
ON THE DISTRIBUTION OF PRIME NUMBERS

OF THE FORM [nc]

A. Kumchev

Abstract. Let πc(x) be the number of the integers n ≤ x such that [nc] is prime. We shall prove that

πc(x)�
x

log x

for 1 < c < 45/38. This improves the former range 1 < c < 13/11.

1. Introduction.

The problem of representing of primes by irreducible polynomials is one of the most important problems
of multiplicative number theory. However, while this problem is completely solved for linear polynomials, it
is not known if there exists any polynomial of degree n ≥ 2 that takes infinitely many prime values. There is
therefore some interest in studying if there exists any ”polynomial of degree 1 < c < 2“ with this property.
In 1953 I. I. Piatetski-Shapiro [16] showed that this is true if c is not much greater than 1. Let πc(x) be the
number of the integers n ≤ x for which [nc] is prime (here [θ] is the integral part of θ). Piatetski-Shapiro’s
result states that

(1.1) πc(x) ∼ x

c log x
, x→∞

if
1 < c < 12/11 = 1.0909 . . . .

Afterwards, using the fact that the upper bound for c is closely connected with the estimate of an
exponential sum over primes, a number of authors improved this result obtaining longer ranges for c. The
first were G. A. Kolesnik [10] and D. Leitmann [12] who proved that (1.1) holds for any fixed real c in the
ranges

1 < c < 10/9 = 1.1111 . . . and 1 < c < 69/62 = 1.1129 . . .

correspondingly. In 1983 D. R. Heath-Brown [6] made two important innovations which let him obtain the
range

1 < c < 755/662 = 1.1404 . . .

which G. A. Kolesnik [11] improved again to

1 < c < 39/34 = 1.1470 . . . .

Then, in 1990, H.-Q. Liu and J. Rivat [15] used the method of E. Fouvry and H. Iwaniec [2] for the estimation
of exponential sums and proved that (1.1) holds for

1 < c < 15/13 = 1.1538 . . . ,
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2 A. KUMCHEV

and in his doctorial thesis J. Rivat [17] succeeded to obtain the slightly better result

1 < c < 6121/5302 = 1.1544 . . . .

We also mention that D. Leitmann and D. Wolke [13] proved that (1.1) holds for almost all real c ∈ (1, 2)
(in the sense of Lebesgue measure).

J. Rivat [17] was also the first who considered the problem for obtaining a lower bound for πc(x). Using
a sieve method he proved that there exists an absolute constant ρ0 > 0 such that

(1.2) πc(x) ≥ ρ0
x

c log x

for each fixed c in the range
1 < c < 7/6 = 1.1666 . . . .

After that R. C. Baker, G. Harman and J. Rivat [1] and C.-H. Jia [7], using the sieve method from [4] and
the exponential sum estimates of E. Fouvry and H. Iwaniec from [2], independently proved (1.2) for

1 < c < 20/17 = 1.1764 . . . ,

and C.-H. Jia [8] improved this to
1 < c < 13/11 = 1.1818 . . . .

In this paper we obtain a further improvement. We prove the following

Theorem. Let c be a fixed real number in the range

(1.3) 1 < c < 45/38 = 1.1842 . . . .

Then (1.2) holds with ρ0 = 1/20.

Remark. The main point in the proof is to replace the original Fouvry–Iwaniec estimate with its refined
version due to H.-Q. Liu [14]. The constant 45/38 may be improved somewhat but the numerical work
showed that one cannot make a serious progress without new exponential sum estimates (even the value
1.185 would require more complicated decomposition in Section 5 in order to obtain a positive lower bound).

Throughout the paper, we suppose that 13/11 ≤ c < 45/38, and denote γ = 1/c; ε > 0 is a sufficiently
small fixed number depending at most on c, η = ε2, X > X0(ε). The letters p, q, r, s always denote prime
numbers. The notations m ∼ M and A � B mean that M < m ≤ 2M and A � B � A. We write
L = logX, e(x) = exp(2πix), N (n) = [−nγ ]− [−(n+1)γ ], ψ(t) = t− [t]−1/2, r(t) = ψ(−(t+1)γ)−ψ(−tγ).

The constants implied by � and O(·) notation depend at most on c and ε.

2. Outline of the method.

We write
P (z) =

∏
p<z

p

and for any sequence of integers E

Ed = {n ∈ E : d|n} , S(E , z) = |{n ∈ E : (n, P (z)) = 1}| .

Let us define
A = {n : n ∼ X , n = [mc]} , B = {n : n ∼ X} .

We have ∑
X<p≤2X

N (p) = S(A, (2X)1/2) +O(1) .
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Thus to prove the Theorem it is sufficient to show that

(2.1) S(A, (2X)1/2) ≥ 0.051
λX

logX

where λ = Xγ−1(2γ − 1).
In order to prove (2.1) we use the Buchstab identity

(2.2) S(E , z1) = S(E , z2)−
∑

z2≤p<z1

S(Ep, p)

together with asymptotic formulae of the form

(2.3)
∑
d∼D

a(d)S(Ad, z(d)) = λ
∑
d∼D

a(d)S(Bd, z(d)) + error terms

where a(m) ≥ 0 and D, z(d) are suitably chosen. Applying (2.2) several times we decompose S(A, (2X)1/2)
into sums of the form appearing in the left-hand side of (2.3). For some of them we obtain asymptotic
formulae of the above type and the rest may be discarded.

The most troublesome error terms arising in the proof of the asymptotic formulae of the form (2.3) are
sums of the type ∑

m∼M

∑
n∼N

a(m) b(n) r(mn) .

Using the Fourier expansion of the function ψ(·) we reduce their estimation to the estimation of exponential
sums of the form

(2.4)
∑
h∼H

∑
m∼M

∑
n∼N

c(h) a(m) b(n) e(h(mn)γ) .

The estimates for these sums used before are good enough if the sizes of H, M , N satisfy some conditions
(see Section 3 for details) and 11/13 < γ < 1. It was the last condition that set the limit of the method in
[8]. We can replace it with the less restrictive 16/19 < γ < 1, which allows us to obtain the better result.

3. Exponential sums.

In this section we prove the exponential sum estimates which we need. Lemma 1 is proved by D. R.
Heath-Brown [6, Lemma 4]. Lemma 2 is Theorem 3 of H.-Q. Liu [14]; it contains an improved version of
Theorem 3 of [2] and Lemma 1 of [1]. Lemmas 3 and 4 are refined versions of Lemmas 4 and 5 of [1] and
Lemmas 1 and 2 of [8].

Lemma 1. Let 5/6 + η ≤ γ < 1, MN � X, H ≤ X1−γ+4η. Assume further that a(m), b(n), c(h) are
complex numbers of modulus ≤ 1, and N satisfies one of the conditions

(3.1) X1−γ+ε < N < X5γ−4−ε

or

(3.2) X5−5γ+ε < N < Xγ−ε

Then ∑
h∼H

∑
m∼M

∑
n∼N

c(h) a(m) b(n) e(h(mn)γ)� X1−5η.
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Lemma 2. Let H ≥ 1, X ≥ 1, Y ≥ 1; let α, β and γ be real numbers such that
αγ(β − 1)(γ − 1) 6= 0, and A > C(α, β, γ) > 0, f(h, x, y) = Ahαxβyγ . Define

S(H,X, Y ) =
∑
h∼H

∑
x∼X

∑
y∼Y

a(h, x) b(y) e(f(h, x, y)) .

Also suppose that |a(h, x)| ≤ 1, |b(y)| ≤ 1, F = AHαXβY γ � Y. Then

L−3S(H,X, Y )�(HX)19/22Y 13/22F 3/22 +HXY 5/8(1 + Y 7F−4)1/16

+ (HX)29/32Y 7/8F−1/16M5/32 + (HX)3/4YM1/4

where L = log(AHXY + 2), M = max(1, FY −2).

Lemma 3. Let 16/19 + ε ≤ γ < 1, MN � X, H ≤ X1−γ+4η. Assume further that a(m), b(n), c(h) are
complex numbers of modulus ≤ 1, and N satisfies the condition

(3.3) X3−3γ+ε < N < X3γ−2−ε.

Then ∑
h∼H

∑
m∼M

∑
n∼N

c(h) a(m) b(n) e(h(mn)γ)� X1−5η.

Proof: Let us suppose first that N ≤ X1/2. Then we apply Lemma 2 with (h, x, y) = (h, n,m) and using
the assumptions of the lemma obtain

X−η
∑
h∼H

∑
m∼M

∑
n∼N

c(h) a(m) b(n) e(h(mn)γ)� X1−ε/4.

For N ≥ X1/2 we interchange the roles of m and n. �

Lemma 4. Let 16/19 + ε ≤ γ < 1, MN � X, H ≤ X1−γ+4η. Assume further that a(m), c(h) are complex
numbers of modulus ≤ 1, and N satisfies the condition

(3.4) N > X3−3γ+ε.

Then ∑
h∼H

∑
m∼M

∑
n∼N

c(h) a(m) e(h(mn)γ)� X1−5η.

Proof: If N satisfies the condition (3.3), Lemma 4 is a consequence of Lemma 3. Let us suppose now that
N ≥ X3γ−2−ε. We first apply Poisson summation formula (Lemma 6 of D. R. Heath-Brown [6]) and obtain∑

h∼H

∑
m∼M

∑
n∼N

c(h) a(m) e(h(mn)γ)

=NF−1/2
∑
h∼H

∑
m∼M

∑
k

c(h) a(m) b(k) e(f(h,m, k)) +O(HM(NF−1/2 + L))

where F = HXγ , f(h,m, k) = B · (hmγk−γ)1/(1−γ) � F , a(m), b(k), c(h) are of modulus ≤ 1 (a(m), c(h)
possibly not the same), and k runs through an interval [K1,K2] for which Ki � K = FN−1. Now we use a
variant of the Perron formula (Lemma 6 of E. Fouvry and H. Iwaniec [2] or formula (4.4) below) to remove
the dependence between the summation variables. We get∑

h∼H

∑
m∼M

∑
n∼N

c(h) a(m) e(h(mn)γ)

�LNF−1/2
∣∣∣∣∣∑
h∼H

∑
m∼M

∑
k∼K

c(h) a(m) b(k) e(f(h,m, k))

∣∣∣∣∣+HM(NF−1/2 + L) .

We estimate the last sum via Lemma 2 with (h, x, y) = (h,m, k) and the required estimate follows immedi-
ately. �
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4. Asymptotic formulae.

We begin this section with two lemmas concerning the so called Buchstab’s function w(u) which is defined
to be the continuous solution of the differential-difference equation{

w(u) = 1/u , for 1 < u < 2 ,

(uw(u))′ = w(u− 1) , for u > 2 .

Lemma 5 follows easily from Lemma 2 of J. B. Friedlander [3], and Lemma 6 follows from Lemma 5 by
partial summation.

Lemma 5. Let ε > 0 be fixed, x ≥ x0(ε), xε ≤ z ≤ x. Then for any u ∈ (x, 2x] we have∑
x<n≤u

(n,P (z))=1

1 = w

(
log x

log z

)
· u− x

log z
+ O

(
x

log2 x

)
.

Lemma 6. Under the assumption of Lemma 5 we have∑
n∼x

(n,P (z))=1

γnγ−1 = λ
∑
n∼x

(n,P (z))=1

1 ·
(

1 + O
(

1

log x

))
.

with λ = (2γ − 1)xγ−1.

Lemmas 7 through 10 provide us with the asymptotic formulae of the form (2.3) which we need in the
next section.

Lemma 7. Let 16/19 + ε ≤ γ < 1, MN � X, and a(m), b(n) are complex numbers of modulus � Xη/3.
Assume further that N satisfies one of the conditions (3.1)–(3.3). Then

(4.1)
∑
m∼M

∑
n∼N

mn∈A

a(m) b(n) =
∑
m∼M

∑
n∼N

mn∈B

a(m) b(n) γ(mn)γ−1 +O(Xγ−3η) .

Moreover, if N satisfies (3.4) then

(4.2)
∑
m∼M

∑
n∼N

mn∈A

a(m) =
∑
m∼M

∑
n∼N

mn∈B

a(m) γ(mn)γ−1 +O(Xγ−3η) .

Proof: Let us consider (4.1). We have∑
m∼M

∑
n∼N

mn∈A

a(m) b(n) =
∑
m∼M

∑
n∼N

mn∈B

a(m) b(n)N (mn)

and therefore ∑
m∼M

∑
n∼N

mn∈A

a(m) b(n) =
∑

1 +
∑

2

where ∑
1 =

∑
m∼M

∑
n∼N

mn∈B

a(m) b(n) ((mn+ 1)γ − (mn)γ) ,

∑
2 =

∑
m∼M

∑
n∼N

mn∈B

a(m) b(n) r(mn) .
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It is easy to see that ∑
1 =

∑
m∼M

∑
n∼N

mn∈B

a(m) b(n) γ(mn)γ−1 +O(Xη) .

Thus the proof of (4.1) will be completed if we show that∑
2 � Xγ−3η.

Applying a well-known reduction argument using the Fourier expansion of the function ψ(t) (see [6, pp.
245–247]) we find that the last inequality follows from the estimate∑

h∼H

∑
m∼M

∑
n∼N

c(h) a(m) b(n) e(h(mn)γ)� X1−5η

where H ≤ X1−γ+4η and the coeficients a(m), b(n), c(h) are complex numbers of modulus ≤ 1. This estimate
is provided by Lemma 1 if N satisfies (3.1) or (3.2), and by Lemma 3 if N satisfies (3.3).

One can prove (4.2) similarly using Lemma 4 instead of Lemmas 1 and 3. �

Lemma 8. Let 16/19 + ε ≤ γ < 1, MN � X and N satisfies one of the conditions (3.1)–(3.3). Let I, J
are integers and Ii, Jj are intervals for 1 ≤ i ≤ I, 1 ≤ j ≤ J . Write

a(m,n) =
∑

kp1···pI=n
p1<p2<···<pI

pi∈Ii

c(n)
∑

lq1···qJ=m
q1<q2<···<qJ

qj∈Jj

d(m)

with |c(n)|, |d(m)| ≤ 1 and p1, . . . , pI and q1, . . . , qJ satisfying t joint conditions of the form

pu ≤ qv or qv ≤ pu

or ∏
u∈U

pu
∏
v∈V

qv ≤ H or
∏
u∈U

pu ≥
∏
v∈V

qv

or similar (for given U ⊂ {1, . . . , I}, V ⊂ {1, . . . , J}, H ≤ X). Then

(4.3)
∑
m∼M

∑
n∼N

mn∈A

a(m,n) =
∑
m∼M

∑
n∼N

mn∈B

a(m,n) γ(mn)γ−1 +O(Xγ−3ηLt) .

Proof: Each joint condition can be removed by the truncated Perron formula

(4.4)
1

π

∫ T

−T
eiyα

(sin yβ)

y
dy =

{
1 +O

(
T−1(β − |α|)−1

)
, if |α| ≤ β

O
(
T−1(|α| − β)−1

)
, if |α| > β

at the cost of an additional L factor in the error term.
For example, in order to remove the condition pu ≤ qv we apply (4.4) with α = log pu, β = log

(
qv + 1

2

)
and T = X2. We find

∑
m∼M

∑
n∼N

mn∈A

a(m,n) =
1

π

∫ T

−T

∑
m∼M

∑
n∼N

mn∈A

a1(m,n, y)
dy

y
+O(1)

where
a1(m,n, y) = a1(m,n) piyu sin

(
y log

(
qv +

1

2

))
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and a1(m,n) is the same as a(m,n) but with the condition pu ≤ qv removed. Applying this procedure t
times we obtain

(4.5)
∑
m∼M

∑
n∼N

mn∈A

a(m,n) =
1

πt

∫ T

−T
· · ·
∫ T

−T

∑
m∼M

∑
n∼N

mn∈A

a∗(m,n,y)

y1 · · · yt
dy +O(1)

where a∗(m,n,y) is defined similarly to a(m,n) but with all the joint conditions removed, so that

a∗(m,n,y) = a(m,y) b(n,y) .

We can therefore apply (4.1) to the last sum. We get

1

πt

∫ T

−T
· · ·
∫ T

−T

∑
m∼M

∑
n∼N

mn∈A

a(m,y) b(n,y)

y1 · · · yt
dy(4.6)

=
1

πt

∫ T

−T
· · ·
∫ T

−T

∑
m∼M

∑
n∼N

mn∈B

a(m,y) b(n,y)

y1 · · · yt
γ(mn)γ−1dy +O(Xγ−3ηLt)

Applying (4.4) t more times we finally find

1

πt

∫ T

−T
· · ·
∫ T

−T

∑
m∼M

∑
n∼N

mn∈B

a(m,y) b(n,y)

y1 · · · yt
γ(mn)γ−1dy(4.7)

=
∑
m∼M

∑
n∼N

mn∈B

a(m,n) γ(mn)γ−1 +O(1) .

The lemma follows from (4.5)–(4.7). �

Lemma 9. Let u ≥ 1 and for some N satisfying one of the conditions (3.1)–(3.3) there exists D ⊂ {1, . . . , u}
such that ∏

k∈D

pk ∼ N .

Then

(4.8)
∑

p1,... ,pu

S(Ap1···pu , p1) = λ
∑

p1,... ,pu

S(Bp1···pu , p1)(1 +O(L−1)) +O(Xγ−η) .

Here the summation is over prime numbers p1, . . . , pu ≥ X1/15 satisfying pk > p1, together with � 1 further
conditions of the type

pk ≤ pl or Q ≤
∏
k∈F

pk ≤ R

(for some F ⊂ {1, . . . , u} and R ≤ X).

Proof: The left-hand side of (4.8) equals ∑
p1,... ,pu

∑
k:

p1···puk∈A
(k,P (p1))=1

1 .

We can write this sum in the form ∑
m∼M

∑
n∼N

mn∈A

a(m,n)
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where

n =
∏
j∈D

pj , m =

( ∏
j 6∈D

pj

)
· k

and a(m,n) are of the form considered in Lemma 8. Since N satisfies one of the conditions (3.1)–(3.3), we
can use Lemma 8 for the last sum, so that we obtain∑

p1,... ,pu

S(Ap1···pu , p1)

=
∑
m∼M

∑
n∼N

mn∈B

a(m,n) γ(mn)γ−1 +O(Xγ−3ηLa)

=
∑

p1,... ,pu

∑
k:

p1···puk∈B
(k,P (p1))=1

γ(p1 · · · puk)γ−1 +O(Xγ−η) .

Here a is the number of the joint conditions between the variables.
Applying Lemma 6 to the inner sum we complete the proof of the lemma. �

Lemma 10. Suppose that γ ≥ 38/45+ε and M ≤ X8/15. Suppose further that a(m) are real numbers, such
that 0 ≤ a(m)� Xη and a(m) = 0 unless p|m⇒ p ≥ X1/15. Then we have∑

m∼M
a(m)S(Am, X1/15) = λ

∑
m∼M

a(m)S(Bm, X1/15)
(
1 +O(L−1)

)
+O(Xγ−η) .

Proof: We follow the approach of G. Harman [5, Lemma 2]. We shall make use of the Eratosthenes–Legendre
sieve, which states that

(4.9)
∑
n≤N

(n,P (z))=1

f(n) =
∑
d|P (z)
nd≤N

µ(d) f(nd)

where µ(d) is the Möbius function.

We take z = X1/15 and applying (4.9) to S(Am, z) we find

(4.10)
∑
m∼M

a(m)S(Am, z) =
∑
m∼M

a(m)
∑
d|P (z)
mnd∈A

µ(d) .

Now we proceed to show that

(4.11)
∑
m∼M

a(m)
∑
d|P (z)
mnd∈A

µ(d) =
∑
m∼M

a(m)
∑
d|P (z)
mnd∈B

µ(d) γ(mnd)γ−1 +O(xγ−η) .

We first consider the case M ≥ X7/15. We produce a new variable k = dn and find∑
m∼M

a(m)
∑
d|P (z)
mnd∈A

µ(d) =
∑
m∼M
mk∈A

a(m) b(k)

with |b(k)| ≤ τ(k) (τ(k) denotes the number of the positive divisors of the integer k). Splitting up the values
of k into intervals of the form (K, 2K] we derive (4.11) from (4.1) with (m,n) = (m, k).
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Now suppose that M ≤ X7/15. We divide the sum in the left-hand side of (4.11) into two parts∑
1 =

∑
m∼M

a(m)
∑
d|P (z)
mnd∈A

md≤X8/15

µ(d) ,

∑
2 =

∑
m∼M

a(m)
∑
d|P (z)
mnd∈A

md>X8/15

µ(d) .

In
∑

1 we produce a new variable k = md and get∑
1 =

∑
k≤X8/15

kn∈A

b(k)

where |b(k)| � kητ(k). Therefore (4.2) with (m,n) = (k, n) implies∑
1 =

∑
m∼M

a(m)
∑
d|P (z)
mnd∈B

md≤X8/15

µ(d) γ(mnd)γ−1 +O(Xγ−2η) .

Now we write
∑

2 in the form ∑
2 = −

∑
m∼M

a(m)
∑
p<z

∑
d|P (p)
mnpd∈A

mpd>X8/15

µ(d)

and divide the last sum into two parts∑
3 =

∑
m∼M

a(m)
∑
p<z

∑
d|P (p)
mnpd∈A

md≤X8/15<mpd

µ(d) ,

∑
4 =

∑
m∼M

a(m)
∑
p<z

∑
d|P (p)
mnpd∈A
md>X8/15

µ(d) .

In
∑

3 we produce two new variables k = md and l = np and we get (note that p < z, mpd > X8/15 ⇒
k > X7/15) ∑

3 =
∑

X7/15<k≤X8/15

kl∈A

b(k, l)

where |b(k, l)| � kητ(k)τ(l) is of the form apperaing in the left-hand side of (4.3) with the only two joint
conditions

p > q and pk > X8/15

(here q is the largest prime divisor of d). Therefore Lemma 8 with (m,n) = (k, l) implies∑
3 =

∑
m∼M

a(m)
∑
p<z

∑
d|P (p)
mnpd∈B

md≤X8/15<mpd

µ(d) γ(mnpd)γ−1 +O(Xγ−2ηL2) .
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We treat
∑

4 similarly to
∑

2 and write it as the sum of two sums

∑
5 =

∑
m∼M

a(m)
∑

p2<p1<z

∑
d|P (p2)

mnp1p2d∈A
md≤X8/15<mp2d

µ(d) ,

∑
6 =

∑
m∼M

a(m)
∑

p2<p1<z

∑
d|P (p2)

mnp1p2d∈A
md>X8/15

µ(d) .

We deal with
∑

5 as we did with
∑

3 and obtain a similar asymptotic formula, and we give further decom-
position for

∑
6. We can continue in this fashion obtaining each time

∑
2j−1 for which we can apply Lemma

8 and
∑

2j for which we give further decomposition. Since the integers in the interval (X, 2X] have < L

prime divisors after at most L such steps we will obtain an empty
∑

2j and we will have given asymptotic

formulae for all the occurring sums. Clearly, combining the asymptotic formulae for all
∑

2j−1 we complete

the proof of (4.11) for M < X7/15.

Applying (4.9) and Lemma 6 we find

(4.12)
∑
m∼M

a(m)
∑
d|P (z)
mnd∈B

µ(d) γ(mnd)γ−1 =
∑
m∼M

a(m)S(Bm, z) (1 +O(L)) .

The lemma follows from (4.10)–(4.12). �

5. Proof of the Theorem.

We apply twice (2.2) and get

S(A, (2X)1/2) = S(A, X7/45)−
∑

X7/45≤p≤X2/9

S(Ap, p)(5.1)

−
∑

X7/15≤p≤(2X)1/2

S(Ap, p)

−
∑

X2/9<p<X7/15

S(Ap, X1/15)

+
∑

X2/9<p<X7/15

X1/15≤q<X7/45

S(Apq, q)

+
∑

X2/9<p<X7/15

X7/45≤q≤X2/9

S(Apq, q)

+
∑

X2/9<q<p<X7/15

pq2≤2X

S(Apq, q)

= S1 − S2 − S3 − S4 + S5 + S6 + S7 , say.

For S1, S5 and S7 we give further decompositions. We apply to S1 the Buchstab identity (2.2) four times
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and we get

S1 =S(A, X1/15)−
∑

X1/15≤p<X7/45

S(Ap, X1/15)(5.2)

+
∑

X1/15≤q<p<X7/45

S(Apq, X1/15)

−
∑

X1/15≤r<q<p<X7/45

S(Apqr, X1/15)

+
∑

X1/15≤s<r<q<p<X7/45

S(Apqrs, s)

= S8 − S9 + S10 − S11 + S12 , say.

Now we consider S5. We write (∇1) for the conditions

X2/9 < p < X7/15 , X1/15 ≤ q < X7/45 , pq2 ≤ X8/15,

and (∇2) for the conditions

X2/9 < p < X7/15 , X1/15 ≤ q < X7/45 , pq2 > X8/15.

We apply (2.2) two more times to the part of S5 corresponding to the conditions (∇1) and get

∑
p,q : (∇1)

S(Apq, q) =
∑

p,q : (∇1)

S(Apq, X1/15)(5.3)

−
∑

p,q : (∇1)

X1/15≤r<q

S(Apqr, X1/15)

+
∑

p,q : (∇1)

X1/15≤s<r<q

S(Apqrs, s)

= S13 − S14 + S15 , say.

For the part of S5 corresponding to the conditions (∇2) we find

∑
p,q : (∇2)

S(Apq, q) =
∑

p,q : (∇2)

∑
n:

pqn∈A
(n,P (q))=1

1(5.4)

= S16 + S17

where

S16 =
∑

p,q : (∇2)

∑
r:

pqr∈A
r≥q

1

S17 =
∑

p,q : (∇2)

q≤r≤
√

2X/pq

r≤s≤(2X)/pqr

∑
n:

pqrsn∈A
(n,P (s))=1

1 .
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For S7 we have

S7 =
∑

X2/9<q<p<X7/15

pq<X7/15

S(Apq, q)

+
∑

X2/9<q<p<X7/15

X7/15≤pq≤X8/15

S(Apq, q)

+
∑

X2/9<q<p<X7/15

X8/15<pq<pq2≤2X

S(Apq, q)

= S18 + S19 + S20 , say.

Using the definition of the sifting function we obtain

S18 =
∑

X2/9<q<p<X7/15

pq<X7/15

∑
n:

pqn∈A
(n,P (q))=1

1

= S21 + S22 ,

where S21 is the number of the integers of the form pqr ∈ A for which

(5.5) X2/9 < q < p < pq < X7/15 and r ≥ q ,
and S22—the number of the integers of the form pqrs ∈ A for which

(5.6) X2/9 < q < p < pq < X7/15 and q ≤ r ≤ s .
Hence,

(5.7) S7 = S19 + S20 + S21 + S22 .

Combining (5.1)–(5.4) and (5.7) we obtain

S(A, (2X)1/2) =− S2 − S3 − S4 + S6 + S8 − S9 + S10 − S11 + S12 + S13(5.8)

− S14 + S15 + S16 + S17 + S19 + S20 + S21 + S22 .

Lemma 9 provides asymptotic formulae for S2, S3, S6 and S19, and Lemma 10—for S4, S8–S11, S13 and S14.
Using Lemmas 8 and 9 we can also find asymptotic formulae for those parts of S12, S15–S17, S21 and S22

where some subproduct of pqr or pqrs lies in one of the intervals

[X7/45, X2/9] , [X7/15, X8/15] , [X7/9, X38/45] .

Since S20 and the remaining parts of these sums give positive contribution to the right-hand side of (5.8), we
may discard them obtaining a lower bound for S(A, (2X)1/2). Now using the corresponding decomposition
for S(B, (2X)1/2) we obtain that

S(A, (2X)1/2) ≥ λ(S(B, (2X)1/2)− T12 − T15 − T16 − T17(5.9)

− T20 − T21 − T22) .

Here T12, . . . , T22 are almost the same as the discarded sums with the only difference that A is replaced by
B, for example,

T20 =
∑

X2/9<q<p<X7/15

X8/15<pq<pq2≤2X

S(Bpq, q) .

The Prime Number Theorem implies

(5.10) S(B, (2X)1/2) =
X

L

(
1 +O(L−1)

)
.

In order to evaluate T12, . . . , T22 we use Lemma 5 and the estimates for the Buchstab function contained
in the following lemma (cf. Lemma 8 of [9]).
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Lemma 11. If w(x) is the Buchstab function, then we have
(a) w(u) ≤ 0.5644 for u ≥ 3;
(b) w(u) ≤ 0.5672 for u ≥ 2.

We consider first T20. Applying Lemma 5 and the Prime Number Theorem we obtain

T20 =
∑

X2/9<q<p<X7/15

X8/15<pq<pq2≤2X

X

pq log q
w

(
log(X/pq)

log q

)
(1 +O(L−1))

= (I20 +O(L−1))
X

L

where

I20 =

∫ ∫
D20

1

xy2
w

(
1− x− y

y

)
dx dy

and D20 is the region defined by the conditions

2/9 < y < x < 7/15 , x+ y > 8/15 , x+ 2y < 1 .

The computation of the last integral shows that

(5.11) T20 ≤ 0.41695
X

L
.

Now we consider T21. We have

T21 ≤
∑

X2/9<q<p<X7/15

pq<X7/15

(
π

(
2X

pq

)
− π

(
X

pq

))

=
∑

X2/9<q<p<X7/15

pq<X7/15

X

pq log(X/pq)
(1 +O(L−1))

= (I21 +O(L−1))
X

L

where

I21 =

∫ ∫
D21

dx dy

xy(1− x− y)

and D21 is the region defined by the inequalities

2/9 < y < x < x+ y < 7/15 .

Hence

(5.12) T21 ≤ 0.004333
X

L
.

Treating T16 and T22 similarly we get

(5.13) T16 ≤ 0.35301
X

L
and T22 ≤ 0.000244

X

L
.
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The sums T12 and T15 may be estimated similarly to T20 via Lemma 5 and the Prime Number Theorem.
We find

(5.14) T12 ≤ 0.006183
X

L
and T15 ≤ 0.000386

X

L
.

Finally we consider T17. We divide it into two parts: T23 where√
2X

pqr
< s ≤ 2X

pqr
,

and T24 where

s ≤

√
2X

pqr
,

and we obtain

(5.15) T17 = T23 + T24 .

With T23 we proceed similarly to T21, and with T24—similarly to T20. We get

(5.16) T23 ≤ 0.115868
X

L
.

and

(5.17) T24 ≤ 0.020259
X

L
.

Finally from (5.9)–(5.17) we derive

S(A, (2X)1/2) ≥ 0.08
λX

L
. �
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