ2P 1−4ηQ4.

Clearly Proposition 1 establishes axiom (A1) for almost all ν ≤ N . Also, we
can deduce from Proposition 2 that the set of values of ν ∈ (N, 2N ] for which∑

p>Pγ

rp2(ν) > X1−η/2

has measure � N1−η, so axiom (A2) is satisfied for almost all ν ≤ N as well.
Thus, once we have the propositions the proof of Theorem 1 will be completed.
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2 Counting solutions of
Diophantine inequalities

This section contains estimates for the number of solutions of some Diophantine
inequalities. Also, in its end we prove Proposition 2. The first lemma states
some estimates from [4] in the present context.

Lemma 1. Let λ and µ be fixed real numbers with

1� |λ| � 1, 1� |µ| � 1,

and let Z be sufficiently large in terms of λ, µ. Denote by Sk the number of
solutions of the inequality

|λ(n31 − n32) + µ(m3
1 + · · ·+m3

k −m3
k+1 − · · · −m3

2k)| < 1/2

with Z < ni ≤ 2Z, Z4/5 < mi ≤ 2Z4/5. Then,
(a) S2 � Z13/5+ε;
(b) S3 � Z19/5+ε.

Proof. Define

(2.1) f(x) =
∑

Z<n≤2Z

e(xn3), g(x) =
∑

Z4/5<n≤2Z4/5

e(xn3),

and consider the integral

Jk =

∫ ∞
−∞
|f(λx)|2|g(µx)|2k

(
sinπx

πx

)2

dx.

By (11.3) and (11.4) in [15], Sk ≤ 2Jk. So, the result follows from Lemmas 8
and 9 of [4] (which contain the corresponding estimates for Jk).

Lemma 2. Let λ, µ, and κ be fixed real numbers with

1� |λ| � 1, 1� |µ| � 1, 1� |κ| � 1,

and let Z be sufficiently large in terms of λ, µ, κ. Denote by S(W) the number
of solutions of the inequality

|λ(n31 − n32) + µ(w3
1 − w3

2) + κ(m3
1 +m3

2 −m3
3 −m3

4)| < 1/2

with Z < ni ≤ 2Z, Z4/5 < mi ≤ 2Z4/5, and wi ∈W where W is a set of positive
integers � Z having cardinality W. Then,

S(W)� Z69/20+εW 3/4.
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Proof. Let f(x) and g(x) be given by (2.1), and define

h(x) =
∑
w∈W

e(xw3).

As in the previous proof, it suffices to show that

J(W) =

∫ ∞
−∞
|f(λx)|2|h(µx)|2|g(κx)|4Φ(x) dx� Z69/20+εW 3/4

where Φ(x) = (sinπx/πx)
2
. By Hölder’s inequality, Lemma 2.5 of [15], and

Lemma 9 of [4],

J(W)�
(∫ ∞
−∞
|f(λx)|8Φ(x)dx

)1/12(∫ ∞
−∞
|h(µx)|8Φ(x) dx

)1/4

×

×
(∫ ∞
−∞
|f(λx)|2|g(κx)|6Φ(x) dx

)2/3

� (Z5+ε)1/12(Z21/5+ε)2/3
(∫ ∞
−∞
|h(µx)|8Φ(x) dx

)1/4

.

Thus, the result follows from the inequality∫ ∞
−∞
|h(µx)|8Φ(x) dx� Z2+εW 3,

which one can easily derive from

(2.2)

∫ 1

0

|h(x)|8dx� Z2+εW 3.

The proof of (2.2) follows the argument on pp. 12–13 of [15]. If bj is the
number of solutions of w3

1−w3
2 = j in wi ∈W, and cj is the number of solutions

of (w + k)3 − w3 = j in w ∈W, |k| � Z, one has

(2.3) |h(x)|2 =
∑
j

bj e(−xj) and |h(x)|2 �
∑
j

cj e(xj).

Hence, by Parseval’s identity,∫ 1

0

|h(x)|4dx�
∑
j

bj cj .

Since c0 �W and cj � Zε, j 6= 0, we now find

(2.4)

∫ 1

0

|h(x)|4dx�Wb0 + Zε
∑
j

bj � ZεW 2.
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For
∑
bj �W 2 and

b0 =

∫ 1

0

|h(x)|2dx = W.

The analogues of (2.3) for the fourth power of h are

(2.5) |h(x)|4 =
∑
j

b∗j e(−xj) and |h(x)|4 � Z
∑
j

c∗j e(xj)

where now b∗j is the number of solutions of

w3
1 + w3

2 − w3
3 − w3

4 = j

in wi ∈W, and c∗j is the number of solutions of

3k1k2(3w + k1 + k2) = j

in w ∈W and |k1|, |k2| � Z. Again, these satisfy

c∗0 � ZW, b∗0 � ZεW 2, c∗j � Zε (j 6= 0),
∑
j

b∗j �W 4

(the estimate for b∗0 follows from (2.4)). Hence, by (2.5) and Parseval’s identity,∫ 1

0

|h(x)|8dx� Z
∑
j

b∗j c
∗
j = Zb∗0 c

∗
0 + Z

∑
j 6=0

b∗j c
∗
j

� Z2+εW 3 + Z1+εW 4 � Z2+εW 3.

The proof of (2.2) is complete.

We are now in position to prove Proposition 2.

Proof of Proposition 2. Let

(2.6) f(x) =
∑
p>Pγ

∑
P<n≤2P

n≡0 (mod p2)

e(xn3), g(Y ;x) =
∑

Y <p≤2Y

(log p) e(xp3),

and write

(2.7) F (x) = f(λ1x) g(P1;λ2x) g(Q;λ3x) g(Q;λ4x).

Then, by the Fourier inversion formula,∑
p>Pγ

rp2(ν) =

∫ ∞
−∞

F (x)Kτ (x) e(−xν) dx

where Kτ (x) = τK(τx).
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We first show that

(2.8)

∫ 2N

N

∣∣∣∣∫ ∞
−∞

F (x)Kτ (x) e(−xν) dx

∣∣∣∣2 dν � L

∫ ∞
−∞
|F (x)|2Kτ (x)2dx.

Let H = τ−1L and

J(ν) :=

∫ H

−H
F (x)Kτ (x) e(−xν) dx.

Since the contribution of |x| > H to the left side of (2.8) is negligible, we
consider ∫ 2N

N

|J(ν)|2dν =

∫ H

−H
F (x)Kτ (x)

∫ 2N

N

J(ν) e(xν) dνdx.

By the Cauchy–Schwarz inequality, the last integral is

≤ I1/2

∫ H

−H

∣∣∣∣∣
∫ 2N

N

J(ν) e(xν) dν

∣∣∣∣∣
2

dx

1/2

where I is the integral in the right side of (2.8). Furthermore,∫ H

−H

∣∣∣∣∣
∫ 2N

N

J(ν) e(xν) dν

∣∣∣∣∣
2

dx

=

∫ 2N

N

∫ 2N

N

J(ν1) J(ν2)

∫ H

−H
e(x(ν1 − ν2)) dx dν1dν2

≤
∫ 2N

N

∫ 2N

N

|J(ν1)|2
∣∣∣∣∣
∫ H

−H
e(x(ν1 − ν2)) dx

∣∣∣∣∣ dν1dν2.
Since for any ν1 ∈ (N, 2N ],∫ 2N

N

∣∣∣∣∣
∫ H

−H
e(x(ν1 − ν2)) dx

∣∣∣∣∣ dν2 � L,

we obtain that∫ H

−H

∣∣∣∣∣
∫ 2N

N

J(ν) e(xν) dν

∣∣∣∣∣
2

dx� L

∫ 2N

N

|J(ν)|2dν,

and (2.8) follows. Note that in the above argument it sufficed to assume that
F (x) is bounded by a fixed power of P , say F (x)� P 100.

Now, by virtue of (2.8), the proposition will follow from the estimate∫ ∞
−∞
|F (x)|2Kτ (x) dx� τP 1−5ηQ4.
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By the inequality between the arithmetic and geometric means and another
Fourier inversion, we obtain that this integral is � L3(T3 + T4) where Tj is the
number of solutions of

|λ1(w3
1 − w3

2) + λ2(n31 − n32) + λj(m
3
1 +m3

2 −m3
3 −m3

4)| < 1/2

in integers P1 < ni ≤ 2P1, Q < mi ≤ 2Q, P < wi ≤ 2P with wi divisible by the
square of a prime > P γ . Thus, by Lemma 2 with Z = P and W = P 1−γ ,

Tj � P 69/20+ε(P 1−γ)3/4 � P 1−3γ/4+εQ4,

and the result follows.

3 Estimates for Weyl sums

Lemma 3. Assume that |rα − b| < P−3/2 where r ≤ P 3/2 and (b, r) = 1.
Assume also that am are complex numbers of modulus ≤ 1, and define

(3.1) SI :=
∑

M<m≤2M
P<mn≤2P

am e(α(mn)3).

Then,

SI �M1/4P 3/4+ε + r−1/3P 1+ε
(
1 + P 3 |α− b/r|

)−1/3
.

Proof. This is Lemma 6 of J. Brüdern [3].

Our next result is a version of Lemma 5 of A. Balog and J. Brüdern [2].
Since the underlying ideas are the same, we give only a brief sketch of the proof.

Lemma 4. Assume that |rα − b| < P−3/2 where r ≤ P 3/2 and (b, r) = 1.
Assume also that M � P 2/3, and am, bn are complex numbers of modulus ≤ 1,
and define

(3.2) SII :=
∑

M<m≤2M
P<mn≤2P

am bn e(α(mn)3).

Then,
SII � (PM)1/2 + P 1+εM−1/8 + P 1+εr−1/6.

Proof. By Cauchy’s inequality and change of the order of summation and the
summation variables, we obtain (cf. (3.13) in [2])

(3.3) |SII |2 � PM +M
∑
h,z

∣∣∣∣∣∑
m

e(αkm3)

∣∣∣∣∣
where k = 1

4h(3z2 + h2), h, z satisfy the conditions

h ≤ 2PM−1, PM−1 ≤ z ≤ 4PM−1, h ≡ z (mod 2),
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and m runs through a subinterval of (M, 2M ]. By Lemma 3 in [2], if the sum
over m is not �M3/4+ε, there exist integers b1, r1 with

(3.4) (b1, r1) = 1, 1 ≤ r1 ≤M3/4−ε, |r1αk − b1| < M−9/4−ε,

and the estimate ∑
m

e(αkm3)�M1+εr
−1/3
1

holds. However, (3.4) and the assumptions of the lemma imply

|kbr1 − b1r| ≤ rM−9/4−ε + kr1P
−3/2 � P 3/2M−9/4−ε �M−ε,

so that r1 = r/(k, r). Therefore, in all the cases,

(3.5)
∑
m

e(αkm3)�M3/4+ε +M1+ε

(
(k, r)

r

)1/3

.

Substitution of (3.5) into (3.3) and (a simplified version of) the summation
argument leading to (3.17) in [2] complete the proof.

Lemma 5. Let g(α) = g(P ;α) be given by (2.6). Let also 0 < ρ < 1
12 and

assume that |rα− b| < P−3/2 where r ≤ P 3/2 and (b, r) = 1. Then,

g(α)� P 1−ρ+ε + P 1+εr−1/6.

Proof. Using Heath-Brown’s identity (Lemma 3 in [8]), we can decompose g(α)
as the linear combination of O(L10) sums of the forms SI with M � P 1/2+ρ

and SII with P 2/3 �M � P 1−2ρ (cf. (3.1) and (3.2)). To complete the proof,
we estimate the sums of type SI via Lemma 3 and the sums of type SII via
Lemma 4.

4 Proof of Proposition 1

By the Fourier inversion formula,∑
d≤D

ξd rd(ν) =

∫ ∞
−∞

F (x)Kτ (x) e(−xν) dx

where Kτ (x) = τK(τx) and F (x) is defined by (2.7) with g(Y ;x) given by (2.6)
and

f(x) =
∑
d≤D

∑
P<dn≤2P

ξd e(x(dn)3).

Set ω = D−1P−2−ε, H = τ−1L, and define the sets

M = (−ω, ω), m = {x : ω ≤ |x| ≤ H}, t = {x : |x| > H}.
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The proposition will follow from the estimates∫
M

F (x)Kτ (x) e(−xν) dx−X
∑
d≤D

ξd/d� τP−1Q2L−A,(4.1)

∫ 2N

N

∣∣∣∣∫
m

F (x)Kτ (x) e(−xν) dx

∣∣∣∣2 dν � τ2P 1−4ηQ4,(4.2) ∫
t

F (x)Kτ (x) e(−xν) dx� 1.

Observe that the last inequality follows momentarily from the choice of H and
the properties of K(x), so we need to consider only (4.1) and (4.2). We also
need to finally define X. Let

I(Y ;x) =

∫ 2Y

Y

e(xt3) dt,

and g(x) = g(P1;x), h(x) = g(Q;x), I0(x) = I(P ;x), I1(x) = I(P1;x), I2(x) =
I(Q;x). We set

(4.3) X =

∫ ∞
−∞

I0(λ1x)I1(λ2x) I2(λ3x) I2(λ4x)Kτ (x) e(−xν) dx

and
F1(x) = I0(λ1x)I1(λ2x) I2(λ3x) I2(λ4x)

∑
d≤D

ξd/d.

Note that by the choice of P , P1, Q, we have X � τP−1Q2.
We shall show that

(4.4)

∫
M

|F (x)− F1(x)| dx� P−1Q2L−A;

then (4.1) will follow in view of the estimates

I0(x), I1(x)� P−2|x|−1, I2(x)� Q−2|x|−1.

The proof of (4.4) is a standard major arc treatment. We will use the mean
value estimates∫ ω

−ω
|f(λ1x)|2dx� P−1L4,

∫ ω

−ω
|g(λ2x)|2dx� P−1L2,(4.5) ∫ ω

−ω
|I(Y ;x)|2dx� P−2Y L,(4.6) ∫ ω

−ω
|g(λ2x)− I1(λ2x)|2dx� P−1L−2A−1,(4.7)

as well as the approximate formulas

f(x) = I0(x)
∑
d≤D

ξd/d+O(D),(4.8)

h(x) = I2(x) +O
(
Q exp(−(logQ)1/5)

)
(4.9)
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valid if |x| � ω. From these, (4.5) and (4.6) are easy, (4.8) follows via Poisson
summation (Lemma 4.2 in [15]), and (4.9) can be proven by repeating the ar-
gument on pp. 301–303 in [14] (which is based on the approximate formula for
ψ(t) and zero-density estimates for ζ(s)). Hence, to complete the proof of (4.4)
we need to establish (4.7). Since, for |x| � ω,

v(x) :=
∑

P1<n≤2P1

e(xn3) = I1(x) +O(1),

it suffices to show that

(4.10)

∫
M

|g(x)− v(x)|2dx� P−1L−2A−1

(where ω should really be λ2ω). Defining

b(n) =

{
log p , n = p3,

0 , otherwise,
c(n) =

{
1 , n = m3,

0 , otherwise,

we can rewrite the left-hand side of (4.10) as

∫
M

∣∣∣∣∣∣
∑

P 3
1<n≤8P 3

1

(b(n)− c(n))e(xn)

∣∣∣∣∣∣
2

dx,

and, by Lemma 1.9 in [10], this integral is

(4.11) � ω2

∫ ∞
−∞

∣∣∣∣∣ ∑
P 3

1<n≤8P
3
1

|x−n|<(2ω)−1

(b(n)− c(n))

∣∣∣∣∣
2

dx.

Observe that the last sum vanish unless x ∈ [P 3
1 − (2ω)−1, 8P 3

1 + (2ω)−1]. We
split these values of x into three intervals:

I1 :
∣∣x− P 3

1

∣∣ ≤ (2ω)−1, I2 :
∣∣x− 8P 3

1

∣∣ ≤ (2ω)−1,

and
I3 =

(
P 3
1 + (2ω)−1, 8P 3

1 − (2ω)−1
)
.

By the trivial estimate, the contribution of I1 and I2 to (4.11) is

� ω−1P−4+ε � P−1−ε,

and the contribution of I3 is

�ω2

∫
I3

∣∣∣ϑ( 3
√
x+ (2ω)−1

)
− ϑ

(
3
√
x− (2ω)−1

)
−
(

3
√
x+ (2ω)−1 − 3

√
x− (2ω)−1

)
+O(L)

∣∣∣2 dx
�(ωP )2

∫ 2P1

P1

max
0≤u≤U

|ϑ(t+ u)− ϑ(t)− u|2 dt+ P−1−ε
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where U � ω−1P−2 and ϑ(y) =
∑
p≤y log p. By Lemma 7 in [12], the last

integral is O(U2PL−B) whenever P
1/6+ε
1 < U ≤ P1, whence (4.10) follows.

We now turn to (4.2). By (2.8) (see the remark after the end of its proof),
it can be obtained from∫

m

|F (x)|2Kτ (x) dx� τP 1−4ηQ4L−1,

which will follow if we establish that for any µ � 1,

(4.12)

∫
m

|f(λ1x) g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4.

By Dirichlet’s theorem on Diophantine approximation, for any x ∈ m one
can find integers a1, q1, a2, q2 such that

(4.13)

∣∣∣∣λix− ai
qi

∣∣∣∣ < 1

qiP 3/2
, i = 1, 2,

1 ≤ qi ≤ P 3/2, (ai, qi) = 1 (and hence, |ai| � qiH). Let

m1 =
{
x ∈ m : q1 > τ−6P 24η+24ε

}
,

m2 =

{
x ∈ m \m1 :

∣∣∣∣λ1x− a1
q1

∣∣∣∣ > P 6η+6ε

q1(τ1/2Q)3

}
,

m3 = m \ (m1 ∪m2).

By Lemma 3,
f(λ1x)� D1/4P 3/4+ε + Φ(x)

where
Φ(x) = q

−1/3
1 P ε min

(
P, |λ1x− a1/q1|−1/3

)
.

Note that, using the restriction on D and choosing δ, η, and ε sufficiently small,
we can always ensure that D1/4P 3/4+ε � τ1/2QP−2η−ε; also for x ∈ m2, we
have Φ(x)� τ1/2QP−2η−ε. Hence,∫

m1∪m2

|f(λ1x) g(λ2x)h(µx)2|2Kτ (x) dx

�τQ2P−4η−2ε
∫ ∞
−∞
|g(λ2x)h(µx)2|2Kτ (x) dx(4.14)

+

∫
m1

|Φ(x) g(λ2x)h(µx)2|2Kτ (x) dx.

Considering the underlying Diophantine inequality, we can estimate the first
term in the right side of (4.14) via Lemma 1(a); the resulting contribution to
the final estimate is � τP 1−4η−εQ4. By Hölder’s inequality, the second term is

�
(∫

m1

Φ(x)8Kτ (x) dx

)1/4(∫ ∞
−∞
|g(λ2x)h(µx)|4Kτ (x) dx

)1/4

×

×
(∫ ∞
−∞
|g(λ2x)h(µx)3|2Kτ (x) dx

)1/2

.
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The first integral is easily seen to be � τ4P 5−16η−16ε, and by considering the
underlying inequalities, the second and third integrals can be estimated via
Lemmas 2 and 1(b) respectively. Thus, the contribution of the second term in
(4.14) is also � τP 1−4η−εQ4, and so

(4.15)

∫
m1∪m2

|f(λ1x) g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4.

Now, let P−ρ = τ3/2P−3/40−6η−6ε and suppose for a moment that

(4.16) g(λ2x)� P 1−ρ+ε for all x ∈ m3.

Then, ∫
m3

|f(λ1x) g(λ2x)h(µx)2|2Kτ (x) dx

�P 2−2ρ
(∫

m3

Kτ (x) dx

)1/4(∫ ∞
−∞
|f(λ1x)h(µx)|4Kτ (x) dx

)1/4

×

×
(∫ ∞
−∞
|f(λ1x)h(µx)3|2Kτ (x) dx

)1/2

.

Again, the second and third integrals can be estimated via Lemmas 2 and 1(b),
and the first one is

� τ |m3| � τ−7.5Q−3P 30η+31ε.

Thus, by the choice of ρ,

(4.17)

∫
m3

|f(λ1x) g(λ2x)h(µx)2|2Kτ (x) dx� τP 1−4η−εQ4,

provided that (4.16) holds.
Assume that (4.16) fails. Then, by Lemma 5, we must have in (4.13)

q1 ≤ τ−6P 24η+24ε, q2 ≤ τ−9P 9/20+36η+31ε,

and also |q1λ1x− a1| < (τ1/2Q)−3P 6η+6ε (since x ∈ m3). Hence,

|a2q1 (λ1/λ2)− a1q2|

=

∣∣∣∣a2/q2λ2x
q1q2

(
λ1x−

a1
q1

)
− a1/q1

λ2x
q1q2

(
λ2x−

a2
q2

)∣∣∣∣
�q2(τ1/2Q)−3P 6η+6ε + q1P

−3/2 � τ−6P−3/2+24η+24ε = o(q−1)

and
a2q1 � q1q2H � τ−16P 9/20+60η+56ε = o(q) .

But, by Legendre’s law of best approximation, if δ, η, and ε are sufficiently
small, the last two inequalities cannot hold simultaneously (note that a1a2 6= 0
for x ∈ m3). Therefore, (4.16) is true and (4.12) follows from (4.15), (4.17).
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5 Proof of Theorem 2

We adopt all the notation set in the proof of Theorem 1. Also, let ρ(ν) denote
the number of solutions of the inequality

|λ5p35 + · · ·+ λ8p
3
8 − ν| < τ

in primes P < p5, p6 ≤ 2P , Q < p7, p8 ≤ 2Q, and let N1 = µN where µ is a
constant sufficiently large in terms of λ5, . . . , λ8. Then, by the Cauchy–Schwarz
inequality,

meas{ν : |ν| ≤ N1, ρ(ν) > 0} ≥

(∫ N1

−N1

ρ(ν) dν

)2(∫ N1

−N1

ρ2(ν) dν

)−1

� τ2P 4Q4L−8

(∫ N1

−N1

ρ2(ν) dν

)−1
.

Also, similarly to Proposition 2, we can prove that∫ N1

−N1

ρ2(ν) dν � τP 1+εQ4,

whence

(5.1) meas{ν : |ν| ≤ N1, ρ(ν) > 0} � τN1−ε.

Now, if
|λ1m3 + λ2p

3
2 + · · ·+ λ8p

3
8 − ν| < τL

is not solvable in m ∈ P6 and prime p2, . . . , p8 as above, the set

{ν − λ5p35 − · · · − λ8p38 − θτ : P < p5, p6 ≤ 2P,Q < p7, p8 ≤ 2Q, |θ| < 1}

must be contained in the exceptional set considered in Theorem 1, so that its
measure is � N1−η. On the other hand, by (5.1), this measure is � N1−δ−2ε.
To complete the proof it remains to observe that if δ and ε are sufficiently small,
one can choose the number η in Theorem 1 so that η > δ + 2ε.
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