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1 Introduction

In 1952 I. I. Piatetski-Shapiro [8] studied the inequality

(1.1) |pc1 + pc2 + · · ·+ pcs −N | < ε

where c > 1 is not an integer, ε is a fixed small positive number, and
p1, . . . , ps are primes. He established the existence of an H(c), depending
only on c, such that for all sufficiently large real N , (1.1) has solution when-
ever s ≥ H(c). He proved that

lim sup
c→∞

H(c)

c log c
≤ 4,

and also that H(c) ≤ 5, if 1 < c < 3/2. On the other hand, the Vinogradov–
Goldbach theorem [11] suggests that at least for c close to 1, one should
expect H(c) ≤ 3. The first result in this direction was obtained by D. I.
Tolev [10], who showed that the inequality

(1.2) |pc1 + pc2 + pc3 −N | < ε

with ε = N−(1/c)(15/14−c) log9N is solvable in primes p1, p2, p3, provided that
1 < c < 15/14 and N is sufficiently large. Later this result was improved
by Y. C. Cai [1] who replaced 15/14 by 13/12, and by T. Nedeva and the
author [5] who obtained the range 1 < c < 11/10. In this paper we give a
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further improvement, changing the upper bound for c to 61/55 (this constant
can be improved somewhat, but not substantially; even 1.11 seems to be out
of the scope of the method). For comparison

15/14 = 1.071428 . . . , 13/12 = 1.083333 . . . ,

11/10 = 1.100000 . . . , 61/55 = 1.109090 . . . .

The results in [1] and [5] are based on the version of the circle method used
by Tolev enhanced by sharper exponential sum estimates. This approach,
however, does not allow much further improvement, as a closer look at
[5] shows. So, we combine it with Harman’s sieve [3, 4], which allows more
flexible use of the available arithmetical information. The essence is to apply
Vinogradov’s method [11] to the arithmetical problem itself rather than to
the exponential sums arising from the analytic part of the argument. This
allows us to discard some awkward cases that needed to be treated before.
As a result we obtain a lower bound for the number of solutions instead of
the asymptotic formula given by the previous approach. We prove

Theorem 1. Let c be fixed with 1 < c < 61/55 and δ > 0 be a fixed number
sufficiently small in terms of c. Let also N be a sufficiently large real number,
and ε ≥ N−(1/c)(61/55−c+δ). Then the number R(N) of the solutions of (1.2)
satisfies

(1.3) R(N)� εN3/c−1

log3N
.

The implied constant depends only on c.

A natural question to ask is what the “ideal” result should be. We give
a probabilistic argument, which suggests that one should expect H(c) ≤ 3
at least for 1 < c < 3/2. The theorem we prove is as follows

Theorem 2. Let for 1 < c < 3/2,

ε0(c) = N−(1/c)(3/2−c) log10N.

Then for almost all (in the sense of Lebesgue measure) values of c ∈ (1, 3
2
),

the inequality (1.2) is solvable for ε ≥ ε0(c) and sufficiently large values of
N .
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Notation. Throughout the paper p, q, r, indexed or not, always denote
primes; d, k, l, m, n denote integers. We choose X = 1

4
N1/c; in Sections

2–5, η = δ2 where δ is the number from the statement of Theorem 1. Also,
m ∼M means that m runs through the interval (M, 2M ] and e(x) = e2πix;
ϕ(y) is a function having r = [logX] continuous derivatives and the following
properties

1) ϕ(y) = 1, for |y| ≤ 9ε/10,
2) ϕ(y) = 0, for |y| ≥ ε,
3) 0 < ϕ(y) < 1, for 9ε/10 < |y| < ε,
4) its Fourier transform

Φ(x) =

∫ ∞
−∞

ϕ(y)e(−xy) dy

satisfies the inequality

(1.4) |Φ(x)| ≤ min

(
2ε,

1

π|x|
,

1

π|x|

(
5r

πε|x|

)r)
.

One can construct it using Lemma 1 of [8].
Finally, throughout the proof of Theorem 1 we assume, as we can, that

ε = N−(1/c)(61/55−c+δ). Similarly, in Section 6 ε = ε0(c).

2 The Sieve Method

We write
P (z) =

∏
p<z

p

and, as usually, for any sequence of integers E weighted by the numbers
w(n), n ∈ E , we set

S(E , z) =
∑
n∈E

(n,P (z))=1

w(n),

and denote by Ed the subsequence of elements n ∈ E with n ≡ 0 (mod d).
So, if we define A to be the sequence of the integers n ∈ (X, 2X] weighted
by

w(n) =
∑

p1,p2∼X

ϕ(pc1 + pc2 + nc −N),
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we will have

R(N) ≥
∑

p1,p2,p3∼X

ϕ(pc1 + pc2 + pc3 −N) = S(A, (3X)1/2).

Hence, it suffices to show that

(2.1) S(A, (3X)1/2)� εX3−c

log3X
.

We prove (2.1) using the Buchstab identity

(2.2) S(E , z1) = S(E , z2)−
∑

z2≤p<z1

S(Ep, p)

and asymptotic formulas of the form

(2.3)
∑
m∼M

a(m)S(Am, z(m)) = λ
∑
m∼M

a(m)S(Bm, z(m)) + error terms

where B is the set of the integers in (X, 2X], and λ, M , and z(m) are
appropriately chosen. The idea is to use (2.2) to represent S(A, (3X)1/2)
as the linear combination of sums of the form appearing in the left-hand
side of (2.3) so that we are able to give asymptotic formulas for all sums
having a negative contribution to S(A, (3X)1/2), as well as for most ones
with a positive contribution. If it happens that the positive sums prevail,
discarding the remaining positive terms, we get a positive lower bound.

Throughout the rest of this section we set up the decomposition. We set
A = X89/825, B = X12/55, C = X844/3025, D = X56/165, and F = X123/275.
Applying (2.2), we find

S(A, (3X)1/2) = S(A, A)−
∑

A≤p<B

S(Ap, p)

−
∑

B≤p≤C

S(Ap, p)−
∑

C<p<D

S(Ap, p)

−
∑

D≤p≤F

S(Ap, p)−
∑

F<p<
√

3X

S(Ap, p)

= S1 − S2 − S3 − S4 − S5 − S6 , say.
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We give further decomposition for S2 and S4. Another application of (2.2)
gives

S2 =
∑

A≤p<B

S(Ap, A)−
∑

A≤q<p<B
pq<B

S(Apq, q)

−
∑

A≤q<p<B
B≤pq≤C

S(Apq, q)−
∑

A≤q<p<B
C<pq<D

S(Apq, q)

−
∑

A≤q<p<B
pq≥D

S(Apq, q)

= S7 − S8 − S9 − S10 − S11 , say.

Similarly, we obtain

S4 =
∑

C<p<D

S(Ap, A)−
∑

C<p<D
A≤q<B

S(Apq, q)

−
∑

C<p<D
B≤q≤C

S(Apq, q)−
∑

C<q<p<D

S(Apq, q)

= S12 − S13 − S14 − S15 , say.

Now, we deal with S6. It counts numbers of the form pq, namely

S6 =
∑
pq∼X
F<p≤q

w(pq) .

It turns out to be more convinient to switch the sifting process from the
product pq to one of the primes p1, p2 from the definition of w(n), say p2.
In order to do so, we write S6 as S(A∗, (3X)1/2) where A∗ is the set of
integers in (X, 2X] weighted by

w∗(n) =
∑
p1∼X

∑
pq∼X
F<p≤q

ϕ(pc1 + nc + (pq)c −N) .

Let S∗i denote a sum similar to Si in which A has been replaced by A∗. We
decompose S(A∗, (3X)1/2) following the same lines without decomposing S∗4
and S∗6 .
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Putting all together and using that S8, S10, S∗4 , and S∗6 have positive
contributions to S(A, (3X)1/2, we obtain

S(A, (3X)1/2) ≥ S1 − S3 − S5 − S7 + S9 + S11 − S12 + S13 + S14 + S15

(2.4)

− S∗1 + S∗3 + S∗5 + S∗7 − S∗8 − S∗9 − S∗10 − S∗11.

We will be able to find asymptotic formulas for all of these except for S13,
S15, S∗8 , and S∗10. Also, we will find asymptotic formulas for parts of S13 and
S15 as well as admissible upper bounds for S∗8 and S∗10.

3 Exponential Sums

In this section we prove the exponential sum estimates we will need to get
the asymptotic formulas (2.3).

Lemma 1. Let α and β be real, αβ(α−1)(β−1)(α−2)(β−2) 6= 0, X > 0,
M,N ≥ 1, |a(m)| ≤ 1, |b(n)| ≤ 1. Then

(XMN)−η

∣∣∣∣∣∑
m∼M

∑
n∼N

a(m) b(n) e

(
X
mαnβ

MαNβ

)∣∣∣∣∣
�(X4M31N34)1/42 + (X6M53N51)1/66 + (X6M46N41)1/56

+ (X2M38N29)1/40 + (XM9N6)1/10 + (X2M7N6)1/10

+ (XM6N6)1/8 +M1/2N +MN1/2 +X−1/4MN.

Proof. This is Theorem 9 of [9].

In the following lemma and its applications f(x, y) ∼∆ g(x, y) means
that

∂i+j

∂xi∂yj
f(x, y) =

∂i+j

∂xi∂yj
g(x, y)(1 +O(∆))

for all pairs (i, j) for which this makes sense.

Lemma 2. Let D be a subdomain of the rectangle

{(x, y) : M < x ≤ 2M, N < y ≤ 2N},

(M ≥ N), such that any line parallel to any coordinate axis intersects it in
O(1) line segments. Let α, β be real numbers, αβ(α+β−1)(α+β−2) 6= 0,

6



and let f(m,n) be a real sufficiently many times differentiable function such
that f(m,n) ∼∆ Amαnβ throughout D. Denoting X = MN , F = AMαNβ,
we have

(XF )−η

∣∣∣∣∣∣
∑

(m,n)∈D

e(f(m,n))

∣∣∣∣∣∣�(F 2X3)1/6 +XN−1/2 +X5/6

+X(∆M−1)1/4 +X(FM)−1/8

+ (∆4F 2X9M−4)1/10 +XF−1/4.

Proof. This is a version of Kolesnik’s AB-Theorem. For the proof see [6].

Lemma 3. Assume that x is a real number with X1/2−c+η < |x| < X1−c−η,
and that a(m), b(k) are complex numbers of modulus ≤ 1. Assume further
that MK � X and

Xη � K � X1/2.

Then ∑
m∼M

∑
k∼K

a(m) b(k) e(x(mk)c)� X1−η/3.

Proof. Denote the given sum by U . We first apply Cauchy’s inequality and
Weyl’s lemma to the sum over k to get

(3.1) |U |2 � X2

Q
+
X

Q

∑
q≤Q

∑
k∼K

∣∣∣∣∣∑
m∼M

e(f(m))

∣∣∣∣∣ .
Here f(m) = x((k + q)c − kc)mc and Q = X2η/3. Under the assumptions of
the lemma we have

|f ′(m)| � |x|qXc−1 � X−η/3 ≤ 1

2
,

so by the Kusmin–Landau inequality

|U |2 � |x|−1X2−c−η/3K +X2−2η/3 � X2−2η/3.

Clearly this proves the lemma.
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Lemma 4. Assume that x is a real number with X1/2−c+η < |x| < X1−c−η,
and that a(m) are complex numbers of modulus ≤ 1. Assume further that
MK � X and

K � X1/3+η.

Then ∑
m∼M

∑
k∼K

a(m) e(x(mk)c)� X1−η/3.

Proof. Denote the given sum by U . The exponent pair (1
6
, 2

3
) gives

|U | �M
(
(|x|XcK−1)1/6K2/3 + (|x|XcK−1)−1

)
� X

(
X1/6K−1/2 +X−1/2

)
� X1−η/2.

Lemma 5. Let 1 < c < 61/55. Assume that x is a real number with
X1−c−η < |x| < X61/55−c, and that a(m), b(k) are complex numbers of
modulus ≤ 1. Assume further that MK � X and

(3.2) X56/165 � K � X123/275.

Then ∑
m∼M

∑
k∼K

a(m) b(k) e(x(mk)c)� X49/55+η.

Proof. This follows immediately from Lemma 1 with (m,n) = (k,m).

Lemma 6. Let 1 < c < 61/55. Assume that x is a real number with
X1−c−η < |x| < X61/55−c, and that a(m), b(k) are complex numbers of
modulus ≤ 1. Assume further that MK � X and

(3.3) X12/55 � K � X844/3025.

Then ∑
m∼M

∑
k∼K

a(m) b(k) e(x(mk)c)� X49/55+η.

Proof. Denote the given sum by U . We start as in Lemma 3, but we choose
a different Q, namely Q = X12/55, and estimate the sum over m in (3.1)
using an exponent pair (κ, λ) rather than the Kusmin–Landau inequality.
Thus,

|U |2 � (|x|Q)κX1+λ+κ(c−1)K1−λ +X98/55 � X98/55
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provided that
X12/55 � K � X1−6(2+3κ)/55(1−λ).

Choosing (κ, λ) = BA2BABABA2B(0, 1) = ( 81
242
, 6

11
), we obtain the result.

Lemma 7. Let 1 < c < 61/55. Assume that x is a real number with
X1−c−η < |x| < X61/55−c, and that a(m) are complex numbers of modulus
≤ 1. Assume further that MK � X and

(3.4) K � X53/110.

Then ∑
m∼M

∑
k∼K

a(m) e(x(mk)c)� X49/55+η.

Proof. If K � X97/165, the argument of Lemma 4 proves the desired esti-
mate. If this is not the case, we follow the argument on pp. 123–124 of [5].
Denote the given sum by U . Using Cauchy’s inequality and Weyl’s lemma
with Q = X12/55, we obtain

(3.5) |U |2 � X

Q

∑
q≤Q

∑
m∼M

∑
k∼=K

e(x((k + q)c − kc)mc) +X98/55.

(Here k ∼= K means that k runs through a subinterval of (K, 2K] which end
points may depend on m and q.) Denote the sum over (m, k) by U1(q). Ap-
plying the Poisson formula and partial summation to m and k successively
we find

|U1(q)| �MKF−1

∣∣∣∣∣∑
µ,ν

e(f(µ, ν))

∣∣∣∣∣+ E

where F = |x|qXcK−1, µ ∼= FM−1, ν ∼= FK−1,

f(µ, ν) ∼q/K c0(xq)1/(2−2c)ν1/2µc/(2c−2) � F

(here c0 is a constant depending only on c), and

E � Xη
(
XF−1/2 + FX−1/2

)
.

Substituting the estimate for U1(q) in (3.5), we get

(3.6) |U |2 � X2

Q

∑
q≤Q

F−1

∣∣∣∣∣∑
µ,ν

e(f(µ, ν))

∣∣∣∣∣+X98/55.
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Finally, we estimate the sum over (µ, ν) in (3.6) using Lemma 2 with
(m,n) = (µ, ν), if K ≥ X1/2, and with (m,n) = (ν, µ), otherwise. Af-
ter some calculations the result follows.

4 Asymptotic Formulas

In this section Φ(x) is the Fourier transform of the function ϕ(y) defined in
Section 1. If τ = X1−c−η, and

I0(x) =

∫ 2X

X

e(xtc)

log t
dt

we define

(4.1) W0(n) =

∫ τ

−τ
I2

0 (x) Φ(x) e((nc −N)x) dx.

Also, while dealing with A∗, we will use

I1(x) =
∑

X123/275<p≤
√

3X

1

p

∫ 2X

X

e(xtc)

log pt
dt

and

(4.2) W1(n) =

∫ τ

−τ
I0(x) I1(x) Φ(x) e((nc −N)x) dx.

Finally, Xσ denotes a function of the form e−a(logX)1/4 with some unspecified
constant a > 0; in particular, we may write X−σ(logX)A � X−σ instead of

e−a(logX)1/4(logX)A � e−
1
2
a(logX)1/4 .

Lemma 8. Let ν > 0 be fixed, x ≥ x0(ν), xν ≤ z ≤ x. Let also ω(x) be the
continuous solution of the differential-difference equation{

ω(x) = 1/x , if 1 ≤ x ≤ 2,

(xω(x))′ = ω(x− 1) , if x > 2.

Then for any u ∈ (x, 2x], we have∑
x<n≤u

(n,P (z))=1

1 = ω

(
log x

log z

)
· u− x

log z
+O

(
x

log2 x

)
.
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Proof. This follows easily from Lemma 2 of [2].

Lemma 9. Let 1 < c < 61/55. Assume that a(m), b(k) are complex num-
bers of modulus ≤ 1. Assume also that MK � X with K satisfying one of
the inequalities (3.2) or (3.3). Then∑

m∼M

∑
k∼K

a(m) b(k)w(mk)(4.3)

=
∑
m∼M

∑
k∼K

a(m) b(k)W0(mk) +O
(
εX3−c−σ) .

Moreover, if K satisfies (3.4),∑
m∼M

∑
k∼K

a(m)w(mk)(4.4)

=
∑
m∼M

∑
k∼K

a(m)W0(mk) +O
(
εX3−c−σ) .

Proof. We consider in detail only (4.3) under the assumption (3.2), since
the changes needed in the other cases are obvious. Let D(X) denote the
left-hand side of (4.3). By the Fourier inversion formula,

(4.5) D(X) =

∫ ∞
−∞

S2(x)U(x) Φ(x) e(−Nx) dx

where

S(x) =
∑
p∼X

e(xpc),

U(x) =
∑
m∼M

∑
k∼K

a(m) b(k) e(x(mk)c).

We set τ = X1−c−η and H = ε−1 log2X, and define the sets

E1 = {x ∈ R : |x| < τ},
E2 = {x ∈ R : τ ≤ |x| ≤ H},
E3 = {x ∈ R : |x| > H}.

From (1.4) and the trivial estimates for S(x) and U(x) we find

D3(X) =

∫
E3

S2(x)U(x) Φ(x) e(−Nx) dx(4.6)

� X3
( r

2π∆

)r ∫ ∞
H

x−(r+1)dx� 1.
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Now, for x ∈ E2 and K satisfying (3.2), Lemma 5 provides the estimate

max
x∈E2

|U(x)| � X49/55+η.

(If K satisfies (3.3) or (3.4), we refer to Lemmas 6 or 7, respectively.) Also
it is easy to prove (see for example Lemma 7 of [10]) that for any integer n,

(4.7)

∫ n+1

n

|S(x)|2 dx� X.

Using he last two inequalities and (1.4), we obtain

D2(X) =

∫
E2

S2(x)U(x) Φ(x) e(−Nx) dx(4.8)

� εX49/55+η

∫ 1

0

|S(x)|2 dx+X49/55+η
∑
n≤H

1

n

∫ n+1

n

|S(x)|2 dx

� εX104/55+η +X104/55+η logX � εX3−c−η.

Finally, consider

D1(X) =

∫
E1

S2(x)U(x) Φ(x) e(−Nx) dx.

For x ∈ E1, the argument on pp. 301–303 of [10] establishes the asymptotic
formula

S(x) = I0(x) +O
(
X1−σ) .

Also, following the argument of Lemma 7 of [10], we have the estimate∫ τ

−τ
|U(x)|2dx� X2−c log4X,

and similar (and even better) upper bounds for the corresponding means of
S(x) and I0(x). Hence,

D1(X) =

∫ τ

−τ
I2

0 (x)U(x) Φ(x) e(−Nx) dx+O
(
εX3−c−σ)(4.9)

=
∑
m∼M

∑
k∼K

a(m) b(k)W0(mk) +O
(
εX3−c−σ) .

The lemma follows from (4.5)–(4.9).
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The next result is the A∗-version of Lemma 9.

Lemma 10. Let 1 < c < 61/55. Assume that a(m), b(k) are complex
numbers of modulus ≤ 1. Assume also that MK � X with K satisfying one
of the inequalities (3.2) or (3.3). Then∑

m∼M

∑
k∼K

a(m) b(k)w∗(mk)(4.10)

=
∑
m∼M

∑
k∼K

a(m) b(k)W1(mk) +O
(
εX3−c−σ) .

Moreover, if K satisfies (3.4),∑
m∼M

∑
k∼K

a(m)w∗(mk)(4.11)

=
∑
m∼M

∑
k∼K

a(m)W1(mk) +O
(
εX3−c−σ) .

Proof. The argument is similar to the one used in the proof of Lemma 9. If
the sum under consideration is D∗(X), we have

D∗(X) =

∫ ∞
−∞

S(x)S1(x)U(x) Φ(x) e(−Nx) dx

where S(x) and U(x) are the same as before, and

S1(x) =
∑
pq∼X

X123/275<p≤q

e(x(pq)c).

The proof of the inequality∫
|x|>τ

S(x)S1(x)U(x) Φ(x) e(−Nx) dx� εX3−c−η

repeats verbatim the estimates of D2(X) and D3(X) from Lemma 9, so we
can concentrate on

(4.12)

∫ τ

−τ
S(x)S1(x)U(x) Φ(x) e(−Nx) dx.
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As in the proof of Lemma 9, we can replace S(x) by I0(x). Thus, the integral
(4.12) equals

(4.13)

∫ τ

−τ
I0(x)S1(x)U(x) Φ(x) e(−Nx) dx+O

(
εX3−c−σ) .

However, we cannot do the same with S1(x). The reason is that the approach
from [10] establishes the asymptotic formula

S1(x) = I1(x) +O
(
X1−σ)

only for |x| ≤ τ1 = X152/275−c−η. Fortunately, we can go around this by
showing that the values of x with τ1 < |x| < τ do not contribute much to
(4.13). For, this portion of the integral is

� ε max
τ1<|x|<τ

|U(x)|
(∫ τ

−τ
|S1(x)|2 dx+

∫ τ

−τ
|I0(x)|2 dx

)
� max

τ1<|x|<τ
|U(x)|εX2−c logX � εX3−c−η/4

by virtue of Lemma 3. Hence, the integral (4.12) equals∫ τ1

−τ1
I0(x) I1(x)U(x) Φ(x) e(−Nx) dx+O

(
εX3−c−σ)

=

∫ τ

−τ
I0(x) I1(x)U(x) Φ(x) e(−Nx) dx+O

(
εX3−c−σ) .

Clearly the above discussion proves (4.10). The proof of (4.11) is similar
with Lemma 4 replacing Lemma 3.

Lemma 11. Let 1 < c < 61/55, MK � X, and K satisfies one of the
inequalities (3.2) or (3.3). Let I, J be integers and Ii, Jj are intervals for
1 ≤ i ≤ I, 1 ≤ j ≤ J . Write

a(m, k) =
∑

rp1···pI=k
p1<p2<···<pI

pi∈Ii

c(k)
∑

lq1···qJ=m
q1<q2<···<qJ

qj∈Jj

d(m)

with |c(k)|, |d(m)| ≤ 1 and p1, . . . , pI and q1, . . . , qJ satisfying O(1) joint
conditions of the form

pu ≤ qv or qv ≤ pu
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or ∏
u∈U

pu
∏
v∈V

qv ≤ H or
∏
u∈U

pu ≥
∏
v∈V

qv

or similar (for given U ⊂ {1, . . . , I}, V ⊂ {1, . . . , J}, H ≤ X). Then∑
m∼M

∑
k∼K

a(m, k)w(mk)(4.14)

=
∑
m∼M

∑
k∼K

a(m, k)W0(mk) +O
(
εX3−c−σ) .

Furthermore, the result still holds if we replace w(n) by w∗(n) and W0(n)
by W1(n).

Proof. We follow the approach from Lemma 1 of [4]: we first remove the
dependencies between the variables m and k, and then refer to (4.3). Each
joint condition can be removed via Perron’s formula

1

π

∫ T

−T
eiγt

sin βt

t
dt =

{
1 +O (T−1(β − |γ|)−1) , if |γ| ≤ β,

O (T−1(|γ| − β)−1) , if |γ| > β,

at the cost of an extra logX factor in the error term. For instance, if we
have a single condition pu < qv, we take γ = log pu, β = log(qv + 1

2
), and

T = X2, and get∑
m∼M

∑
k∼K

a(m, k)w(mk)

=
1

π

∫ T

−T

∑
m∼M

∑
k∼K

a(m, k, t)w(mk)
dt

t
+O

(
εX3−c−η)

where a(m, k, t) is defined as a(m, k) but with the factors pitu , sin(t(log(qv +
1
2
))) included, and the condition pu < qv removed. Hence, we can rewrite
a(m, k, t) as a∗(m, t) b∗(k, t), and then refer to (4.3) to obtain

1

π

∫ T

−T

∑
m∼M

∑
k∼K

a∗(m, t) b∗(k, t)W0(mk)
dt

t
+O

(
εX3−c−σ logX

)
=
∑
m∼M

∑
k∼K

a(m, k)W0(mk) +O
(
εX3−c−σ)

after another application of Perron’s formula. Obviously, if we have more
joint conditions, say A, we will end up with an A-tuple integral and a
(logX)A factor in the error term.
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Before going further we define the integrals

I(x) =

∫ 2X

X

e(xtc) dt,

J0(X) =

∫ ∞
−∞

I2
0 (x) I(x) Φ(x) e(−Nx) dx,

J1(X) =

∫ ∞
−∞

I0(x) I1(x) I(x) Φ(x) e(−Nx) dx.

Lemma 12. Let 1 < c < 61/55 and u ≥ 1, and for some K satisfying one
of the conditions (3.2) or (3.3) there exists a D ⊂ {1, . . . , u} with∏

j∈D

pj ∼ K.

Then ∑
p1,...,pu

S(Ap1···pu , p1) =J0(X)
∑

p1,...,pu

S(Bp1···pu , p1)

p1 · · · pu
(4.15)

+O
(
εX3−c(logX)−10/3

)
.

Here the summation is over primes p1, . . . , pu ≥ X89/825 satisfying pj > p1,
together with O(1) further conditions of the type

pj ≤ pl or Q ≤
∏
j∈F

pj ≤ R

for some F ⊂ {1, . . . , u} and R ≤ X. Also,∑
p1,...,pu

S(A∗p1···pu , p1) =J1(X)
∑

p1,...,pu

S(Bp1···pu , p1)

p1 · · · pu
(4.16)

+O
(
εX3−c(logX)−10/3

)
.

The result still holds if, instead of K, X/K satisfies (3.2) or (3.3).

Proof. The left-hand side of (4.15) equals∑
p1,...,pu

∑
n∼X/p1···pu
(n,P (p1))=1

w(p1 · · · pun).

16



Setting

k =
∏
j∈D

pj and m =

(∏
j 6∈D

pj

)
· n

we can represent the last sum in the form appearing in the left side of (4.14).
So, it equals ∫ τ

−τ
I2

0 (x)U(x) Φ(x) e(−Nx) dx+O
(
εX3−c−σ)

where
U(x) =

∑
p1,...,pu

∑
n∼X/p1···pu
(n,P (p1))=1

e(x(p1 · · · pun)c).

Since, by the first derivative estimate for trigonometric integrals (see Lemma
1 on p. 47 of [7]),

|I0(x)| � 1

|x|Xc−1 logX
,

and

|U(x)| � X

logX
,

the values of x with |x| ≥ τ1 = X−c(logX)1/3 contribute to the last integral
at most O

(
εX3−c(logX)−10/3

)
. On the other hand, if |x| < τ1, Lemma 8

and partial summation imply that

U(x) = I(x)
∑

p1,...,pu

S(Bp1···pu , p1)

p1 · · · pu
+O

(
X(logX)−5/3

)
.

Combining the above estimates completes the proof.

Lemma 13. Let 1 < c < 61/55 and M ≤ X123/275. Suppose further that
a(m) are real numbers such that a(m) � 1 and a(m) = 0 unless all prime
divisors of m are ≥ X89/825. Then we have∑

m∼M

a(m)S(Am, X89/825) =J0(X)
∑
m∼M

a(m)

m
S(Bm, X89/825)(4.17)

+O
(
εX3−c(logX)−10/3

)
.
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Also ∑
m∼M

a(m)S(A∗m, X89/825) =J1(X)
∑
m∼M

a(m)

m
S(Bm, X89/825)(4.18)

+O
(
εX3−c(logX)−10/3

)
.

Proof. We shall use the Eratosthenes–Legendre sieve, which states that

(4.19)
∑
n≤x

(n,P (z))=1

f(n) =
∑
nd≤x
d|P (z)

µ(d) f(nd)

where µ(d) is the Möbius function.
We choose z = X89/825 and, applying (4.19) to S(Am, z), we find∑

m∼M

a(m)S(Am, z) =
∑
m∼M

∑
nd∼X/m
d|P (z)

a(m)µ(d)w(mnd).(4.20)

Now we proceed to show that∑
m∼M

∑
nd∼X/m
d|P (z)

a(m)µ(d)w(mnd)(4.21)

=
∑
m∼M

∑
nd∼X/m
d|P (z)

a(m)µ(d)W0(mnd) +O
(
εX3−c−σ)

=
∑
m∼M

∑
n∼X/m

(n,P (z))=1

a(m)W0(mn) +O
(
εX3−c−σ)

after another application of (4.19).
If M ≥ X56/165, we produce a new variable k = dn and derive (4.21)

from (4.3). Now suppose that M ≤ X56/165. Then we divide the sum in
the left-hand side of (4.21) into two parts:

∑
1 in which md ≤ X123/275,

and
∑

2 in which md > X123/275. To obtain asymptotic formula for
∑

1 we
combine m and d into a new variable k and refer to (4.4). Then we turn
our attention to

∑
2. It can be written in the form

−
∑
m∼M

∑
p<z

∑
npd∼X/m
d|P (p)

mpd>X123/275

a(m)µ(d)w(mnpd).
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Let
∑

3 be the part of this sum with md ≤ X123/275 < mpd, and
∑

4 the part
with md > X123/275. Introducing the variables k = md and l = pn, we can
put

∑
3 in the form appearing in the left-hand side of (4.14) and then refer

to Lemma 11 to get the desired asymptotic formula (since mpd > X123/275

and p < z, we must have md > X56/165). Again,
∑

4 can be rewritten as∑
m∼M

∑
p1<p2<z

∑
np1p2d∼X/m

d|P (p1)

mp1d>X123/275

a(m)µ(d)w(mnp1p2d);

then we can use Lemma 11 to find an asymptotic formula for the part of
the last sum with md < X123/275, and can proceed further with the rest
of it. We can continue in this fashion, obtaining at each step a sum to
which Lemma 11 applies and a sum for which further decomposition can
be given. Since every integer ≤ 2X has at most O(logX) prime divisors,
after � logX steps, this procedure will stop and we will be left with a
sum which does not require further decomposition (Lemma 11 applies to all
of it). Combining the asymptotic formulas for all the occurring sums, we
complete the proof of (4.21).

So, using (4.20) and (4.21), we get

(4.22)
∑
m∼M

a(m)S(Am, z) =
∑
m∼M

∑
n∼X/m

(n,P (z))=1

a(m)W0(mn) +O
(
εX3−c−σ) .

Also, using the approach from the proof of the previous lemma, we have∑
m∼M

∑
n∼X/m

(n,P (z))=1

a(m)W0(mn)(4.23)

=J0(X)
∑
m∼M

a(m)

m
S(Bm, z) +O

(
εX3−c(logX)−10/3

)
.

The result follows from (4.22) and (4.23).

5 Proof of Theorem 1

We start with (2.4). We can estimate S1, S7, S12, S∗1 , and S∗7 using Lemma
13. Consider, for example, S12. By (4.17), it equals (we use the values of
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A, B, C, D, and F from Section 2)

J0(X)
∑

C<p<D

1

p

∑
pn∼X

(n,P (A))=1

1 +O
(
εX3−c(logX)−10/3

)
.

Using Lemma 8 and partial summation, we obtain that the sum over p and
n is

825

89 logX

∫ 56
165

844
3025

ω

(
1− x

89/825

)
dx

x
+O

(
(logX)−2

)
≤1.0200

logX
+O

(
(logX)−2

)
.

We also have

J0(X) =
1

log2X

∫ ∞
−∞

I3(x) Φ(x) e(−Nx) dx+O
(
εX3−c(logX)−3

)
=:

J(X)

log2X
+O

(
εX3−c(logX)−3

)
.

Hence,

S12 ≤ 1.0200
J(X)

log3X
+O

(
εX3−c(logX)−10/3

)
.

We can evaluate the rest four quantities similarly. Introducing the nota-
tion S12 . 1.0200 as a shortcut for the last inequality, we can state the
corresponding estimates as

S1 & 5.2039, S7 . 3.6666, S∗1 . 1.1017, S∗7 & 0.7762,

where we have used that

J1(X) =
J(X)

log2X

∫ 1/2

123/275

dx

x(1− x)
+O

(
εX3−c(logX)−3

)
=

J(X)

log2X
ln

(
152

123

)
+O

(
εX3−c(logX)−3

)
.

(This follows easily from the Prime Number Theorem.) Further, we obvi-
ously have

S∗8 ≤
∑

A≤q<p<B
pq<B

S(A∗pq, A) and S∗10 ≤
∑

A≤q<p<B
C<pq<D

S(A∗pq, A),

20



and these sums can also be estimated via Lemma 13. Hence,

S∗8 . 0.0002 and S∗10 . 0.1290.

Now consider S∗9 . By Lemma 12, it equals

J1(X)
∑

A≤q<p<B
B≤pq≤C

1

pq

∑
pqn∼X

(n,P (q))=1

1 +O
(
εX3−c(logX)−10/3

)
.

As before, using Lemma 8 and partial summation, we can evaluate the sum
over p, q, and n. We have

S∗9 . 0.0619,

and similarly,

S3 . 0.5632, S5 . 0.4544, S9 & 0.2923, S11 & 0.2369,

S14 & 0.1108, S∗3 & 0.1192, S∗5 & 0.0961, S∗11 . 0.0502.

Also, we can use Lemma 13 to evaluate the parts of S13 with D ≤ pq ≤ F
and X/F ≤ pq ≤ X/D, and the part of S15 with X/F ≤ pq ≤ X/D. Hence,
we have

S13 & 0.2157 and S15 & 0.0480.

Substituting all these estimates in (2.4), we find

S(A, (2X)1/2) ≥ 0.0519
J(X)

log3X
+O

(
εX3−c(logX)−10/3

)
.

Since, by Lemma 6 of [10], J(X)� εX3−c, this inequality establishes (2.1)
and completes the proof of the theorem.

6 Proof of Theorem 2

Fix ρ > 0 and consider the set

Eρ(X) =
{
c ∈ (1 + ρ, 3/2− ρ) : |R∗(N, c)− J∗(N, c)| ≥ X3/2 log2X

}
where

R∗(N, c) =
∑

p1,p2,p3∼X

ϕ(pc1 + pc2 + pc3 −N),

J∗(N, c) =

∫ ∞
−∞

I3
0 (x) Φ(x) e(−Nx) dx.
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Note that by Lemma 6 of [10],

J∗(N, c)� X3/2 log7X,

so we can deduce Theorem 2 by showing that the Lebesgue measure of Eρ(X)
is O(log−1X) (hereafter X ≥ X0(ρ) and the implied constants depend at
most on ρ). This follows from the estimate∫ 3/2−ρ

1+ρ

(R∗(N, c)− J∗(N, c))2 dc� X3 log3X

by an application of Chebyshev’s inequality. Hence, it suffices to show that

(6.1)

∫ b

a

(R∗(N, c)− J∗(N, c))2 dc� X3 log2X

whenever 1 + ρ ≤ a ≤ 3/2− ρ and b = a+ log−1X.
The framework for the proof of (6.1) is the same as for the proof of

Lemma 9. We have

R∗(N, c) =

∫ ∞
−∞

S3(x, c) Φ(x) e(−Nx) dx

where S(x, c) = S(x) is the exponential sum used in Section 4. Upon setting
η = ρ2, we can define (at least formally) the parameters τ and H, and the
sets E1, E2, and E3 as in Lemma 9. Then, R∗(N, c) can be written as the
sum of three integrals corresponding to E1, E2, and E3, respectively. One
can easily check that similarly to the estimate of D3(X) in the proof of
Lemma 9 we have ∫

E3

∣∣S3(x) Φ(x)
∣∣ dx� 1

uniformly with respect to c ∈ (1, 3
2
). Also, the argument used to evaluate

D1(X) in that proof (see also pp. 305–306 in [10]) shows that uniformly in
c ∫

E1

S3(x) Φ(x) e(−Nx) dx = J∗(N, c) +O
(
εX3−c(logX)−20

)
= J∗(N, c) +O

(
X3/2(logX)−10

)
.
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Thus, (6.1) will follow, if we prove that

(6.2) D(X) :=

∫ b

a

(∫
E2

∣∣S3(x, c) Φ(x)
∣∣ dx)2

dc� X3 log2X.

By (1.4) and Cauchy’s inequality, we obtain that

D(X)�
∫ b

a

ε2(c)

(∫
E2

|S(x, c)|2 dx
)(∫

E2

|S(x, c)|4 dx
)
dc.

Since the estimate (4.7) is uniform in n and c > 1, we find that∫
E2

|S(x, c)|2 dx� XH(c) = ε−1(c)X log2X,

and hence,

D(X)� X log2X

∫ b

a

ε(c)

(∫
E2

|S(x, c)|4 dx
)
dc(6.3)

� ε(b)X log2X

∫ H(a)

τ(b)

∫ b

a

|S(x, c)|4 dc dx

� ε(b)X log2X

∫ H(a)

τ(b)

|S(x, c0)|2
∫ b

a

|S(x, c)|2 dc dx

for some c0 ∈ [a, b].
Next, we need an estimate for the inner integral. The one we use is∫ b

a

|S(x, c)|2 dc� X

log2X
+

X2−a

|x| logX
.

(It can be proved via the approach from Lemma 7 of [10]; note that the
integration variable is c.) This estimate, (4.7), and (6.3) imply

D(X)� ε(b)X log2X

{
H(a)X2

log2X
+

X2−a

τ(b) logX
+X3−a

}
.

Observe that Xb = eXa, and hence, for example, H(a) � H(b). Therefore,
the last inequality establishes (6.2) and completes the proof of Theorem 2.

23



References

[1] Y. C. Cai, On a diophantine inequality involving prime numbers, Acta
Math. Sinica 39 (1996), 733–742 (in Chinese).

[2] J. B. Friedlander, Integers free from large and small primes, Proc. Lon-
don Math. Soc. (3) 33 (1976), 565–576.

[3] G. Harman, On the distribution of αp modulo one, J. London Math.
Soc. (2) 27 (1983), 9–18.

[4] G. Harman, On the distribution of αp modulo one II, Proc. London
Math. Soc. (3) 72 (1996), 241–260.

[5] A. Kumchev and T. Nedeva, On an equation with prime numbers, Acta
Arith. 83 (1998), 117–126.

[6] H.-Q. Liu, On square-full numbers in short intervals, Acta Math. Sinica
(N.S.) 65 (1993), 148–164.

[7] H. L. Montgomery, Ten Lectures on the Interface Between Analytic
Number Theory and Harmonic Analysis, CBMS Regional Conference
Series in Mathematics, the American Mathematical Society, Provi-
dence, RI, 1994.

[8] I. I. Piatetski-Shapiro, On a variant of the Waring–Goldbach problem,
Mat. Sb. 30 (1952), 105–120 (in Russian).

[9] P. Sargos and J. Wu, Multiple exponential sums with monomials and
their applications in number theory, preprint (1997).

[10] D. I. Tolev, On a diophantine inequality involving prime numbers, Acta
Arith. 61 (1992), 289–306.

[11] I. M. Vinogradov, Representation of an odd number as the sum of three
primes, Dokl. Akad. Nauk SSSR 15 (1937), 291–294 (in Russian).

Department of Mathematics
University of South Carolina

24



Columbia, SC 29208
U.S.A.

koumtche@math.sc.edu

25


