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1. Introduction

The classical Weyl sum

fkpαq �
¸

1¤x¤N

epαkx
k � � � � � α1xq, (1)

has been the subject of intense investigations for more than a century, going back to Weyl’s
pioneering work [8] on uniform distribution. Here, N is a large parameter, α P Rk, k ¥ 2,
and epxq � e2πix. In general, there are two regimes to the behavior of such sums. When all
the coefficients α2, . . . , αk are close to rationals with small denominators, one can establish
an asymptotic formula for fkpαq; otherwise, one has a non-trivial upper bound on fkpαq.
Borrowing terminology from the Hardy–Littlewood circle method, we will refer to these two
regimes as α being on a major arc or on a minor arc, respectively.

When α1 � � � � � αk�1 � 0, Vaughan [5] obtained a major arc approximation that was
strong enough to give a unified treatment of the quadratic and cubic Weyl sums across both
regimes. More recently, Vaughan [7] extended that work to the full quadratic Weyl sum
f2pαq, while Brüdern and Robert [4] and Brandes, Parsell, Poulias, Shakan, and Vaughan [3]
obtained variants in the case α2 � � � � � αk�1 � 0, k ¥ 3.

In this paper, we are interested in the two-dimensional quadratic variant of (1),

F pα;θq �
¸

1¤x¤N

¸
1¤y¤N

epα1x
2 � 2α2xy � α3y

2 � θ1x� θ2yq.

For this sum, α is on a major arc if there exist integers a1, a2, a3 and q1, q2, q3 such that

|qiαi � ai| ¤ QN�2, 1 ¤ qi ¤ Q, pai, qiq � 1, (2)

for some parameter Q ¤ N . When α is on a minor arc, a simple argument (see Proposition 1
below) yields the bound

F pα;θq !ε N
2�εQ�1{2 (3)

for any fixed ε ¡ 0. On the other hand, when α is on the major arc defined by conditions
(2), a different routine argument (see Proposition 2) leads to an approximation of the form

F pα;θq � F �pα;θq �OpqNp1 �N2|β|qq, (4)

where
q � lcmrq1, q2, q3s, βi � αi �

ai
qi
, (5)

and F �pα;θq is a local approximant that satisfies the inequality

F �pα;θq !
N2 logN

pq � qN2|β|q1{2
. (6)
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The exponential sum F pα;θq appears in a recent work [1] by Anderson, Palsson and
the author on discrete maximal functions. Motivated by the applications in [1], we will be
concerned with the error term in (4), which can be as large as OpNQ3q under conditions (2).
As one wants that error term to be smaller than the trivial bound for F pα;θq, this restricts
the choice of Q to Q ¤ N1{3. Indeed, this error term is weaker than the minor arc bound
(3) when Q ¥ N2{7. Our main result establishes an approximation of the form (4) with an
error term of size OpNQ1{2 logNq, provided that Q ¤ ηN1{2 for a sufficiently small absolute
constant η ¡ 0.

Given q P N, a P Z3, m P Z2, β P R3, and θ P R2, we define

Spq; a,mq �
1

q2

q̧

x�1

q̧

y�1

eq
�
a1x

2 � 2a2xy � a3y
2 �m1x�m2y

�
,

IpN ;β,θq �

» N

0

» N

0

e
�
β1x

2 � 2β2xy � β3y
2 � θ1x� θ2y

�
dxdy,

where eqpxq � epx{qq. Also, for vectors a,q P Z3 with pai, qiq � 1 for i � 1, 2, 3, we write

bi �
aiq

qi
, Qi � lcmrqi, qi�1s, (7)

where q � lcmrq1, q2, q3s, as in (5). With this notation, we can state our theorem as follows.

Theorem 1. Let 1 ¤ Q ¤ 0.1N1{2, α P R3, and θ P R2. Suppose that a,q P Z3 satisfy (2)
and that m P Z2 is such that ����θi � mi

Qi

���� ¤ 1

2Qi

.

Then
F pα;θq � Hpq; a,mqIpN ;β; δq �O

�
NQ1{2 logN

�
, (8)

where q and β are defined by (5), δi � θi �mi{Qi, and

Hpq; a,mq �
1

q2

q̧

h�1

q̧

k�1

eqp2b2q1q3hk � m̃1q1h� m̃2q3kqSpq;b,nh,kq,

with m̃i � miq{Qi and nh,k � pm̃1 � 2b2q3k, m̃2 � 2b2q1hq.

The main term in (8) is not exactly what one may expect—that would be the main term
in (11) below (see also Proposition 2). While this is somewhat disappointing, it is not
unprecedented—in [3], the authors of that paper also obtain a major arc approximation to
fkpα1, αkq that attains a sharp error term at the expense of including additional main terms
(albeit of a slightly different nature). The main strength of our theorem is that the main
term satisfies (6), while the error term is much smaller than that in (4). This allows us to
combine the above result and the basic bounds in Propositions 1 and 2 below to prove the
following theorem.

Theorem 2. Let 1 ¤ Q ¤ N1{2, α P R3, and θ P R2. Then either

F pα;θq ! N2Q�1{2 logN, (9)

or there exist q P N and a P Z3 such that

|qαi � ai| ¤ QN�2, 1 ¤ q ¤ Q, pq, a1, a2, a3q � 1, (10)
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and
F pα;θq � Spq; a,mqIpN ;β; δq �OpNQq, (11)

where β is defined by (5) and m P Z2 is chosen so that δ � θ� q�1m satisfies |δ| ¤ p2qq�1.

For r P N, define

Vr �
 
pm,nq P Z2d : |m|2 � |n|2 � |m� n|2 � r

(
,

where |�| denotes the Euclidean norm on Rd. In [1], a special case of Theorem 2 (see Lemma 7
in [1]) was used to study the properties of the maximal operator

T �pf, gqpxq � sup
rPN

r3�d
¸

pm,nqPVr

|fpx�mqgpx� nq|,

where f P `ppZdq and g P `qpZdq. In particular, the main result of that paper establishes
that T � is bounded from `ppZdq � `8pZdq to `ppZdq whenever d ¥ 9 and p ¡ max

�
32
d�8

, d�4
d�2

�
.

The lower bound for p in this theorem depends on the saving over the trivial bound in the
minor arc bound (3). Theorem 2 with Q � N1{2 yields the bound

F pα;θq !ε N
7{4�ε (12)

outside the set of major arcs defined by conditions (10). By comparison, if we relied only on
the basic approximation (4), we would be restricted to Q ¤ N2{7, leading to a weaker range
for p in the above result.

In [1], we proved also an asymptotic formula for the Fourier multiplier of the underlying
bilinear operator, pTrpξ,ηq � r3�d

¸
pm,nqPVr

epξ �m� η � nq.

The preliminary version of Theorem 2 that was used in [1] was not sufficiently general to
apply in the proof of that result (Theorem 2 in [1]), and so the bound for the error term in
the asymptotic formula is not as sharp as one may hope. Using Theorem 2 as stated above,
one may improve on that result. We omit the complete statement of the improvement, since

the asymptotic formula for pTrpξ,ηq is too technical to include here for the mere purpose of
this brief remark. However, for the benefit of the interested reader, we note that one only
need to apply (12) above in place of (6.1) in [1].

Remark. The condition Q ¤ 0.1N1{2 in the statement of Theorem 1 can be replaced by
Q ¤ ηN1{2 for a slightly larger η P p0, 1

4
q. The above choice, while not optimal, is relatively

close to the optimal one and also allows us to justify easily several claims of the form

qi|βj| ¤ Q2N�1 ¤ 0.01,

where 1 ¤ qi, qj ¤ Q and qj|βj| ¤ QN�2. Such estimates are implicit in several places in the
proof of Theorem 1 (for example, see (26)).

2. Preliminaries

To begin, we state and prove the main minor arc bound for F pα;θq. Although its proof
is standard, we include it for completeness. Here and through the remainder of the paper,
we write L � logN . We also abbreviate gcdpa, b, . . . q and lcmra, b, . . . s as pa, b, . . . q and
ra, b, . . . s, respectively.
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Proposition 1. Let 1 ¤ Q ¤ N and suppose that α P R3 has no rational approximation of
the form (2). Then, for all θ P R2, one has

|F pα;θq| ! N2Q�1{2L. (13)

Proof. By Dirichlet’s theorem on Diophantine approximation, there exist rationals ai{qi,
i � 1, 2, 3, such that

|qiαi � ai| ¤ QN�2, 1 ¤ qi ¤ N2Q�1, pai, qiq � 1. (14)

By our assumption that α does not have a rational approximation satisfying (2), we must
have qi ¡ Q for at least one index i, and by symmetry, we may assume that i � 1 or 2.

By Cauchy’s inequality,

|F pα;θq|2 ¤ N
¸
y¤N

���� ¸
x¤N

e
�
α1x

2 � 2α2xy � θ1x
�����

2

¤ N
¸
y¤N

¸
|h|¤N

¸
xPIphq

e
�
α1hp2x� hq � 2α2hy � θ1h

�

¤ N
¸

|k|¤2N

���� ¸
xPIpk{2q

epα1kxq

���� �
���� ¸
y¤N

epα2kyq

����
! N3 �N

¸
k¤4N

2¹
j�1

min
�
N, }αjk}

�1
�
,

where Iphq is a subinterval of r1, N s that depends on h and }x} denotes the distance from
x to the nearest integer. Recalling that (14) holds with qi ¡ Q for i � 1 or 2, we can now
apply Lemma 2.2 in Vaughan [6] to deduce that

|F pα;θq|2 ! N4
�
q�1
i �N�1 � qiN

�2
�
L,

and (13) follows. �

The next proposition establishes the basic major arc approximation of type (4). Note that
unless α satisfies conditions (10) for some Q ¤ N , the error term is weaker than the trivial
bound for F pα;θq. However, when we pair this result with Proposition 1, we apply this
approximation on the major arcs defined by (2). In that context, we have q � rq1, q2, q3s and
a � b, where bi � aiq{qi; in particular, the error term is OpNQ3q.

Proposition 2. Let q P N, a P Z3, m P Z2, α P R3, and θ P R2 satisfy

pq, a1, a2, a3q � 1, |qθi �mi| ¤
1
2
.

Then
F pα;θq � Spq; a,mqIpN ;β; δq �O

�
qNp1 �N2|β|q

�
, (15)

where β � α� q�1a, δ � θ � q�1m.

Proof. The result follows by partial summation from the asymptotic formula¸
X n¤Y

n�a pmod qq

epθnq �
1

q

» Y

X

epθxq dx�Op1q, (16)

where a, q P N and |θ| ¤ p2qq�1.
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Let
Fr,spα;θq �

¸
x¤N

x�r pmod qq

¸
y¤N

y�s pmod qq

e
�
α1x

2 � 2α2xy � α3y
2 � θ1x� θ2y

�
.

By splitting the terms in F pα;θq according to their residues modulo q, we get

F pα;θq �
q̧

r,s�1

Fr,spα;θq

�
q̧

r,s�1

eq
�
a1r

2 � 2a2rs� a3s
2 �m1r �m2s

�
Fr,spβ; δq. (17)

We apply partial summation and (16) successively to the sums over x and y to get

Fr,spβ; δq � q�2IpN ;β, δq �O
�
q�1Np1 �N2|β|q

�
,

and the proposition follows from (17). �

The next two lemmas provide basic bounds that we will use to bound the main term in
(15). In particular, together they establish that if pq, a1, a2, a3q � 1, one has

Spq; a,mqIpN ;β, δq !
N2L

pq � qN2|β|q1{2
, (18)

uniformly in m and δ.

Lemma 1. Suppose that pq, a1, a2, a3q � 1. Then

|Spq; a,mq| ! q�1pq, a1a3 � a22q
1{2.

Proof. This is Lemma 1 in [1], so we provide only a brief sketch. After squaring out, one can
use the orthogonality of the additive characters on Zq to show that

q4|Spq; a,mq|2 ¤ q2νpq; 2aq, (19)

where νpq; aq denote the number of solutions ph, kq P Z2
q of the pair of congruences

a1h� a2k � a2h� a3k � 0 pmod qq.

The lemma follows from (19) and the bound

νpq; aq ¤ pq, a1a3 � a22q,

which can be proved using the basic properties of linear congruences. �

We remark that while in this paper we need only the bound Spq; a,mq ! q�1{2, the full
strength of Lemma 1 plays an important role in [1]. In that work, we apply the above bound
to averages of Spq; a,mq over a, and are able to make use of the following inequality (see
Lemma 2 in [1]): if s ¥ 1, then¸

1¤a1,a2,a3¤q
pq,a1,a2,a3q�1

pq, a1a3 � a22q
s ¤ τpqq2qs�2.

Lemma 2. One has

|IpN ;β,θq| ! N2Lp1 �N2|β| �N |θ|q�1{2.

Proof. This is a special case of Theorem 1.5 in [2]. �
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Lemma 3. Let α P R2, q P N, and a P Z2 satisfy

pq, a2q � 1, |qα1 � a1| ¤
1
2
.

Then
f2pαq � S1pq; aqI1pN ;βq �O

�
pq � qN2|β2|q

1{2
�
,

where

S1pq; aq �
1

q

q̧

x�1

eqpa2x
2 � a1xq, I1pN ;βq �

» N

0

epβ2x
2 � β1xq dx,

and β � α� q�1a.

Proof. This Theorem 8 in [7]. �

Recall also the well-known bound for the Gauss sum:

S1pq; aq ! q�1{2 (20)

when pa2, qq � 1, and the first-derivative estimate for trigonometric integrals: if φ : ra, bs Ñ R
is monotone and inf

a¤x¤b
|φ1pxq| ¥ λ, then

» b

a

epφpxqq dx ! λ�1. (21)

3. Proof of Theorem 1

The basic idea of the proof is to apply Lemma 3 successively to each of the summations
in F pα;θq. We recall (7) and also define

qij �
qi

pqi, qjq
.

for 1 ¤ i, j ¤ 3.

Fix u P Z and y P r1, N s with

�1
2
q21   u ¤ 1

2
q21, 2a2q12y �m1 � u pmod q21q. (22)

We note that when q21 � 1 (i.e., when Q1 � q1), these conditions reduce to setting u � 0,
and when q21 � 2 to selecting u P t0, 1u based on the parity of m1. In all other cases,
conditions (22) specify the residue class of y modulo q21{p2, q21q. We also choose the unique
integer ky with

�1

2q1
¤ γy :� 2α2y � θ1 �

ky
q1

 
1

2q1
.

Lemma 3 with q � q1 then gives

f2pα1, 2α2y � θ1q � S1pq1; a1, kyqI1pN ; β1, γyq �OpQ1{2q. (23)

Suppose first that u � 0. We have

inf
xPr0,Ns

��2β1x� γy
�� ¥ ����2a2q12y �m1

Q1

�
ky
q1

����� |δ1| � 2p|β1| � |β2|qN

¥

����2a2q12y �m1 � u

Q1

�
ky
q1

�
u

Q1

����� 0.6

Q1

.
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By (22), the fraction

w �
2a2q12y �m1 � u

Q1

�
ky
q1

is an integer multiple of 1{q1. So, either w � 0 and

inf
xPr0,Ns

��2β1x� γy
�� ¥ |u| � 0.6

Q1

¡
|u|

3Q1

,

or |w| ¥ 1{q1 and

inf
xPr0,Ns

��2β1x� γy
�� ¥ 1

q1
�
|u| � 0.6

Q1

¡
|u|

3Q1

.

Thus, by (21),
IpN ; β1, γyq ! Q1|u|

�1,

and (20) and (23) give

f2pα1, 2α2y � θ1q ! q
1{2
1 q21|u|

�1 �Q1{2. (24)

Summing this inequality over all pairs u, y, with u � 0, that satisfy (22), we find that the
total contribution to F pα;θq from such pairs is

!
¸

1¤|u|¤ 1
2
q21

pN{q21qq
1{2
1 q21|u|

�1 �NQ1{2 ! NQ1{2L. (25)

When u � 0, we relate ky, γy to m1, δ1. We have����2a2yq2 �
m1

Q1

�
ky
q1

���� ¤ |γy| � |δ1| � 2|β2|N  
1

2q1
�

0.6

Q1

. (26)

Since the left side of this inequality is a multiple of 1{q1, we find that in this case

ky
q1

�
2a2y

q2
�
m1

Q1

�
ey
q1
, γy � δ1 � 2β2y �

ey
q1
,

with ey P t0,�1u. In particular, when ey � 0, we may rewrite (23) as

f2pα1, 2α2y � θ1q � S1pQ1; a1q21, 2a2q12y �m1qI1pN ; β1, γ
�
y q �OpQ1{2q,

� S1pq; b1, 2b2y � m̃1qI1pN ; β1, γ
�
y q �OpQ1{2q, (27)

where γ�y � 2β2y � δ1.
On the other hand, it is clear from (26) that the case ey � �1 may occur only when

Q1 � q1 and 0.4q�1
1 ¤ |δ1| ¤ 0.5q�1

1 . Under these assumptions, we have

inf
xPr0,Ns

��2β1x� γy
�� ¥ 1

q1
� |δ1| � 2p|β1| � |β2|qN ¡

1

3q1

for all x P r0, N s. Thus, by (21),

I1pN ; β1, γyq ! q1,

and (20) and (23) yield

f2pα1, 2α2y � θ1q ! Q1{2.

Moreover, since in this case

inf
xPr0,Ns

��2β1x� γ�y
�� ¥ |δ1| � 2p|β1| � |β2|qN ¡

1

3q1
,
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we have also

I1pN ; β1, γ
�
y q ! q1.

We conclude that (27) holds also when ey � �1.
Having established (27) for all y with 2a2q12y � �m1 pmod q21q and recalling the bound (25)

for the contribution of the remaining y P r1, N s, we obtain

F pα;θq �

» N

0

Gpα3;λxqepβ1x
2 � δ1xq dx�OpNQ1{2Lq, (28)

where λx � λp0, xq, λpr, xq � 2a2r{q2 � 2β2x� θ2, and

Gpα;λxq �
1

q

q̧

r�1

eqpb1r
2 � m̃1rq

¸
1¤y¤N

2a2q12y��m1 pmod q21q

epαy2 � λpr, xqyq

�
1

qq21

q21̧

h�1

eq21pm1hq
q̧

r�1

eqpb1r
2 � m̃1rqf2pα, λpr � q1h, xqq. (29)

Next, we approximate the sum Gpα3, λxq in (28). For a fixed r P Z and x P r0, N s, we
choose kr,x with

�1

2q3
¤ γr,x :� λpr, xq �

kr,x
q3

 
1

2q3
.

We also choose an integer u � ur with

�1
2
q23   u ¤ 1

2
q23, 2a2q32r �m2 � u pmod q23q. (30)

Similarly to (23), we have

f2pα3, λpr, xqq � S1pq3; a3, kr,xqI1pN ; β3, γr,xq �OpQ1{2q. (31)

When u � 0, we have

inf
yPr0,Ns

��2β3y � γr,x
�� ¥ ����2a2q32r �m2

Q2

�
kr,x
q3

����� |δ2| � 2p|β2| � |β3|qN

¥

����2a2q32r �m2 � u

Q2

�
kr,x
q2

�
u

Q2

����� 0.6

Q2

¡
|u|

3Q2

.

Hence, similarly to (24), we get

f2pα3, λpr, xqq ! q
1{2
3 q23|u|

�1 �Q1{2.

Therefore, the total contribution to the right side of (29) from terms subject to

2a2q32pr � q1hq � u�m2 pmod q23q (32)

with u � 0, is bounded by

!
¸

1¤|u|¤ 1
2
q23

1

qq21

q21̧

h�1

q¸puq

r�1

q
1{2
3 q23|u|

�1 �Q1{2 ! Q1{2L,
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where the notation
°puq indicates that r satisfies the congruence (32) for the specified value

of u. Thus,

Gpα;λxq �
1

qq21

q21̧

h�1

q¸p0q

r�1

eq
�
b1r

2 � m̃1pr � q1hq
�
f2pα, λpr � q1h, xqq �OpQ1{2Lq. (33)

On the other hand, we have����2a2q32r �m2

Q2

�
kr,x
q3

���� ¤ |γr,x| � |δ2| � 2|β2|N  
1

2q3
�

0.6

Q2

,

so when r satisfies (30) with u � 0 we get

kr,x
q3

�
2a2r

q2
�
m2

Q2

�
er
q3
, γr,x � δ2 � 2β2x�

er
q3
,

with er P t0,�1u. When er � 0, (31) becomes

f2pα3, λpr, xqq � S1pq; b3, 2b2r � m̃2qI1pN ; β3, 2β2x� δ2q �OpQ1{2q. (34)

As before, the alternative case er � �1 may occur only if Q2 � q3 and 0.4q�1
3 ¤ |δ2| ¤ 0.5q�1

3 .
Again, under these conditions, we retain (34) because both sides are OpQ1{2q. Combining
(33) and (34) (with r � q1h in place of r), we deduce that

Gpα3, λxq � T pq; a,mqI1pN ; β3, 2β2x� δ2q �OpQ1{2Lq, (35)

where

T pq; a,mq �
1

qq21

q21̧

h�1

eq21pm1hq

q¸p0q

r�1

eq
�
b1r

2 � m̃1r
�
S1pq; b3, 2b2pr � q1hq � m̃2q

�
1

q21q23

q21̧

h�1

q23̧

k�1

eq21pm1hqeq23pm2kqeq2p2a2q1q3hkq

�
1

q2

q̧

r�1

q̧

s�1

eq
�
b1r

2 � 2b2rs� b3s
2 � n1,kr � n2,hs

�
� Hpq; a,mq, (36)

with n1,k � m̃1 � 2b2q3k and n2,h � m̃2 � 2b2q1h.
The theorem is a direct consequence of (28), (35), and (36). �

4. Proof of Theorem 2

Let Q0 � 0.1N1{2. By Dirichlet’s theorem on Diophantine approximation, there exist
rationals bi{qi, i � 1, 2, 3, such that

|qiαi � bi| ¤ Q0N
�2, 1 ¤ qi ¤ N2Q�1

0 , pbi, qiq � 1. (37)

Proposition 1 yields (9) unless 1 ¤ q1, q2, q3 ¤ Q0. Let q � rq1, q2, q3s and define ai � biq{qi.
Under conditions (37) with q1, q2, q3 ¤ Q0, Theorem 1 and (18) give

F pα;θq !
N2L

pq �N2|qα� a|q1{2
�N5{4L.
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The right side of this inequality is OpNQ�1{2Lq unless

1 ¤ q ¤ Q, |qαi � ai| ¤ QN�2.

Since (37) and the definition of the ai’s ensure that pq, a1, a2, a3q � 1, we conclude that (9)
may only fail if α has a rational approximation of the form (10). Under those conditions,
(11) follows from Proposition 2. �
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