ON A TWO-DIMENSIONAL EXPONENTIAL SUM
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1. INTRODUCTION

The classical Weyl sum
frle) = D7 elapa® + -+ age), (1)

1<z<N
has been the subject of intense investigations for more than a century, going back to Weyl’s
pioneering work [8] on uniform distribution. Here, N is a large parameter, o € R* k > 2,
and e(z) = ™. In general, there are two regimes to the behavior of such sums. When all
the coefficients am, ...,y are close to rationals with small denominators, one can establish
an asymptotic formula for fy(a); otherwise, one has a non-trivial upper bound on fi(a).
Borrowing terminology from the Hardy—Littlewood circle method, we will refer to these two
regimes as a being on a major arc or on a minor arc, respectively.

When a; = -+ = a1 = 0, Vaughan [5] obtained a major arc approximation that was
strong enough to give a unified treatment of the quadratic and cubic Weyl sums across both
regimes. More recently, Vaughan [7] extended that work to the full quadratic Weyl sum
fa(a), while Briidern and Robert [4] and Brandes, Parsell, Poulias, Shakan, and Vaughan [3]
obtained variants in the case ap = ---=ap 1 =0, k > 3.

In this paper, we are interested in the two-dimensional quadratic variant of (1),

Fla;0) = Z Z e(arr? + 2007y + azy® + 017 + Oay).
1<z<N 1<y<N

For this sum, « is on a major arc if there exist integers ay, as, az and qi, g2, g3 such that
i —a] QN7 1<¢:<Q, (a,q) =1, (2)
for some parameter () < N. When « is on a minor arc, a simple argument (see Proposition 1
below) yields the bound
Fla;0) <. N* Q12 (3)
for any fixed € > 0. On the other hand, when « is on the major arc defined by conditions
(2), a different routine argument (see Proposition 2) leads to an approximation of the form

F(a;0) = F*(c; 8) + O(gN (1 + N?|8])), (4)
where .
q =lem[qi, g2, g3], Bi = i — j, (5)
and F*(a; 0) is a local approximant that satisfies the inequality
N?log N
F*(o;0) « °8 (6)

(q + aN?|B])'>
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The exponential sum F(a; @) appears in a recent work [1] by Anderson, Palsson and
the author on discrete maximal functions. Motivated by the applications in [1], we will be
concerned with the error term in (4), which can be as large as O(N@?) under conditions (2).
As one wants that error term to be smaller than the trivial bound for F(c; @), this restricts
the choice of Q to @ < NY3. Indeed, this error term is weaker than the minor arc bound
(3) when Q = N?7. Our main result establishes an approximation of the form (4) with an
error term of size O(NQ'?log N), provided that @ < nN'/? for a sufficiently small absolute
constant n > 0.

Given ge N, ae Z3 me Z? BeR? and 0 € R?, we define

q q
S(¢;a, m) = % Z Z eq(a12® + 2aszy + azy® + myz + moy),

q rz=1y=1

N (N
I(N;8,0) = f J €(ﬁ133'2 + 2Byzy + Bay® + Orx + Ggy) dzdy,
o Jo

where ¢,(z) = e(z/q). Also, for vectors a, q € Z* with (a;,q;) = 1 for i = 1,2,3, we write
aiq
b; = PRt Qi = lem[gi, gira], (7)

where ¢ = lem|qq, ¢2, g3], as in (5). With this notation, we can state our theorem as follows.

Theorem 1. Let 1 < Q < 0.1N'2, ac e R?, and 0 € R?. Suppose that a,q € Z* satisfy (2)
and that m € Z? is such that

‘ei AN
Then
F(o;0) = H(q;a,m)I(N; 3;6) + O(NQ"*log N), (8)

where q and B are defined by (5), 6; = 0; — m;/Q;, and

1 q q ~ ~
H(g;a,m) = e D) eq(2baqugshk + magih + agsk)S(g; b, ),
h=1k=1

with m; = m;q/Q; and Ny, = (Mg + 2bagsk, Mo + 2baqih).

The main term in (8) is not exactly what one may expect—that would be the main term
n (11) below (see also Proposition 2). While this is somewhat disappointing, it is not
unprecedented—in [3], the authors of that paper also obtain a major arc approximation to
fr(aq, ay) that attains a sharp error term at the expense of including additional main terms
(albeit of a slightly different nature). The main strength of our theorem is that the main
term satisfies (6), while the error term is much smaller than that in (4). This allows us to
combine the above result and the basic bounds in Propositions 1 and 2 below to prove the
following theorem.

Theorem 2. Let 1 < Q < N2, a e R3, and 6 € R%. Then either
F(o; ) « N*Q Y*log N, (9)
or there exist g € N and a € Z® such that

lgov — a;] < QN2 1<q¢<Q, (q,a1,a9,a3) =1, (10)
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and
F(a;0) = S(g;a, m)[(N; B;9) + O(NQ), (11)
where 3 is defined by (5) and m € Z? is chosen so that § = 0 — ¢~ m satisfies |8 < (2¢)7".
For r € N, define
V. ={(m,n)eZ*: |mf’ = n> = jm — n|]* = r},

where |-| denotes the Euclidean norm on R?. In [1], a special case of Theorem 2 (see Lemma 7
in [1]) was used to study the properties of the maximal operator

T*(f,9)(x) =supr®* 3 |f(x —m)g(x —n)|,

reN (m,n)eVy,

where f € (P(Z) and g € (%(Z%). In particular, the main result of that paper establishes
that T* is bounded from ¢7(Z%) x (*(Z%) to ¢7(Z") whenever d > 9 and p > max (3%, $3).
The lower bound for p in this theorem depends on the saving over the trivial bound in the

minor arc bound (3). Theorem 2 with Q = N'/2 yields the bound
F(o; 0) «. NT/++e (12)

outside the set of major arcs defined by conditions (10). By comparison, if we relied only on
the basic approximation (4), we would be restricted to Q < N%7, leading to a weaker range
for p in the above result.

In [1], we proved also an asymptotic formula for the Fourier multiplier of the underlying
bilinear operator,

Tr(gan) :r?)—d Z 6(5m+"7n)
(m,n)eV,

The preliminary version of Theorem 2 that was used in [1] was not sufficiently general to
apply in the proof of that result (Theorem 2 in [1]), and so the bound for the error term in
the asymptotic formula is not as sharp as one may hope. Using Theorem 2 as stated above,
one may improve on that result. We omit the complete statement of the improvement, since
the asymptotic formula for 7,.(€, 1) is too technical to include here for the mere purpose of
this brief remark. However, for the benefit of the interested reader, we note that one only
need to apply (12) above in place of (6.1) in [1].

Remark. The condition @ < 0.1N'? in the statement of Theorem 1 can be replaced by
Q < nN'? for a slightly larger n € (0,1). The above choice, while not optimal, is relatively
close to the optimal one and also allows us to justify easily several claims of the form

alB)l < Q*N~' < 0.01,

where 1 < ¢;,¢; < Q and ¢;|3;| < QN 2. Such estimates are implicit in several places in the
proof of Theorem 1 (for example, see (26)).

2. PRELIMINARIES

To begin, we state and prove the main minor arc bound for F(«;@). Although its proof
is standard, we include it for completeness. Here and through the remainder of the paper,
we write L = log N. We also abbreviate ged(a,b,...) and lem|a,b,...]| as (a,b,...) and
la,b,...], respectively.
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Proposition 1. Let 1 < Q < N and suppose that o € R® has no rational approzimation of
the form (2). Then, for all @ € R%, one has

|F(c; )] « N*Q VL. (13)

Proof. By Dirichlet’s theorem on Diophantine approximation, there exist rationals a;/q;,
1 =1,2,3, such that

i —a;] QN2 1< <NQ "', (a,q)=1 (14)
By our assumption that a does not have a rational approximation satisfying (2), we must

have ¢; > () for at least one index ¢, and by symmetry, we may assume that i = 1 or 2.
By Cauchy’s inequality,

[F(e: )P <N )

y<N

SN DD D e(nh(2z + h) + 205y + 61h)

Y<N |h|<N wel(h)
3 e<a2ky>\

<N Z Z e(a k)| -

2

Z e(a1x2 + 2001y + Hlx)
<N

|k|<2N ' 2zel(k/2) ys<N
2
« NP+ N Y ] [min (N, |k ™),
k<4N j=1

where I(h) is a subinterval of [1, N| that depends on h and ||z| denotes the distance from
x to the nearest integer. Recalling that (14) holds with ¢; > @ for i = 1 or 2, we can now
apply Lemma 2.2 in Vaughan [6] to deduce that

|F(a;0)]> « N*(¢; "+ N' + ¢;N ?)L,
and (13) follows. O

The next proposition establishes the basic major arc approximation of type (4). Note that
unless «a satisfies conditions (10) for some @) < N, the error term is weaker than the trivial
bound for F(a;0). However, when we pair this result with Proposition 1, we apply this
approximation on the major arcs defined by (2). In that context, we have ¢ = [¢1, g2, g3] and
a = b, where b; = a;q/q;; in particular, the error term is O(NQ?).

Proposition 2. Let ge N, ac€ Z?, me Z?, a € R3, and 0 € R? satisfy

1

(Q7 CL1,CL2,CL3) = 17 |q02 _ml| < 2

Then
F(a;0) = S(g;a,m)I(N;B;8) + O(¢N(1 + N?|A])), (15)
where 3=a —q 'a, § =0 — ¢ 'm.
Proof. The result follows by partial summation from the asymptotic formula
1 (Y
> eBn) = -J e(fx) dz + O(1), (16)

X<n<Y 1Jx
n=a (mod q)

where a,q € N and |0] < (2¢9)7".



Let
F,s(a;0) = Z Z e(a1a® + 200zy + azy® + b1 + 6ay).
ysN

<N <
z=r (mod q) y=s (mod q)

By splitting the terms in F'(«; @) according to their residues modulo ¢, we get

F(o;0) = )| Fri(a;6)

r,s=1
q
- Z ey (alrz + 2a97S + a3s® + myr + mZS)FT,S(B; d). (17)

r,s=1
We apply partial summation and (16) successively to the sums over z and y to get
Fou(B:8) = ¢ 21(N; 8,8) + O(q" N (1 + N?|g))),
and the proposition follows from (17). d

The next two lemmas provide basic bounds that we will use to bound the main term in
(15). In particular, together they establish that if (¢, a1, a2, a3) = 1, one has
N2L
(g + gN?(B[)"/2’

S(g;a,m)I(N;B8,9) « (18)

uniformly in m and 4.
Lemma 1. Suppose that (q, a1, as,a3) = 1. Then
|S(g5 2, m)| « ¢ (g, arag — a3)"*.

Proof. This is Lemma 1 in [1], so we provide only a brief sketch. After squaring out, one can
use the orthogonality of the additive characters on Z, to show that

¢*|S(g;a,m)|* < ¢*v(g; 2a), (19)
where v(g; a) denote the number of solutions (h, k) € Zg of the pair of congruences

arh + ask = ash + agk =0 (mod q).
The lemma follows from (19) and the bound
v(g;a) < (g, a103 — a3),

which can be proved using the basic properties of linear congruences. 0]

We remark that while in this paper we need only the bound S(q;a, m) « ¢~*/2, the full
strength of Lemma 1 plays an important role in [1]. In that work, we apply the above bound
to averages of S(¢;a,m) over a, and are able to make use of the following inequality (see
Lemma 2 in [1]): if s > 1, then

Z (¢, a3 — a3)° < 7(g)*¢" .

1<ay,a2,a3<q
(g,a1,a2,a3)=1

Lemma 2. One has
1(N:3,0)] <« N*L(1+ N?[8] + NJo])

Proof. This is a special case of Theorem 1.5 in [2]. O
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Lemma 3. Let a € R?, g€ N, and a € Z? satisfy

(gaz) =1, |goq —aq1] < 3.
Then
fz(a) = Sl(q;a)ll(N;:B) + O((q + qN2|62|)1/2),

where

—_

q N
Si(g;a) = - Z (ag2® + arz), I,(N;B) = J e(Box® + Biz) da
=1

0

Q

and B = a — ¢ 'a.
Proof. This Theorem 8 in [7]. O
Recall also the well-known bound for the Gauss sum:
Si(g;a) < ¢~ (20)

when (as, q) = 1, and the first-derivative estimate for trigonometric integrals: if ¢ : [a,b0] = R
is monotone and mf |¢’ (x)| = A, then

\\

f e(6(z)) dz < AL (21)

a

3. PROOF OF THEOREM 1
The basic idea of the proof is to apply Lemma 3 successively to each of the summations
in F(a; 0). We recall (7) and also define
di
%> 95)

Qij:(
for 1 <i4,5 < 3.

Fix u € Z and y € [1, N] with
—3021 < U < 3¢a1, 2a2q12y +my =u  (mod gg). (22)

We note that when ¢g; = 1 (i.e., when QQ; = ¢1), these conditions reduce to setting u = 0,
and when ¢o; = 2 to selecting u € {0,1} based on the parity of m;. In all other cases,
conditions (22) specify the residue class of y modulo ¢21/(2, ¢21). We also choose the unique
integer k, with

-1 k, 1
—<7 —2a2y+01——<—
2¢1 41 2q:
Lemma 3 with ¢ = ¢; then gives
falan, 202y + 01) = Si(qr; a1, ky) 11 (N5 By, 7y,) + O(Q'?). (23)

Suppose first that u # 0. We have

2a2q12y + @
1

- 2a2q12y + My —u  ky U

1 q1 +@

6

e+l >

— [01] = 2(|B1] + B2 )N

06
Q1

=




By (22), the fraction
_ 2a2q12y +my —u Ky

Ql q1

is an integer multiple of 1/¢;. So, either w = 0 and
lu| = 0.6  |ul
> )
1 3Q1

mf ‘26195 + 7| =
e

&

or |w| = 1/¢; and

1 |u+06 |y
inf (2082 + = — — > .
z€[0,N] ‘ b ’yy‘ q1 o 3Q1

Thus, by (21),
I(N; Bry ) < Qiful™,
and (20) and (23) give
falen, 200y + 01) < g1 %o |u|* + QY2 (24)

Summing this inequality over all pairs u,y, with u # 0, that satisfy (22), we find that the
total contribution to F(c;6) from such pairs is

« Z (N/Q21)Q%/QQ21|U|71 + NQ'? « NQ'’L. (25)
1<‘U|<%q21
When u = 0, we relate k,, v, to my,d;. We have
2a2y k, 1 0.6
Ty + 01| + 2 N<— — 26
e 0w < [yl + 101] + 215, o0 (26)

Since the left side of this inequality is a multiple of 1/¢;, we ﬁnd that in this case

k 200 M e e
_y:_2+_1 _y7 %;2514‘2629_—3/:
T 02 Q1 ¢ ¢

with e, € {0, £1}. In particular, when e, = 0, we may rewrite (23) as
falan, 200y + 01) = S1(Q1; a1g21, 2a2q12y + M) [ (N Ba,,) + O(Q1/2)7
= S1(q; b1, 2boy + 11 ) 1 (N3 B1, 75) + O(Q"?), (27)
where 7, = 202y + d1.

On the other hand, it is clear from (26) that the case e, = +1 may occur only when

Q1 = ¢ and 0.4¢;7" < |61] < 0.5¢;*. Under these assumptions, we have
1 1

f ]2 > — — |0y =2 N>

xGHOIN ‘ brx + ’yy‘ o |01 | (181 + 1B2]) 3¢,

for all = € [0, N]. Thus, by (21),

Li(N; B, vy) < i,
and (20) and (23) yield
folon, 200y + 0;) < QY2
Moreover, since in this case

inf |2 | = 0] —2 N>
xel[r()l,N]‘ Bua + 5| = [01] = 2(1B1| + |B2D)N > o’
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we have also
L(N; B, vy) < qu.
We conclude that (27) holds also when e, = +1.

Having established (27) for all y with 2a2q12y = —m; (mod ¢g;) and recalling the bound (25)
for the contribution of the remaining y € [1, N], we obtain

F(a; 0) f Glas; A )e(Byx? + 612) dz + O(NQY2L), (28)
where A\, = A0, z), A(r, x) = 2a97/qs + 2627 + 05, and
1 q
Glay\;) = - Z (byr? + ) Z e(ay® + \(r,7)y)
o r=1 1<y<N
2a2q12y=—m1 (mod go1)
q21 q
= — Z €gor (M1 Z eq(bir? + myr) fo(a, M(r + qih, 1)). (29)

9921 h=1 r=1

Next, we approximate the sum G(as, ;) in (28). For a fixed r € Z and x € [0, N], we
choose k, , with

—1 k. 1
< Yoo = Aryz) — — < —
2g3 3 23
We also choose an integer u = u, with
——923 <u< 2Q23, 2a2q32m + My =u  (mod ga3). (30)

Similarly to (23), we have
fg(O[g, )\(Ta :L‘)) = 51(613, as, kr,x)ll (N7 637 Vr,a:) + O(QI/Q) (31)

When u # 0, we have

2a0q32m + Mo ki y

61[1&1\]]‘ Bsy + Y, ‘ 0, |02 (182 + 18s])
- 2a0q32r + M2 —u k| u | 0.6 |u|
g @2 q2 Q2 Q2 3@2

Hence, similarly to (24), we get

folos, M, @) < a5 gaslul ™ + QY%
Therefore, the total contribution to the right side of (29) from terms subject to

2a2q32(r + 1h) =u —mg  (mod go3) (32)
with u # 0, is bounded by

1 q21 (u)
B LI b P NIRRT

1<ful<bass T A1 721
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where the notation Z(") indicates that r satisfies the congruence (32) for the specified value
of u. Thus,

1 q21 q
GlazAy) = i > Z(O) eq (bir? + 1 (r + qih)) fo(a, A(r + b, 2)) + O(QY2L).  (33)
2L p=1r=1

On the other hand, we have

2(]J2Q327ﬁ + my kr:p 1 0.6
SR L T L Y| A |62 2|8 N < —— + =,
0 Vel + 02| + 2|52 )
so when r satisfies (30) with u = 0 we get
ko o2 ) )
Lo T IR T =G+ 28—
UE] 42 Q2 g3 43
with e, € {0, £1}. When e, = 0, (31) becomes
falas, A(r, 2)) = S1(q; bs, 2bar + 1712) 1 (N; B3, 22 + 02) + O(Q'?). (34)

As before, the alternative case e, = +1 may occur only if Qs = g3 and 0.4¢5 " < |65] < 0.5¢5 .
Again, under these conditions, we retain (34) because both sides are O(Q'/?). Combining
(33) and (34) (with 7 + ¢1h in place of r), we deduce that

Gz, Ae) = T(q;a,m) I (N; B3, 2Boz + 62) + O(QY?L), (35)
where
1 q21 q (0) ) ~ ~
T(q; a, 1’11) = J Z €qo1 (mlh) Z €q (bl’l” + mlr) Sl(q; b3, 262(’/“ + qlh) + m2)
2l =1 r=1
1 g21 Q23
- ;;1 1;1 €gar (M1h)egyy (Mak)eq, (2a2q193hK)
1
X ? Z Z €q (617’2 + 2bors + bys® + ny T + n27h3)
r=1s=1
= H(q;a,m), (36)
with Nk = my + 2bQQ3k and Nop = me + 2b2q1h.
The theorem is a direct consequence of (28), (35), and (36). O

4. PROOF OF THEOREM 2

Let Qo = 0.1NY2. By Dirichlet’s theorem on Diophantine approximation, there exist
rationals b;/q;, i = 1,2, 3, such that

lgic; — bi] < QN 2 1<q < N2Q51a (biqi) = 1. (37)

Proposition 1 yields (9) unless 1 < ¢1, g2, ¢35 < Qo. Let ¢ = [q1, ¢2, ¢3] and define a; = b;q/q;.
Under conditions (37) with g1, g2, g3 < Qo, Theorem 1 and (18) give

N2L
(¢ + N?|goc — a|)'/?
9
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The right side of this inequality is O(NQ~"/2L) unless
1<¢<Q, lgoi—a] <QN2

Since (37) and the definition of the a;’s ensure that (q, a, as,a3) = 1, we conclude that (9)
may only fail if & has a rational approximation of the form (10). Under those conditions,
(11) follows from Proposition 2. O
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