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Abstract. Let k ě 2 and s be positive integers, and let n be a large positive integer subject to certain local
conditions. We prove that if s ě k2 ` k` 1 and θ ą 31{40, then n can be expressed as a sum pk1 ` ¨ ¨ ¨ ` p

k
s ,

where p1, . . . , ps are primes with |pj ´ pn{sq
1{k| ď nθ{k. This improves on earlier work by Wei and Wooley

[15] and by Huang [8] who proved similar theorems when θ ą 19{24.

1. Introduction

The study of additive representations of integers as sums of powers of primes goes back to the work of
Hua [6, 7]. In particular, Hua proved that when k and s are positive integers with s ą 2k, every sufficiently
large natural number n satisfying certain local solubility conditions can be represented as

n “ pk1 ` ¨ ¨ ¨ ` p
k
s , (1.1)

where p1, . . . , ps are prime numbers. (Henceforth, the letter p, with or without subscripts, always denotes a
prime number.) To describe the local conditions, we let τ “ τpk, pq be the largest integer with pτ | k, and
then define

Kpkq “
ź

pp´1q|k

pγpk,pq, γpk, pq “

#

τpk, pq ` 2 when p “ 2, τ ą 0,

τpk, pq ` 1 otherwise.

One typically studies (1.1) for n restricted to the congruence class

Hk,s “
 

n P N : n ” s pmod Kpkqq
(

.

In this paper, we are interested in the additive representations of the form (1.1) with “almost equal”
primes. Given a large integer n P Hk,s, we ask whether it is possible to solve (1.1) in primes subject to

ˇ

ˇpj ´ pn{sq
1{k

ˇ

ˇ ď H p1 ď j ď sq, (1.2)

where H “ opn1{kq. There is a long list of results on sums of five or fewer almost equal squares (k “ 2,
3 ď s ď 5), beginning with the work of Liu and Zhan [11] and culminating with the results of Kumchev and
Li [10] (see [10] for a detailed history of that problem). In particular, Kumchev and Li showed that when
k “ 2 and s “ 5 the problem has solutions with H “ nθ{2 for any fixed θ ą 8{9. They were also the first to
obtain results on sums of more than five almost equal squares, where the extra variables are used to reduce
the admissible size of H. Let θk,s denote the least exponent θ such that (1.1) and (1.2) with H “ nθ{k can
be solved for sufficienly large n P Hk,s whenever θ ą θk,s. Kumchev and Li [10] proved that θ2,s ď 19{24
when s ě 17. The lower bound on s in this theorem was reduced to s ě 7 in a recent paper by Wei and
Wooley [15], in which those authors also established surprisingly strong results for higher values of k: they
proved that if s ą 2kpk ´ 1q, one has

θk,s ď

#

4{5 if k “ 3,

5{6 if k ě 4.
(1.3)

Huang [8] further reduced the bound (1.3) to θk,s ď 19{24 for all k ě 3 and s ą 2kpk ´ 1q.
The main goal of the present work is to establish the bound θk,s ď 31{40 for all k ě 2. We also make use

of a recent breakthrough by Bourgain, Demeter and Guth [2] to reduce the lower bound on s when k ě 4.
Our main result is as follows.
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Theorem 1. Let k ě 2, s ě k2 ` k ` 1, and θ ą 31{40. When n P Hk,s is sufficiently large, equation (1.1)

has solutions in primes p1, . . . , ps satisfying (1.2) with H “ nθ{k.

Circle method experts will not be surprised that our methods lead also to improvements on the results
established by Wei and Wooley [15] and by Huang [8] on solubility for “almost all” n and on the number
of exceptions for representations by six almost equal squares. Indeed, by adapting the ideas in [15, §9], we
obtain the following theorems.

Theorem 2. Let k ě 2, s ą kpk ` 1q{2, θ ą 31{40, and N Ñ 8. There is a fixed δ ą 0 such that equation
(1.1) has solutions in primes p1, . . . , ps satisfying (1.2) with H “ nθ{k for all but OpN1´δq integers n ď N
subject to n P Hk,s (and, when k “ 3 and s “ 7, also 9 - n).

Theorem 3. Let θ ą 31{40, and N Ñ 8. Let E6pN ;Hq denote the number of integers n ” 6 pmod 24q,
with |n ´ N | ď HN1{2, such that equation (1.1) with k “ 2 and s “ 6 has solutions in primes p1, . . . , p6
satisfying (1.2). There is a fixed δ ą 0 such that

E6pN ;Nθ{2q ! N p1´θq{2´δ.

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real number. Any
statement in which ε occurs holds for each positive ε, and any implied constant in such a statement is
allowed to depend on ε. The letter c denotes a constant that depends at most on k and s, not necessarily
the same in all occurrences. As usual in number theory, µpnq, Λpnq, φpnq, and τpnq denote, respectively,
the Möbius function, von Mangoldt’s function, Euler’s totient function, and the number of divisors function.
We write epxq “ expp2πixq and pa, bq “ gcdpa, bq, and we use m „ M as an abbreviation for the condition
M ď m ă 2M . If χ denotes a Dirichlet character, we set δχ “ 1 or 0 according as χ is principal or not.

The sums
ř

χ mod q and
ř˚

χ mod q denote summations over all the characters modulo q and over the primitive
characters modulo q, respectively.

2. Outline of the proof

Let x “ pn{sq1{k, y “ xθ, I “ px´ y, x` ys, and write

Rk,spnq “
ÿ

n“pk1`¨¨¨`p
k
s

piPI

1.

Let 1P denote the indicator function of the primes, and suppose that we have arithmetic functions λ˘ such
that, for m P I,

λ´pmq ď 1Ppmq ď λ`pmq. (2.1)

Then the vector sieve of Brüdern and Fouvry [3, Lemma 13] yields

1Ppm1q ¨ ¨ ¨1Ppm5q ě

5
ÿ

i“1

λ´pmiq
ź

j‰i

λ`pmjq ´ 4λ`pm1q ¨ ¨ ¨λ
`pm5q. (2.2)

Thus, by the symmetry of the problem, we have

Rk,spnq ě 5Rk,spn, λ
´q ´ 4Rk,spn, λ

`q, (2.3)

where

Rk,spn, λq “
ÿ

n“pk1`¨¨¨`p
k
s´5`m

k
1`¨¨¨`m

k
5

pi,mjPI

λpm1qλ
`pm2q ¨ ¨ ¨λ

`pm5q.

To prove the theorem, we show that one can choose sieve functions λ˘ satisfying (2.1) so that the right
side of (2.3) is positive. Our choice of λ˘ is borrowed from Baker, Harman and Pintz [1]—namely, λ´ and
λ` are, respectively, the functions a0 and a1 constructed in §4 of that paper. In many ways, the functions
λ˘ imitate the indicator function 1P of the primes p P I. We will discuss the similarities in detail later (see
§3 below) and will focus here on their most crucial property:
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(A0) Let A,B ą 0 be fixed (possibly large) numbers and let xÑ8. If χ is a Dirichlet character modulo
q ď plog xqB and x11{20`ε ď y ď x exp

`

´ plog xq1{3
˘

, then one has

ÿ

|m´x|ďy

λ˘pmqχpmq “
2y

φpqq log x

`

δχκ˘ `O
`

plog xq´A
˘˘

, (2.4)

where κ˘ are absolute constants satisfying

κ´ ą 0.99, κ` ă 1.01. (2.5)

We now sketch the application of the circle method to Rk,spn, λq. Let δ ą 0 be a fixed number, to be
chosen later sufficiently small in terms of k, s and θ, and set

P “ yδ, Q “ xk´2y2P´1, L “ log x. (2.6)

We write

Mpq, aq “
 

α P R : |qα´ a| ď Q´1
(

,

and define the sets of major and minor arcs by

M “
ď

1ďaďqďP
pa,qq“1

Mpq, aq and m “
“

Q´1, 1`Q´1
‰

zM, (2.7)

respectively. Further, for any Lebesgue measurable set B, we write

Rk,spn, λ;Bq “

ż

B

fpα,1Pq
s´5fpα, λqfpα, λ`q4ep´nαq dα,

where

fpα, λq “
ÿ

mPI
λpmqepmkαq. (2.8)

By orthogonality and (2.7), we have

Rk,spn, λq “ Rk,spn, λ;Mq `Rk,spn, λ;mq. (2.9)

In §4, we show that when s ě k2 ` k ` 1, δ ă 1{p16kq, and θ ě 31{40, one has

Rk,spn, λ;mq ! ys´1´δ{p3kqx1´k. (2.10)

Then, in §5, we show that when δ ď 2pθ ´ 31{40q, one has

Rk,spn, λ
˘;Mq “ Cpnqys´1x1´kL´s

`

κ˘κ
4
` `OpL

´1q
˘

, (2.11)

where 1 ! Cpnq ! 1 for sufficiently large n P Hk,s, and κ˘ are the constants from (2.4). Theorem 1 follows
from (2.3), (2.5), and (2.9)–(2.11). �

3. The sieve weights

As we said before, we use sieve weights λ˘ constructed by Baker, Harman and Pintz [1] to have properties
(2.1) and (A0) above. We remark that (A0) is a short-interval version of the Siegel–Walfisz theorem: when
the functions λ˘ are replaced by 1P, the asymptotic formula (2.4) with κ “ 1 and y ě x7{12`ε is a well-known
extension of a celebrated result of Huxley [9]. In this section, we record some additional properties of the
weights λ˘ that we will need later in the paper:

(A1) The functions λ˘pmq vanish if m has a prime divisor p ă x1{10.
(A2) Let S “ tpj : p P P, j ě 2u. When m „ 2x{3, one can express λ˘pmq as a linear combination of a

bounded function supported on S and of OpLcq triple convolutions of the form
ÿ

m“uvw
u„U, v„V

ξuηvζw,

where |ξu| ď τpuqc, |ηv| ď τpvqc, maxpU, V q ! x11{20, and either ζw “ 1 for all w, or |ζw| ď τpwqc

and UV " x27{35.
3



(A3) Let A,B, ε ą 0 be fixed, let χ be a Dirichlet character modulo q ď LB , and put T0 “ exppL1{3q and
T1 “ x9{20´ε. Then

ż T1

T0

ˇ

ˇ

ˇ

ˇ

ÿ

m„2x{3

λ˘pmqχpmqm´1{2´it

ˇ

ˇ

ˇ

ˇ

dt ! x1{2L´A.

Of the three properties above, (A3) is the easiest to justify, since it is a part of the proof of (A0) in
[1]. Indeed, the method of Baker, Harman and Pintz reduces (2.4) to the classical Siegel–Walfisz theorem
by decomposing λ˘ into a linear combination of OpLcq arithmetic functions for which (A3) holds and then
applying [1, Lemma 11] to each of them. In order to justify that the functions λ˘ have also properties (A1)
and (A2), we need to provide some details on their construction.

The core idea behind the construction of λ˘ is explained in [1, pages 32–33, 41–42]. It amounts to setting

λ˘pmq “ 1Ppmq ˘
J˘
ÿ

j“1

λ˘j pmq (3.1)

where J˘ “ Op1q and the arithmetic functions λ˘j have the form

λ˘j pmq “
ÿ

m“u1¨¨¨ud`1

ξpu1, . . . , ud`1q p4 ď d ď 7q,

with ξpu1, . . . , ud`1q “ 1 or 0. The latter functions impose various restrictions on the sizes and arithmetic
properties of u1, . . . , ud`1 that amount to restricting the support of λ˘j to integers m with very specific

(undesirable) factorizations. Moreover:

(i) Only the cases d “ 4 and d “ 6 occur in the construction of λ´, whereas only d “ 5 and d “ 7 occur
in the construction of λ`.

(ii) ξpu1, . . . , ud`1q “ 0 if any of u1, . . . , ud`1 has a prime divisor ă x1{10. Note that property (A1) is
an immediate consequence of this observation.

(iii) When d “ 5, λ`j is supported on integers m that have a divisor u in the range x0.46 ď u ď x1{2: see

[1, p. 42].
(iv) When d “ 4, λ´j is supported on integers m “ n1n2n3, where ni “ xαi with α “ pα1, α2q lying in

one of regions Γ, ∆2, ∆3, or ∆4 in [1, Diagram 1 on p. 33].

We now turn to property (A2). We note that when λ˘j is supported on integers m “ uv, with x9{20 ď

u ď x11{20, it has property (A2). Thus, by (iii) above, property (A2) holds for all terms λ`j with d “ 5.

Moreover, the same is true for λ´j with d “ 4 and α in one of the regions ∆3 or ∆4: we have 0.46 ď α1 ď 0.5
when α P ∆4, and 0.46 ď α1 ` α2 ď 0.54 when α P ∆3.

We next consider the case d ě 6 and suppose that the variables ui have been labelled so that u1 ě u2 ě
¨ ¨ ¨ ě ud`1. When λ˘j is supported on integers m “ u1 ¨ ¨ ¨ud`1 with u4 ¨ ¨ ¨ud`1 ě x11{20, we have

u1u2u3 ! x9{20 and u4 ď 3
?
u1u2u3 ! x3{20.

Since u5 ¨ ¨ ¨ud`1 ! x1{2, we can then verify that λ˘j has property (A2) by grouping the variables u1, . . . , ud`1

into u “ u1u2u3, v “ u5 ¨ ¨ ¨ud`1, and w “ u4. On the other hand, when λ˘j is supported on integers

m “ u1 ¨ ¨ ¨ud`1 with u4 ¨ ¨ ¨ud`1 ď x11{20, we note that

u1u2 ! x1{2 and u3 ď 3
?
u1u2u3 ! x1{5.

Thus, we can verify that λ˘j has property (A2) by grouping the variables u1, . . . , ud`1 into u “ u1u2,
v “ u4 ¨ ¨ ¨ud`1, and w “ u3.

The functions λ´j with d “ 4 and α P ∆2 are supported on integers m “ u1 ¨ ¨ ¨u5, where

x1{10 ď u4 ď u3 ď u2 ď u1, and x0.32 ď u1u2 ď x0.36. (3.2)

(These functions arise by “decomposing twice the variable n3” in [1, (4.24)], so we have u1u2 “ xα1`α2 .)
Since the inequalities (3.2) imply that

x1{10 ď u4 ď u3 ď x0.18, u1u2u3 ď x0.54, u5 ! x0.48,
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we can verify that λ´j has property (A2) by grouping the variables u1, . . . , u5 into u “ u1u2u3, v “ u5, and

w “ u4. Similarly, the functions λ´j with d “ 4 and α P Γ are supported on integers m “ u1 ¨ ¨ ¨u5, where

x0.32 ! u1u2, u3u4 ! x0.36, and u5 ď x1{3.

(In this case, we have u1u2 “ xα1 and u5 “ xα2 .) If we assume that the variables are labelled so that u1 ď u2
and u3 ď u4, we have

u2u4 ď x0.72{pu1u3q ď x0.52, u1u5 ď x0.18x1{3 ă x0.52, u3 ď x0.18.

Hence, we can once again verify that λ´j has property (A2) by grouping the variables u1, . . . , u5 into u “ u2u4,
v “ u1u5, and w “ u3.

We have shown that each term λ˘j on the right side of (3.1) satisfies (A2). It remains to show that so

does the indicator function 1P. The proof of [4, Theorem 1.1] uses Heath-Brown’s identity to establish (A2)
for von Mangoldt’s function. In the case of 1P, we can use a variant of that argument based on Linnik’s
identity instead of Heath-Brown’s.

4. The minor arcs

In this section, we establish inequality (2.10). Our main tools are Propositions 1 and 2 below.

Proposition 1. Suppose that k ě 2, s ě k2 ` k, and y ě x1{2. Then for any bounded arithmetic function
λ, one has

Ispλq :“

ż 1

0

|fpα, λq|s dα ! ys´1x1´k`ε. (4.1)

Proposition 2. Let k ě 2, 0 ă δ ă 1{p16kq, and y ě x31{40, and suppose that α P m. Then

fpα,1Pq ! y1´δ{p2kq`ε.

It is straightforward to deduce (2.10) from these propositions. First, we remark that the functions λ˘ are
bounded by construction—they are linear combinations of a bounded number of indicator functions. Thus,
we may apply Proposition 1 to λ “ λ˘. By Hölder’s inequality,

|Rk,spn, λ;mq| ď
´

sup
αPm

|fpα,1Pq|
¯

Is´1pλq
uIs´1pλ

`q4uIs´1p1Pq
1´5u,

where u “ ps´ 1q´1. Thus, when s ě k2 ` k ` 1, we may use Propositions 1 and 2 to get

Rk,spn, λ;mq ! y1´δ{p2kq`εys´2x1´k`ε ! ys´1´δ{p3kqx1´k,

provided that δ and y satisfy the hypotheses of Proposition 2 and ε is chosen sufficiently small; this verifies
(2.10). In the remainder of this section, we prove the propositions.

4.1. Proof of Proposition 1. This is a variant of [15, Proposition 2.2], which we have extended in two
ways. First, we have included the arbitrary coefficients λ. This is straightforward, due to the “maximal
inequality”

ż 1

0

|fpα, λq|s dα ! ys´k
2
´k

ż 1

0

|fpα,1q|k
2
`k dα, (4.2)

where 1 is the constant function 1pnq “ 1 (compare this to [15, p. 1136]). Like Wei and Wooley, we estimate
the right side of (4.2) by means of [5, Theorem 3] and standard bounds for Vinogradov’s mean-value integral.
In particular, the recent work of Bourgain, Demeter and Guth [2] allows us to reduce the lower bound on s
to the one stated above. �
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4.2. Proof of Proposition 2. Although it looks somewhat different, Proposition 2 is merely a slight
variation of the main theorem of Huang [8], and our proof follows closely Huang’s. We first obtain variants
of some technical estimates from [8] by making some slight changes to Huang’s arguments.

Lemma 1. Let k ě 2 be an integer and ρ be real, with 0 ă ρ ď t´1
k , where

tk “

#

2 if k “ 2,

k2 ´ k ` 1 if k ě 3.

Suppose also that y “ xθ, where
1

2´ tkρ
ď θ ď 1.

Then either
ÿ

xămďx`y

epmkαq ! y1´ρ`ε,

or there exist integers a, q such that

1 ď q ď ykρ, pa, qq “ 1, |qα´ a| ď x1´kykρ´1,

and
ÿ

xămďx`y

epmkαq ! y1´ρ`ε `
y

pq ` yxk´1|qα´ a|q1{k
.

Proof. When k ě 3, we follow the argument of Huang [8, Lemma 1] with γ “ ρ´1ptk ´ 1q´1. Within that
argument, we apply the latest version of Vinogradov’s mean-value theorem due to Bourgain, Demeter and
Guth [2] in place of the earlier version by Wooley [16] used by Huang. When k “ 2, we follow the same
argument with γ “ p2ρq´1 but observe that in this case the bound at the top of [8, p. 512] can be improved
to

∆ ! q1{2`εp1` x2pqQ0q
´1q1{2 ! P

1{2`ε
0 xy´1.

This slight improvement is possible, because in the quadratic case, Daemen’s proof of [5, (3.5)] does not
require the iterative process in [5, p. 78]. Thus, we need not incur a loss of a factor of q´1{2 in the above
bound which the iterative method causes when k ě 3. �

Lemma 2 (Type II sum). Let k ě 2 be an integer, let ρ be real, with 0 ă ρ ď min
`

p4tkq
´1, 1

20

˘

, and suppose

that y “ xθ, where
3

4´ 4tkρ
ď θ ď 1. (4.3)

Suppose also that α P m and that the coefficients ξu, ηv satisfy ξu ! τpuqc and ηv ! τpvqc. Then
ÿ

u„U

ÿ

uvPI
ξuηvepu

kvkαq ! y1´ρ`ε ` y1`εP´1{p2kq,

provided that

xy´1`2ρ ! U ! y1´2ρ. (4.4)

Proof. This is a version of [8, Proposition 2] that applies Lemma 1 above in place of [8, Lemma 1]. We have
also altered slightly the choice of ν in Huang’s argument by choosing it so that Y ν “ y2ρL´1 as opposed to
Y ν “ x2ρL´1 (see [8, p. 515]). �

Lemma 3 (Type I sum). Let k ě 2 be an integer, let ρ be real, with 0 ă ρ ď min
`

p4tkq
´1, 1

20

˘

, and suppose

that y “ xθ, with θ in the range (4.3). Suppose also that α P m and that the coefficients ξu satisfy ξu ! τpuqc.
Then

ÿ

u„U

ÿ

uvPI
ξuepu

kvkαq ! y1´ρ`ε ` y1`εP´1{p2kq,

provided that

U ! y1´2ρ. (4.5)
6



Proof. This is a version of [8, Proposition 1]. Following the proof of that result, with our Lemma 1 in place
of [8, Lemma 1] and with ν chosen so that Y ν “ yρL´1, one obtains the above bound when

U ! x´1y2´tkρ, U2k ! xk´1y1´2kρ.

On the other hand, when either of these inequalities fails, one has U " xy´1`2ρ and the result follows from
Lemma 2. �

Proof of Proposition 2. It suffices to bound fpα,Λq, where Λ is von Mangoldt’s function. Let ρ “ p31tkq
´1

and X “ xy´1`2ρ. We note that this choice of ρ ensures that (4.3) holds for all θ ě 31{40 and that
X ď x9{40`p31ρq{20 ď x1{4. We may thus apply Vaughan’s identity for Λ (see [14, p. 28]) to decompose
fpα,Λq into OpLq type I sums with U ď X2 and OpLq type II sums with X ď U ď xX´1. By the choice
of X and ρ, Lemma 2 can be applied to the arising type II sums. Moreover, since X2 ď xX´1 “ y1´2ρ,
Lemma 3 can be applied to the type I sums. We conclude that when α P m, one has

fpα,Λq ! y1´ρ`ε ` y1´δ{p2kq`ε.

Since the hypothesis δ ă 1{p16kq ensures that δ{p2kq ă ρ, this completes the proof. �

5. The major arcs

In this section, we establish (2.11). First, we need to introduce some notation. We write

Spq, aq “
ÿ

1ďhďq
ph,qq“1

epahk{qq, vpβ; sq “

ż

I
us´1epukβq du,

and define the singular series Spnq and the singular integral Ipnq by

Spnq “
8
ÿ

q“1

φpqq´s
ÿ

1ďaďq
pa,qq“1

Spq, aqsep´an{qq, Ipnq “

ż

R
vpβ; 1qsep´nβq dβ.

If λ denotes one of the functions λ˘ and κ the respective constant κ˘, we define a function f˚pα, λq on the
major arcs M by setting

f˚pα, λq “ κφpqq´1Spq, aqvpβ; 1qL´1 if α PMpq, aq.

This is the “major arc approximation” to fpα, λq. We also define a major arc approximation to fpα,1Pq by

f˚pαq “ φpqq´1Spq, aqvpβ; 1qL´1 if α PMpq, aq.

Finally, we adopt the convention that for any arithmetic function λ, there is an associated Dirichlet polyno-
mial F ps, λq, given by

F ps, λq “
ÿ

m„2x{3

λpmqm´s.

5.1. Some technical estimates.

Lemma 4. Let x11{20 ď y ď x and suppose that P,Q satisfy

PQ ď yxk´1, Q ě xk´9{20.

Suppose also that g is a positive integer, ν ą 1, and λ is a bounded arithmetic function satisfying hypothesis
(A2) above. Then

ÿ

rďP

rg, rs´ν
ÿ˚

χ mod r

ˆ
ż 1{prQq

´1{prQq

|fpβ, λχq|2dβ

˙1{2

! g´ν`εy1{2xp1´kq{2Lc. (5.1)

Proof. When k “ 2 and ν “ 1´ ε, this is [10, Lemma 4.5]. The proof for general k ě 2 and ν ě 1 uses the
same argument with some obvious changes: e.g., T1 “ ∆xk and H ! ∆´1x1´k in place of the respective
statements in [10, p. 618]. �
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Lemma 5. Let x be a large integer, and suppose that y, b, T are reals with: y “ opxq, }y} “ 1{2, 0 ă b ď 1,
and 1 ď T ď x1{2. Suppose also that λ is a bounded arithmetic function. Then

fpβ, λq “
1

2πi

ż b`iT

b´iT

F ps, λqvpβ; sq ds`O
`

p1` yxk´1|β|qxLT´1
˘

.

Proof. For any u P I with }u} “ 1{2, Perron’s formula (see [12, Corollary 5.3]) gives

ÿ

x´yămďu

λpmq “
1

2πi

ż b`iT

b´iT

F ps, λq
us ´ px´ yqs

s
ds`OpxLT´1q. (5.2)

If we change u in (5.2) to u1, where |u1 ´ u| ď 1{2, the left side will change by Op1q and the integral on the
right side will change by OpT q. Hence, the integral representation (5.2) can be extended to all u P I. The
conclusion of the lemma then follows by partial summation. �

Lemma 6. Under the assumptions of Lemma 4, we have
ÿ

rďP

rg, rs´ν
ÿ˚

χ mod r

max
|β|ď1{prQq

|fpβ, λχq| ! g´ν`εyLc. (5.3)

Furthermore, for any given A ą 0, there is a B “ BpA, νq ą 0 such that
ÿ

LBďrďP

r´ν
ÿ˚

χ mod r

max
|β|ď1{prQq

|fpβ, λχq| ! yL´A. (5.4)

Proof. Let 1 ď R0 ď P . By a simple splitting argument,
ÿ

R0ďrďP

rg, rs´ν
ÿ˚

χ mod r

max
|β|ď1{prQq

|fpβ, λχq| ! pgRq´νL
ÿ

d|g
dď2R

dνSpR, dq, (5.5)

where R0 ď R ď P and

SpR, dq “
ÿ

r„R
d|r

ÿ˚

χ mod r

max
|β|ď1{pRQq

|fpβ, λχq|.

We now estimate SpR, dq. The contribution to SpR, dq from any powers of primes in the support of λ can
be bounded trivially as Opyx´1{2pR2{dqq. Under the assumptions of the lemma, we have P ď yx´11{20, so
this contribution can be absorbed into the term ypR{dqL on the right side of (5.8) below. Thus, we may
assume that λ is merely the linear combination of triple convolutions of the kind described in (A2). We may
also assume that x P Z and }y} “ 1{2.

Let 0 ă b ď 1, |β| ď pRQq´1, T1 “ 3kπxkQ´1, and T0 “ T1{R. Then, by Lemma 5 with T “ T1,

fpβ, λχq “
1

2πi

ż b`iT1

b´iT1

F ps, λχqvpβ; sq ds`OpyR´1Lq. (5.6)

Letting b Ó 0 in (5.6), we obtain

fpβ, λχq “
1

2π

ż T1

´T1

F pit, λχqvpβ; itq dt`OpyR´1Lq. (5.7)

When |β| ď pRQq´1 and |t| ě T0, we have

vpβ; itq ! |t|´1,

by the first-derivative test for exponential integrals (see [13, Lemma 4.5]). Combining this bound with (5.7)
and the trivial estimate |vpβ; itq| ! yx´1, we find that

fpβ, λχq ! yx´1

ż T0

´T0

|F pit, λχq| dt`

ż

T0ď|t|ďT1

|F pit, λχq|
dt

|t|
` yR´1L.

Summing this inequality over r and χ and then splitting the range of t in the second integral into dyadic
intervals, we deduce that

SpR, dq ! yx´1S1pR, d;T0q `
ÿ

2jďR

p2jT0q
´1S1pR, d; 2jT0q ` ypR{dqL, (5.8)
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where

S1pR, d;T q “
ÿ

r„R
d|r

ÿ˚

χ mod r

ż T

´T

|F pit, λχq| dt.

Since λ is assumed to be a linear combination of convolutions of the type in (A2), we may apply [4, Theorem
2.1] to obtain the bound

S1pR, d;T q !
`

x` pR2T {dqx11{20
˘

Lc.

Combining this bound, (5.5) and (5.8), we conclude that the left side of (5.3) is

! g´ν`εy
`

1` xk´9{20Q´1 ` x1´ky´1PQ` Px11{20y´1
˘

Lc.

This establishes the first claim of the lemma.
When g “ 1, the above argument yields the bound

! yR1´ν
0

`

1` xk´9{20Q´1 ` x1´ky´1PQ` Px11{20y´1
˘

Lc

for the left side of (5.4). When R0 “ LB for a sufficiently large B ą 0, this establishes the second claim of
the lemma. �

Lemma 7. Let x11{20`2ε ď y ď x1´ε and suppose that P,Q satisfy

PQ ď yxk´1, Q ě xk´9{20`2ε. (5.9)

Suppose also that ν ą 1 and λ is a bounded arithmetic function that satisfies hypotheses (A0), (A2) and
(A3) above. Then, for any given A ą 0,

ÿ

rďP

r´ν
ÿ˚

χ mod r

max
|β|ď1{prQq

|fpβ, λχq ´ ρχvpβ; 1q| ! yL´A, (5.10)

where ρχ “ δχκL
´1, κ being the constant in hypothesis (A0) for λ.

Proof. By the second part of Lemma 6, it suffices to show that

max
|β|ď1{Q

|fpβ, λχq ´ ρχvpβ; 1q| ! yL´B´A (5.11)

for all primitive characters χ with moduli r ď LB , where B “ BpA, νq is the number that appears in (5.4).
Let χ be such a character and suppose that |β| ď Q´1. By Lemma 5 with b “ 1{2 and T “ T1 “ x9{20´ε,

fpβ, λχq “
1

2πi

ż 1{2`iT1

1{2´iT1

F ps, λχqvpβ; sq ds`O
`

yx´ε{2 ` yxk´9{20`εQ´1L
˘

. (5.12)

Since vpβ; 1{2` itq ! yx´1{2, we deduce from (5.12) and hypothesis (A3) that

fpβ, λχq “
1

2πi

ż 1{2`iT0

1{2´iT0

F ps, λχqvpβ; sq ds`OpyL´B´Aq,

where T0 “ exppL1{3q. Note that when Repsq “ 1{2,

vpβ; sq ´ xs´1vpβ; 1q ! p|s| ` 1qy2x´3{2.

Hence,

fpβ, λχq “
vpβ; 1q

2πi

ż 1{2`iT0

1{2´iT0

F ps, λχqxs´1 ds`OpyL´B´Aq. (5.13)

When β “ 0, we can evaluate the left side of (5.13) directly by means of hypothesis (A0). Thus,

1

2πi

ż 1{2`iT0

1{2´iT0

F ps, λχqxs´1 ds “ ρχ `OpL
´B´Aq. (5.14)

The desired inequality (5.11) follows from (5.13) and (5.14). �
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Lemma 8. Let x7{12`2ε ď y ď x1´ε and suppose that P,Q satisfy

PQ ď yxk´1, Q ě xk´5{12`ε.

Suppose also that ν ą 1. Then, for any given A ą 0,
ÿ

rďP

r´ν
ÿ˚

χ mod r

max
|β|ď1{prQq

|fpβ,1Pχq ´ δχL
´1vpβ; 1q| ! yL´A. (5.15)

Proof. This is a slight variation of [10, Lemma 4.7]. We use the same argument, but we alter slightly the
choice of T in [10, p. 620]: instead of T “ px{yq2x3ε, we choose

T “ xε max
`

xy´1, xkQ´1
˘

,

which suffices to complete the proof. �

5.2. The asymptotic formula for Rk,spn, λ;Mq. We have

Rk,spn, λ;Mq “
ÿ

p1,...,ptPI

ż

M

fpα, λqfpα, λ`q4ep´npαq dα, (5.16)

where t “ s´ 5 and np “ n´ pk1 ´ ¨ ¨ ¨ ´ p
k
t . We now proceed to show that, for any fixed A ą 0, one has

ż

M

`

fpα, λqfpα, λ`q4 ´ f˚pα, λqf˚pα, λ`q4
˘

ep´npαq dα ! y4x1´kL´A. (5.17)

Let α P Mpq, aq and write β “ α ´ a{q. Since q ď P , property (A1) ensures that the function λ is
supported on integers m with pm, qq “ 1. Hence, by the orthogonality of the characters modulo q, we have

fpα, λq “
ÿ

1ďhďq
ph,qq“1

epahk{qq
ÿ

mPI
m”h pmod qq

λpmqepmkβq

“ φpqq´1
ÿ

χ mod q

Spχ, aqfpβ, λχq,

where

Spχ, aq “
q
ÿ

h“1

χ̄phqepahk{qq.

Hence,

fpα, λq “ f˚pα, λq `∆pα, λq, (5.18)

where

∆pα, λq “ φpqq´1
ÿ

χ mod q

Spχ, aqW pβ, λχq,

W pβ, λχq “ fpβ, λχ´ ρχq, ρχ “ δχκL
´1.

Using (5.18), we can express the integral in (5.17) as the linear combination of integrals of the form
ż

M

f˚pα, λqa∆pα, λq1´af˚pα, λ`qb∆pα, λ`q4´bep´npαq dα, (5.19)

where a P t0, 1u, b P t0, 1, ¨ ¨ ¨ , 4u and a ` b ă 5. The estimation of all those integrals follows the same
pattern, so we shall focus on the most troublesome among them, namely,

ż

M

∆pα, λq∆pα, λ`q4ep´npαq dα. (5.20)

We can rewrite (5.20) as the multiple sum
ÿ

qďP

ÿ

χ1 mod q

¨ ¨ ¨
ÿ

χ5 mod q

Bpq;χ1, . . . , χ5qJpq;χ1, . . . , χ5q, (5.21)
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where

Bpq;χ1, . . . , χ5q “ φpqq´5
ÿ

1ďaďq
pa,qq“1

Spχ1, aq ¨ ¨ ¨Spχ5, aqep´anp{qq,

Jpq;χ1, . . . , χsq “

ż 1{qQ

´1{qQ

W pβ, λχ1qW pβ, λ
`χ2q ¨ ¨ ¨W pβ, λ

`χ5qep´npβq dβ.

First, we reduce (5.21) to a sum over primitive characters. If χ is a Dirichlet character modulo q that is
induced by a primitive character χ˚ modulo r, r | q, then by property (A1), λ˘χ “ λ˘χ˚. Thus,

W pβ, λ˘χq “W pβ, λ˘χ˚q. (5.22)

Let χ˚i modulo ri, ri|q, be the primitive character inducing χi and set q0 “ rr1, . . . , r5s. By (5.22), we have

Jpq;χ1, . . . , χ5q “ Jpq;χ˚1 , . . . , χ
˚
5 q.

Therefore, the sum (5.21) does not exceed
ÿ

r1ďP

ÿ˚

χ1 mod r1

¨ ¨ ¨
ÿ

r5ďP

ÿ˚

χ5 mod r5

J0pχ1, . . . , χ5qB0pχ1, . . . , χ5q,

where

B0pχ1, . . . , χ5q “
ÿ

qďP
q0|q

|Bpq;χ1, . . . , χ5q|,

J0pχ1, . . . , χ5q “

ż 1{pq0Qq

´1{pq0Qq

|W pβ, λχ1qW pβ, λ
`χ2q ¨ ¨ ¨W pβ, λ

`χ5q| dβ.

Recalling the bound (see [15, Lemma 6.1])

B0pχ1, . . . , χ5q ! q
´3{2`ε
0 Lc,

we conclude that the sum (5.21) is

! Lc
ÿ

r1ďP

ÿ˚

χ1 mod r1

¨ ¨ ¨
ÿ

r5ďP

ÿ˚

χ5 mod r5

q
´3{2`ε
0 V pλχ1qV pλ

`χ2qV pλ
`χ3qW pλ

`χ4qW pλ
`χ5q, (5.23)

where for a character χ modulo r, we write

V pλχq “ max
|β|ď1{prQq

|W pβ, λχq|,

W pλχq “

ˆ
ż 1{prQq

´1{prQq

|W pβ, λχq|2 dβ

˙1{2

.

Next, we proceed to estimate the sum in (5.23) by Lemmas 4, 6 and 7, which we will denote by Σ. When
y “ xθ with θ ą 31{40 and δ ď 2pθ ´ 31{40q, the definitions of P and Q (recall (2.6)) ensure that they
satisfy inequalities (5.9). Since the sieve functions λ˘ have properties (A0)–(A3), this means that all the
hypotheses of the lemmas are in place.

To begin the estimation of Σ, we note that Lemma 4 yields
ÿ

rďP

ÿ˚

χ mod r

rg, rs´νW pλ`χq ! g´ν`εy1{2xp1´kq{2Lc ` g´νI
1{2
0 , (5.24)

where

I0 “

ż 1{Q

´1{Q

|vpβ; 1q|2 dβ !

ĳ

I2

du1du2
Q` |uk1 ´ u

k
2 |

! yx1´k ` yLQ´1 ! yx1´k.

(5.25)
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(We remark that the second term on the right side of (5.24) accounts for the contribution of ρχ to W pβ, λχq—
which is present only when r “ 1.) Similarly, the first part of Lemma 6 yields

ÿ

rďP

ÿ˚

χ mod r

rg, rs´νV pλ`χq ! g´ν`εyLc. (5.26)

Applying (5.24) to the summations over r5 and r4 in Σ and then (5.26) to the summations over r3 and r2,
we obtain

Σ ! y3x1´kLc
ÿ

rďP

ÿ˚

χ mod r

r´3{2`5εV pλχq.

Finally, we apply Lemma 7 to the last sum and conclude that

Σ ! y4x1´kL´A

for any fixed A ą 0. This inequality and its variants for other integrals of the form (5.19) establish (5.17).
Having established (5.17), we can combine it with (5.16) to get

Rk,spn, λ;Mq “

ż

M

fpα,1Pq
tf˚pα, λqf˚pα, λ`q4ep´nαq dα`O

`

ys´1x1´kL´A
˘

.

We now define a new, slimmer set of major arcs M0, given by (2.7) with Q0 “ xk´1yP´1 in place of Q.
From the bound

f˚pα, λ˘q ! yq´1{2`ε
`

1` yxk´1|α´ a{q|
˘´1{2

if α PMpq, aq,

we find that
ż

MzM0

ˇ

ˇfpα,1Pq
tf˚pα, λqf˚pα, λ`q4

ˇ

ˇ dα !
ÿ

1ďaďqďP
pa,qq“1

ż

|β|ě1{pqQ0q

ysq´5{2`ε

p1` yxk´1|β|q5{2
dβ

! ys´1x1´kP´1{2`ε.

Hence, for any fixed A ą 0, we have

Rk,spn, λ;Mq “

ż

M0

fpα,1Pq
tf˚pα, λqf˚pα, λ`q4ep´nαq dα`O

`

ys´1x1´kL´A
˘

. (5.27)

Finally, we have
ż

M0

`

fpα,1Pq
t ´ f˚pαqt

˘

f˚pα, λqf˚pα, λ`q4ep´nαq dα ! ys´1x1´kL´A. (5.28)

The proof of this inequality is simlar to the proof of (5.17), except that we do not need to use Lemma 4
(the bound (5.25) can be used instead) and we use Lemma 8 instead of Lemma 7. We remark that during
the process, we need to verify the hypotheses Q ě xk´9{20 and Q ě xk´5{12`ε of those lemmas for Q “ Q0;
with our choice of Q0, those hypotheses are satisfied when y ě x7{12`δ.

By (5.27) and (5.28), we have

Rk,spn, λ;Mq “ κκ4`

ż

M0

f˚pαqsep´nαq dα`O
`

ys´1x1´kL´A
˘

.

The evaluation of the last integral uses standard major arc techniques (e.g., see Wei and Wooley [15, pp.
1150–1151]), so we can omit it and report that

ż

M0

f˚pαqsep´nαq dα “ SpnqIpnqL´s `O
`

ys´1x1´kP´1
˘

.

We note that Spnq is the standard singular series in the Waring–Goldbach problem for s kth powers. In
particular, it is known that 1 ! Spnq ! 1 when n P Hk,s. Since the inequality

ys´1x1´k ! Ipnq ! ys´1x1´k

is also standard (compare to [15, (6.5)]), we conclude that (2.11) holds with

Cpnq “ SpnqIpnqy1´sxk´1.
12
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