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1. Introduction.
B. I. Segal ([13], [14]) was the first who in 1933 considered additive problems with

non-integer degrees. He studied the inequality

|xc1 + xc2 + · · ·+ xck −N | < ε (1)

and the equation
[xc1] + [xc2] + · · ·+ [xck] = N , (2)

where c > 1 is not integer, and proved in both cases that there exists k0(c) such that
the corresponding problem has solutions if k ≥ k0 and N is sufficiently large. Later
Deshouillers [4] and Arhipov and Zhitkov [1] improved Segal’s result on (2). One may also
mention the papers of Deshouillers [5] and Gritsenko [7], where the equation (2) in two
variables was considered.

In 1952 I. I. Piatetski–Shapiro [12] considered (1) with x1, . . . , xk restricted to prime
numbers. Let H(c) denote the least k such that the inequality (1) with fixed ε > 0 has
solutions in prime numbers for every sufficiently large real N . Piatetski–Shapiro proved
that

lim sup
c→∞

H(c)

c log c
≤ 4 .

He also proved that H(c) ≤ 5 for 1 < c < 3/2. The theorem of Goldbach–Vinogradov [16]
motivates the conjecture that for c close to 1 H(c) ≤ 3. This was proved by D. I. Tolev
[15]. He showed that if 1 < c < 15/14 and ε = N−(1/c)(15/14−c)log9N the quantity

D(N)
def
=

∑
|pc1+pc2+pc3−N |<ε

log p1 log p2 log p3

is positive for a sufficiently large N . Recently Y. C. Cai [3] improved the upper bound for
c to 13/12.

In [10] Laporta and Tolev considered the corresponding equation of the type (2). For
1 < c < 17/16 they proved an asymptotic formula for the sum

R(N)
def
=

∑
[pc1]+[pc2]+[pc3]=N

log p1 log p2 log p3 .
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In the present paper we improve the range for c they obtained.

Theorem 1. Assume that 1 < c < 12/11 and δ > 0 is arbitrary small. Then for any
sufficiently large integer N the asymptotic formula

R(N) =
Γ3
(
1 + 1

c

)
Γ
(

3
c

) N3/c−1 + O
(
N3/c−1 exp

(
− (logN)1/3−δ))

holds.

We also improve the result from [3]. We obtain an asymptotic formula for the sum
D(N). Since the proof is similar to the proof of Theorem 1, we omit it.

Theorem 2. Assume that 1 < c < 11/10 and δ > 0 is arbitrary small. Then for any
sufficiently large real N and ε ≥ N−(1/c)(11/10−c)+ν for some ν > 0 the asymptotic formula

D(N) = 2ε
Γ3
(
1 + 1

c

)
Γ
(

3
c

) N3/c−1 + O
(
εN3/c−1 exp

(
− (logN)1/3−δ))

holds.

The range for c in both problems depends on the estimate of an exponential sum
over primes. In [10] and [15] Vaughan’s identity and the exponent pair ( 1

2 ,
1
2 ) are used.

We derive Theorem 1 from a more precise estimate of this sum (Lemma 5 below). To
prove it we use the identity of Heath-Brown [8], van der Corput’s method as described in
Chapters 2 and 3 of [6] and the estimate of a double exponential sum due to Kolesnik [9].

2. Notation. Since for 1 < c < 17/16 Theorem 1 is proved in [10], we can assume that
17/16 ≤ c < 12/11. In this paper η > 0 is a fixed small number depending only on c;
P = N1/c; ω = P 1−c−η; p, p1, . . . are primes; α ∈ (0, 1); ε is an arbitrary small positive
number, not necessary the same in different appearances. We use [x], {x} and ‖x‖ for
the integral part of x, fractional part of x and the distance from x to the nearest integer
correspondingly; Λ(n) is von Mangoldt’s function.

e(x) = exp(2πix);
σ = exp

(
(logN)1/3−δ);

f(x)� g(x) means that f(x) = O(g(x));
f(x) � g(x) means that f(x)� g(x)� f(x);
x ∼ X means that x runs through a subinterval of [X, 2X];
f(x1, . . . , xn)∆̃g(x1, . . . , xn) means that

∂j1+···+jn

∂xj11 · · · ∂x
jn
n

f(x1, . . . , xn) =
∂j1+···+jn

∂xj11 · · · ∂x
jn
n

g(x1, . . . , xn)
(
1 + O(∆)

)
for all n-tuples (j1, . . . , jn) for which it makes sense.
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We use sums of two types, which we define in the following way:
Type I sums: ∑∑

m∼M,n∼L
mn∼X

am F (mn)

Type II sums: ∑∑
m∼M,n∼L
mn∼X

am bn F (mn)

where the coefficients satisfy the conditions am � mε, bn � nε.
We also denote

S(α) =
∑
p≤P

log p · e(α[pc]) ;

Ri =

∫
Ωi

S3(α) e(−αN) dα (i = 1, 2)

where Ω1 = (−ω, ω) and Ω2 = (ω, 1− ω).

3. Some preliminary results.

Lemma 1. Let D be a subdomain of the rectangle {(x, y) |X ≤ x ≤ 2X , Y ≤ y ≤ 2Y }
(X ≥ Y ) such that any line parallel to any coordinate axis intersects it in O(1) line
segments. Let α, β be real numbers, αβ 6= 0, α + β 6= 1, α + β 6= 2, and let f(x, y) be a
real sufficiently many times differentiable function such that f(x, y)∆̃Axαyβ throughout
D. Denoting N = XY , F = AXαY β , we have∣∣∣ ∑

(x,y)∈D

e(f(x, y))
∣∣∣� (NF )ε

(
F 1/3N1/2 +NY −1/2 +N5/6 +NF−1/4 +NF−1/8X−1/8

+∆2/5F 1/5N9/10X−2/5 + ∆1/4NX−1/4
)
.

Proof: This is a version of Theorem 1 of [9]. The proof may be found in [11].

Lemma 2. Let 3 < U < V < Z < X and suppose that Z − 1
2 ∈N, X ≥ 64Z2U , Z ≥ 4U2,

V 3 ≥ 32N . Assume further that F (n) is a complex valued function such that |F (n)| ≤ 1.
Then the sum ∑

n∼X
Λ(n)F (n)

may be decomposed into O(log10X) sums, each either of type I with L > Z, or of type II
with U < L < V .

Proof: This is Lemma 3 of [8].
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Lemma 3. Let x not be an integer, α ∈ (0, 1), H ≥ 3. Then we have

e(−α{x}) =
∑
|h|≤H

ch(α) e(hx) + O
(

min
(

1,
1

H‖x‖

))

where ch(α) =
1− e(−α)
2πi(h+ α)

.

Proof: See Lemma 12 of [2].

In the following lemma we estimate the number N(∆) of quadruples (h1, h2, n1, n2)
for which h1, h2 ∼ H, n1, n2 ∼ N and∣∣(h1 + α)nc1 − (h2 + α)nc2

∣∣ ≤ ∆ .

Lemma 4. Suppose that c 6= 0, α ∈ (0, 1), ∆ > 0, H ≥ 3 and N is large. Then we have

N(∆)� ∆HN2−c +H3/2N log(2HN) .

Proof: We follow the approach of D. R. Heath-Brown from [8]. We define the quantity

N(∆; a, b) = #
{

(h1, h2, n1, n2) | h1, h2 ∼ H , (h1, h2) = a , n1, n2 ∼ N
(n1, n2) = b ,

∣∣(h1 + α)nc1 − (h2 + α)nc2
∣∣ ≤ ∆

}
which we are going to estimate. If h1, h2 ∼ H, n1, n2 ∼ N and |(h1+α)nc1−(h2+α)nc2| ≤ ∆
we have ∣∣∣(n1

n2

)c
− h2 + α

h1 + α

∣∣∣� ∆

HN c
,
∣∣∣h2

h1
− h2 + α

h1 + α

∣∣∣� 1

H
,

hence ∣∣∣h2

h1
−
(n1

n2

)c∣∣∣� 1

H
+

∆

HN c
. (3)

We also have ∣∣∣n1

n2
−
(h2 + α

h1 + α

)1/c∣∣∣� ∆

HN c
. (4)

From (3) and (4), arguing as on pp.256–257 of [8], we obtain

N(∆; a, b)� ∆

HN c
· H

2N2

a2b2
+ min

(H2

a2
,
N2

b2
+
HN2

a2b2

)
.

Since
N(∆) ≤

∑
a≤2H

∑
b≤2N

N(∆; a, b) ,

the proof of the lemma is completed.
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4. The main lemma.

Lemma 5. Suppose that X > P 9/10, H = σXc−1 and ch(α) are complex numbers such
that |ch(α)| � (1 + |h|)−1. Then, uniformly with respect to α ∈ (ω, 1− ω), we have

T (α) =
∑
|h|≤H

ch(α)
∑
n∼X

Λ(n) e((h+ α)nc)� X2−c−ρ

for some sufficiently small ρ > 0, depending only on c.

Proof: We use Lemma 2 with F (n) = e((h+ α)nc) to reduce the esimation of T (α) to the
estimation of sums

Ti(α) =
∑
|h|≤H

ch(α)
∑

i
(i = 1, 2)

where
∑

1,
∑

2 are type I and type II sums, correspondingly. We choose the parameters
U , V , Z as follows:

U = X2c−2+2ρ/256 , V = 4X1/3

and

Z =


[
X(16c−16)/3+3ρ

]
+ 1/2 ,if 17/16 ≤ c < 14/13 ;[

X(13c−13)/3+3ρ
]

+ 1/2 ,if 14/13 ≤ c < 13/12 ;[
X(20c−21)/2+5ρ

]
+ 1/2 ,if 13/12 ≤ c < 12/11 .

Let us consider T2(α). We have

T2(α)� max
ω≤λ≤2

∣∣T (1)
2 (λ)

∣∣+ logX max
2≤J≤H

∣∣T (2)
2 (α; J)

∣∣ (5)

where
T

(1)
2 (λ) =

∑
m∼M

∑
n∼L

am bn e(λ(mn)c)

T
(2)
2 (α; J) =

∑
h∼J

ch(α)
∑
m∼M

∑
n∼L

am bn e((h+ α)(mn)c) .

First we esimate T
(2)
2 (α; J). We obtain

T
(2)
2 (α; J)� Xε

J

∑
m∼M

∑
q≤Q

∣∣∣ ∑
(h,n)∈Iq

d(h, n) e((h+ α)(mn)c)
∣∣∣

where |d(h, n)| ≤ 1, Q > 1 is a parameter to be defined later and for q ≤ Q

Iq = {(h, n) | h∼J , n∼L , 5(q − 1)JLc<Q(h+ α)nc≤5qJLc} .

So, using the Cauchy inequality, we get∣∣T (2)
2 (α; J)

∣∣2 � XεMQ

J2

∑∑
h1,h2∼J
n1,n2∼L
|λ|≤5JLc/Q

∣∣∣ ∑
m∼M

e(λmc)
∣∣∣
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where λ = (h1 +α)nc1− (h2 +α)nc2. We estimate the innermost sum trivially if |λ| ≤M−c,
and using the exponent pair ( 13

40 ,
11
20 ) otherwise. From Lemma 4 we obtain now∣∣T (2)

2 (α; J)
∣∣2 � XεMQ

J2

(
M N(M−c)+

+ max
M−c≤∆≤5JLc/Q

(
∆13/40M (9+13c)/40 + ∆−1M1−c)N(∆)

)
� Xε

(
J−1/2M2LQ+ J13/40M (49+13c)/40L(80+13c)/40Q−13/40+

+J−1M2−cL2−cQ+ J−7/40M (49+13c)/40L(40+13c)/40Q27/40
)
.

We choose Q via Lemma 2.4 of [6] and the conditions on J , M and L imply

max
2≤J≤H

∣∣T (2)
2 (α; J)

∣∣� X2−c−ρ+ε . (6)

Let us estimate now T
(1)
2 (λ). Using the Cauchy inequality and Lemma 2.5 of [6] we

get ∣∣T (1)
2 (λ)

∣∣2 � Xε

(
M2L2

Q
+
ML

Q

∑
q≤Q

∑
n∼L

∣∣∣ ∑
m∼M

e(λ((n+ q)c − nc)mc)
∣∣∣)

where Q� L is a positive integer. We apply the exponent pair ( 13
40 ,

11
20 ) to the innermost

sum and choose Q via Lemma 2.4 of [6] to obtain∣∣T (1)
2 (λ)

∣∣2 � Xε
(
M2L+ λ13/40M (49+13c)/40L(67+13c)/40

+λ13/53M (75+13c)/53L(93+13c)/53
)

and using the conditions on M , L and λ:

max
ω≤λ≤2

∣∣T (1)
2 (λ)

∣∣� X2−c−ρ+ε . (7)

The needed estimate for T2(α) follows from (5)–(7).

Let us consider now T1(α). We have

T1(α)� Xε max
|λ|∈(ω,H+1)

∑
m∼M

∣∣∣ ∑
n∼L

e(λ(mn)c)
∣∣∣ . (8)

If L ≥ X(57c−49)/23+3ρ we esimate the sum over n using the exponent pair ( 8
41 ,

26
41 )

and we obtain ∣∣T1(α)
∣∣� X2−c−ρ+ε . (9)

Otherwise we first use the Cauchy inequality and Lemma 2.5 of [6] to the sum in the
right-hand side of (8) and obtain

|T1|2 � Xε

(
M2L2

Q
+
ML

Q

∑
q∼J

∑
n∼L

∑
m∼M

e(f(m,n, q))

)
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where f(m,n, q) = λ((n + q)c − nc)mc, J ≤ Q/2 and Q � L is parameter to be chosen
later. Then we apply Poisson summation formula (Lemma 3.6 of [6]) to the sums over m
and n successively and Abel’s transformation:∑

q

∑
m,n

e(f(m,n, q))

=
∑
q,n

∑
µ

(∂2f(mµ, n, q)

∂m2

)−1/2

e(1/8 + f(mµ, n, q)− µmµ)

+O
(
MLJF−1/2 + LJ logX

)

�MF−1/2
∣∣∣∑
q,µ

∑
n

e(f1(µ, q, n))
∣∣∣+XJF−1/2 + LJ logX

�MF−1/2
∣∣∣∑
q,µ

∑
ν

(∂2f1(µ, q, nν)

∂n2

)−1/2

e(1/8 + f1(µ, q, nν)− νnν)
∣∣∣

+MF−1/2JFM−1
(
LF−1/2 + logX

)
+XJF−1/2 + LJ logX

�MLF−1
∣∣∣ ∑
q,µ,ν

e(g(µ, ν, q))
∣∣∣+ F 1/2J logX + LJ logX +XJF−1/2

where F = λJM cLc−1, f1(µ, q, n) = f(mµ, n, q)− µmµ,

g(µ, ν, q) = f1(µ, q, nν)− νnν∆̃c0(λq)1/(2−2c)ν1/2µc/(2c−2) � F ,

c0—a constant depending only on c, ∆ = J/L, ν � FL−1, µ � FM−1.
Hence

X−ε|T1|2 � X2Q−1 +X2F−1Q−1
∑
q∼J

∣∣∣ ∑
µ�FM−1

∑
ν�FL−1

e(g(µ, ν, q))
∣∣∣

+X2F−1/2 +XL+XF 1/2 . (10)

If X1/2 ≤ L < X(57c−49)/23+3ρ we estimate the sum over µ, ν in (10) using Lemma 1
with X = FM−1, Y = FL−1 and f(x, y) = g(µ, ν, q). We get

X−ε|T1|2 � X2Q−1 + F 1/3X3/2 +XF 1/2L1/2 +X7/6F 2/3 +X3/2F 3/5J2/5L−4/5

+XF 3/4M1/8 + J1/4X5/4F 3/4L−1/2 +X2F−1/2 +XL .

Now we substitute the expression for F in the last estimate and choose Q via Lemma 2.4
of [6]. We obtain (9).

If Z ≤ L < X1/2 we interchange roles of µ and ν and we prove again that the estimate
(9) holds.

This completes the proof of the lemma.
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5. Proof of Theorem 1: It is easy to see that

R(N) =

∫ 1

0

S3(α) e(−αN) dα = R1 +R2 .

The integral R1 is studied by Laporta and Tolev in [10], pp.928–929. They proved
that if 1 < c < 17/16

R1 =
Γ3
(
1 + 1

c

)
Γ
(

3
c

) N3/c−1 + O
(
σ−1N3/c−1

)
but the same argument shows that this asymptotic formula holds for 1 < c < 3/2. Hence
the theorem follows from the estimate

R2 � σ−1P 3−c . (11)

It is not difficult to prove that

R2 � P logP max
α∈Ω2

|S(α)| .

To prove (11) it remains to show that

max
α∈Ω2

|S(α)| � σ−1P 2−c .

We have
S(α) =

∑
n≤P

Λ(n) e(αnc) e(−α{nc}) + O(P 1/2) .

So, it is sufficient to obtain that for X satisfying P 9/10 < X ≤ P

S1(α) =
∑
n∼X

Λ(n) e(αnc) e(−α{nc})� σ−1X2−c .

Using Lemma 3 with x = nc and H = σXc−1 we obtain

S1(α) =
∑
|h|≤H

ch(α)
∑
n∼X

Λ(n) e((h+ α)nc) + O
(

logX
∑
n∼X

min
(

1 ,
1

H‖nc‖

))
.

The estimation of the error term in the above equality is standard (see [8], pp.245–246).
Hence (11) follows from Lemma 5.

The proof of Theorem 1 is copmleted.
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