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Abstract

Let d(k)(n) be the number of k-free divisors of n, and let D(k)(x) be the
counting function of d(k)(n). We improve on the known estimates for the
error term in the asymptotic formula for D(3)(x) under the assumption
of the Riemann Hypothesis. We also obtain an unconditional asymptotic
formula for D(k)(x+ y)−D(k)(x), k = 2, 3, for small y.
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1 Introduction

An integer n is called k-free if for each prime p, pk does not divide n. Let d(k)(n)
denote the number of k-free divisors of the positive integer n, and let

D(k)(x) =
∑
n≤x

d(k)(n).

The expected asymptotic formula for D(k)(x) is

D(k)(x) =
1

ζ(k)
x log x+

(
2γ − 1

ζ(k)
− kζ ′(k)

ζ2(k)

)
x+ ∆(k)(x). (1)

Here γ is Euler’s constant, ζ(s) is the Riemann zeta function, and ∆(k)(x)
denotes the error term. The study of D(k)(x) started in 1874 when Mertens [8]
proved that

∆(2)(x)� x1/2 log x.

Then, in 1932, O. Perron [11] considered the general case and established the
estimates

∆(k)(x)�


x1/2 if k = 2,

x1/3 if k = 3,

x33/100 if k ≥ 4.

In the case k ≥ 4, a simple summation argument shows that any result of
the form ∑

n≤x

d(n) = x log x+ (2γ − 1)x+O(xα), (2)
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where d(n) stands for the number of (unrestricted) divisors of n, implies

∆(k)(x)� xα log x.

Since it is unlikely that one is able to obtain in (1) a better error term than in
(2), this observation settles the case k ≥ 4, making it a trivial corollary of the
classical problem (2). (Note that, by an Ω-theorem of G. H. Hardy, one cannot
do better than 1

4 in (2).)
The situation in the case k ≤ 3 is quite different. Although some improve-

ment over Perron’s results is possible (see [12, 13] for details), one cannot prove

∆(k)(x)� x1/k−δ (k = 2, 3)

for any fixed δ > 0 unless some substantial progress is made in the study of
the zerofree region for ζ(s). It is reasonable, however, to try to improve the
estimates for ∆(2)(x) and ∆(3)(x) by assuming the Riemann Hypothesis. Such
results were initially given in [10, 12, 13]. In the case k = 2, R. C. Baker [1, 2]
showed recently that following the approach from a well-known work of H. L.
Montgomery and R. C. Vaughan [9] one can improve upon the previous results.
He proved that if the Riemann Hypothesis is true,

∆(2)(x)� x4/11+ε

for any ε > 0. Our first result is a similar theorem in the case k = 3.

Theorem 1. If the Riemann Hypothesis is true, one has

∆(3)(x)� x27/85+ε

for any ε > 0.

The best published result is due to W. G. Nowak and M. Schmeier [10]. They
derive the exponent 15/46 = 0.326086 . . . from a more general result, which
currently gives 25/77 = 0.324675 . . . For comparison, 27/85 = 0.317647 . . . and
the current exponent in (2) due to M. N. Huxley [7] is 23/73 = 0.315068 . . .

Another goal of the present paper is to obtain some unconditional non-trivial
information about D(k)(x). As the history of other similar problems suggests,
one should be able to get unconditionally a “short interval” result, i.e., an
asymptotic formula for D(k)(x + y) − D(k)(x) for some y that is substantially
less than x1/k. Indeed, an argument similar to the one given by D. R. Heath-
Brown [6] allows us to establish the following

Theorem 2. Let k ≥ 2 and let D(x) denote the left-hand side of (2). Assume
that θ0 ∈ ( 1

4 , 1] has the property that for any fixed θ > θ0, one can find an
ε = ε(θ) > 0 so that the asymptotic formula

D(x+ y)−D(x) = y
(
log x+ 2γ +O

(
x−ε

))
(3)
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holds uniformly for y satisfying xθ < y ≤ x. Then for any fixed θ > θ0, one can
also find a δ = δ(θ) > 0 so that

D(k)(x+ y)−D(k)(x) = y

(
1

ζ(k)
log x+

2γ

ζ(k)
− kζ ′(k)

ζ2(k)
+O

(
x−δ

))
(4)

holds uniformly for y satisfying xθ < y ≤ x.

The restriction θ0 >
1
4 can be weakened, and this would be beneficial if we

had at our disposal (3) for intervals shorter than x1/4. However, it seems that
the only method to date for satisfying the assumption (3) is by referring to (2),
and hence, it is not likely that we will be able to make use of the stronger version
in the near future.

By referring to M. N. Huxley’s result [7] on the error term in Dirichlet’s
divisor problem, one can satisfy (3) with θ0 = 23/73, and therefore, obtain

Corollary 1. The asymptotic formula (4) holds uniformly in y ∈ (xθ, x], for
any θ > 23/73.

Also, since the proof of Theorem 2 is elementary, by referring to I. M. Vino-
gradov’s elementary approach [5, Chapter 8], one can satisfy (3) with θ0 = 1/3,
and therefore, obtain an elementary proof of the following

Corollary 2. The asymptotic formula (4) holds uniformly in y ∈ (xθ, x], for
any θ > 1/3.

Note that Corollary 1 is of interest only for k = 2 and 3, and Corollary 2
only for k = 2. In these cases, however, we obtain results which do not follow
directly from (1) even under the Riemann Hypothesis.

2 Proof of Theorem 1

Let ε < 0.001 be given, and let η = ε2. Let also ak(n) be the characteristic
function of the k-free numbers, so that

ak(n) =
∑
dk|n

µ(d)

and one has
D(3)(x) =

∑
mn≤x

a3(n) =
∑

mnd3≤x

µ(d).

We split this sum into two parts: D
(3)
1 (x) being the sum over mnd3 ≤ x with

d ≤ y, and D
(3)
2 (x) the sum over mnd3 ≤ x with d > y; here 1 ≤ y ≤ x1/3 is a

parameter to be chosen later.
For a complex s = σ + it, define the functions

f1(s) =
∑
n≤y

µ(n)n−s and f2(s) = ζ−1(s)− f1(s).
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Referring to the asymptotic formula for D(x),

D(x) = Res(ζ2(s)xs/s, 1) + ∆(x),

we get

D
(3)
1 (x) =

∑
m≤y

µ(m)D
( x

m3

)
=
∑
m≤y

µ(m)

(
Res

(
ζ2(s)xs

sm3s
, 1

)
+ ∆

( x

m3

))
(5)

= Res
(
ζ2(s)f1(3s)xs/s, 1

)
+
∑
m≤y

µ(m) ∆
( x

m3

)
.

Now, consider D
(3)
2 (x). We have

D
(3)
2 (x) =

∑
nm3≤x
m>y

d(n)µ(m),

so, using Perron’s formula [14, Lemma 3.19], we find

D
(3)
2 (x) =

1

2πi

2+ix2∫
2−ix2

ζ2(s) f2(3s)
xs

s
ds+O(1). (6)

On assuming the Riemann Hypothesis, we can integrate the function F (s) =
ζ2(s)f2(3s)xs/s along the boundary of the rectangle having its vertices at the
points 2± ix2, 1

2 +η± ix2. Since the only singularity of F (s) inside this contour
is the pole at s = 1, we deduce from (6) that

D
(3)
2 (x) = Res

(
ζ2(s)f2(3s)xs/s, 1

)
+O(|I1|+ |I2|+ |I3|+ 1), (7)

where

I1,2 =

2±ix2∫
1
2+η±ix2

F (s) ds and I3 =

1
2+η+ix

2∫
1
2+η−ix2

F (s) ds.

We now refer to Theorems 14.2 and 14.25 from [14]; according to them if the
Riemann Hypothesis is assumed, for σ ≥ 1/2 + η, |s− 1| ≥ η, we have

f2(s)� y1/2−σ+η(|t|+ 1)η and ζ(s)� (|t|+ 1)η.

Using these estimates, we easily get

|I1|, |I2| � 1 and |I3| � x1/2+7ηy−1. (8)

Substituting (8) into (7), we obtain

D
(3)
2 (x) = Res

(
ζ2(s)f2(3s)xs/s, 1

)
+O(x1/2+7ηy−1 + 1),

4



and hence, by (5),

D(3)(x) = Res

(
ζ2(s)xs

sζ(3s)
, 1

)
+
∑
m≤y

µ(m) ∆
( x

m3

)
+O(x1/2+7ηy−1).

At this point we choose y = x31/170, so the second error term is admissible and
it suffices to show that for any M , 1 ≤M ≤ y,∑

M<m≤2M

µ(m) ∆
( x

m3

)
� x27/85+ε/2. (9)

If M ≤ x4/85, by M. N. Huxley’s result [7], we have∑
M<m≤2M

µ(m) ∆
( x

m3

)
�

∑
M<m≤2M

( x

m3

)23/73+η
� x23/73+ηM4/73 � x27/85+ε/2.

When M is larger, we will prove (9) using exponential sums. We first refer to
the approximate formula for ∆(u) [14, (12.4.4)]

∆(u) =
u1/4

π
√

2

K∑
n=1

d(n)

n3/4
cos(4π

√
nu− π/4)

+O
(
u−1/4 + (T 2u−1)η + u1+ηT−1

) (10)

where K is an integer and

T 2 = 4π2u(K + 1/2).

Applying (10) with u = x/m3 and K = x31/85M−1, we find that∑
M<m≤2M

µ(m) ∆
( x

m3

)

�x1/4 log x

∣∣∣∣∣∣
∑

M<m≤2M

∑
N<n≤2N

µ(m)

m3/4

d(n)

n3/4
e

(
2

√
nx

m3

)∣∣∣∣∣∣+ x27/85+η (11)

� x1/4+η

(MN)3/4

∣∣∣∣∣∣
∑

M<m≤2M

∑
N<n≤2N

am bn e

(
2

√
nx

m3

)∣∣∣∣∣∣+ x27/85+η

where the coefficients am and bn are � 1 and

x4/85 ≤M ≤ x31/170, 1 ≤ N ≤ x31/85M−1.

Observe that if MN ≤ x23/85, the trivial estimate for the last exponential sum
establishes (9), so we need to consider only the values of M,N satisfying

x4/85 ≤M ≤ x31/170, x23/85 ≤MN ≤ x31/85. (12)
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Applying [1, Theorem 2] with (M,M1,M2) = (N, 1,M), X =
√
xN/M3, and

(κ, λ) = (2
7 ,

4
7 ), we get∣∣∣∣∣∣

∑
M<m≤2M

∑
N<n≤2N

am bn e

(
2

√
nx

m3

)∣∣∣∣∣∣
�xη(MN)3/4

(
(NM−1)1/4 + x1/18(NM−1)1/36

)
.

(13)

If NM−1 � x1/4, the last expression is � x1/16+η(MN)3/4, and (9) follows
from (11) and (13). Otherwise, the term x1/18(NM−1)1/36 on the right-hand
side of (13) is superfluous, and since the conditions (12) imply

(NM−1)1/4 � ((MN)M−2)1/4 � x23/340,

again, we can derive (9) from (11) and (13).

3 Proof of Theorem 2

We start with the identity

D(k)(x+ y)−D(k)(x) =
∑

x<mn≤x+y

ak(n) =
∑

x<mndk≤x+y

µ(d). (14)

Let δ satisfy

0 < δ < min

(
ε

2
,

1

2

(
θ − 1

4

))
, (15)

and let U(x) and V (x) be the parts of the last sum in (14) with d ≤ x3δ and
d > x3δ, respectively. We have

U(x) =
∑
d≤x3δ

µ(d)

(
D

(
x+ y

dk

)
−D

( x
dk

))
,

and hence, on invoking assumption (3) and using (15), we obtain

U(x) = y
∑
d≤x3δ

µ(d)

dk

(
log
( x
dk

)
+ 2γ +O(x−ε/2)

)

= y

(
(log x+ 2γ)

∞∑
d=1

µ(d)

dk
− k

∞∑
d=1

µ(d) log d

dk
+O(x−ε/2) +O(x−δ)

)

= y

(
1

ζ(k)
log x+

2γ

ζ(k)
− kζ ′(k)

ζ2(k)
+O(x−δ)

)
.

Thus, by (14), it suffices to show that

|V (x)| � yx−δ. (16)
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We find

|V (x)| ≤
∑

x<mndk≤x+y
d>x3δ

1 =
∑

x<ndk≤x+y
d>x3δ

d(n)

� xδ
∑
d>x3δ

([
x+ y

dk

]
−
[ x
dk

])
.

(17)

Estimating the part of the last sum with d ≤ yx−2δ trivially, one has∑
x3δ<d≤yx−2δ

([
x+ y

dk

]
−
[ x
dk

])
≤

∑
x3δ<d≤yx−2δ

( y
dk

+ 1
)
� yx−2δ. (18)

In order to estimate the remaining part of the sum in the right-hand side of
(17) we refer to some estimates of M. Filaseta and O. Trifonov [3, 4]. Defining

Sk(A,B) = #{n : A < n ≤ B, {xn−k} > 1− yn−k} ,

we can write the sum under consideration as Sk(yx−2δ, k
√

2x). In the case k ≥ 3,
we refer to [4, Theorem 6]. This is a general result on the number of integer
points close to a smooth curve which gives

Sk(yx−2δ,
3
√

2x)� x1/6 log x.

Clearly, this completes the proof of (16) for k ≥ 3. In the case k = 2, this general
theorem does not apply, but the idea behind it does. We cite the estimate

S2(M, 2M)� x1/3M−1/3 (19)

from [3] (cf. (4) on p. 217). There the authors state it only for M ≥ y
√

log x,
but in fact their argument proves this inequality for yx−2δ < M ≤

√
x, provided

that δ is small. Hence,

S2(yx−2δ,
√

2x)� x(1+2δ)/3y−1/3 .

This estimate, (17), and (18) imply

|V (x)| � yx−δ + x(1+5δ)/3y−1/3 .

Thus, (16) follows from the choice of δ.
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[11] Perron O. (1932) Über einen asymptotischen ausdruck. Acta Math. 59:
89–97.

[12] Saffari B. (1968) Sur le nombre de diviseurs r-libres d’un entier, et sur le
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