ON SUMS OF POWERS OF ALMOST EQUAL PRIMES

ANGEL KUMCHEV AND HUAFENG LIU

ABSTRACT. Let k > 2 and s be positive integers, and let n be a large positive integer subject to certain local
conditions. We prove that if s > k2 + k 4+ 1 and 6 > 31/40, then n can be expressed as a sum plf + -+ pk
where p1,...,ps are primes with |p; — (n/s)'/*| < n®*. This improves on earlier work by Wei and Wooley
[15] and by Huang [8] who proved similar theorems when 6 > 19/24.

1. INTRODUCTION

The study of additive representations of integers as sums of powers of primes goes back to the work of
Hua [6, 7]. In particular, Hua proved that when k and s are positive integers with s > 2*_ every sufficiently
large natural number n satisfying certain local solubility conditions can be represented as

n=py -+t pL, (1.1)
where p1,...,ps are prime numbers. (Henceforth, the letter p, with or without subscripts, always denotes a
prime number.) To describe the local conditions, we let 7 = 7(k,p) be the largest integer with p™ | k, and
then define

K(k) = H pr(kop) vk, p) = 7(k,p) +2 when p=2,7>0,
(p—1) K 7(k,p) + 1 otherwise.

One typically studies (1.1) for n restricted to the congruence class
His={neN:n=s (mod K(k))}.

In this paper, we are interested in the additive representations of the form (1.1) with “almost equal”
primes. Given a large integer n € Hy, 5, we ask whether it is possible to solve (1.1) in primes subject to

i — (n/s)YF| < H  (1<j<s), (1.2)

where H = o(nl/ k). There is a long list of results on sums of five or fewer almost equal squares (k = 2,
3 < s < 5), beginning with the work of Liu and Zhan [11] and culminating with the results of Kumchev and
Li [10] (see [10] for a detailed history of that problem). In particular, Kumchev and Li showed that when
k =2 and s = 5 the problem has solutions with H = n?? for any fixed > 8/9. They were also the first to
obtain results on sums of more than five almost equal squares, where the extra variables are used to reduce
the admissible size of H. Let 0} s denote the least exponent # such that (1.1) and (1.2) with H = n%* can
be solved for sufficienly large n € Hy , whenever § > 6 ;. Kumchev and Li [10] proved that 6, < 19/24
when s > 17. The lower bound on s in this theorem was reduced to s > 7 in a recent paper by Wei and
Wooley [15], in which those authors also established surprisingly strong results for higher values of k: they

proved that if s > 2k(k — 1), one has
4/5 ifk=3
Or.s < { /5 1 ’ (1.3)

5/6 if k> 4.

Huang [8] further reduced the bound (1.3) to ) s < 19/24 for all k > 3 and s > 2k(k — 1).

The main goal of the present work is to establish the bound 6 s < 31/40 for all £ > 2. We also make use
of a recent breakthrough by Bourgain, Demeter and Guth [2] to reduce the lower bound on s when k > 4.
Our main result is as follows.
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Theorem 1. Letk>2, s > k> +k+ 1, and 0 > 31/40. When n € Hy. s is sufficiently large, equation (1.1)
has solutions in primes p1,...,ps satisfying (1.2) with H = n%/*,

Circle method experts will not be surprised that our methods lead also to improvements on the results
established by Wei and Wooley [15] and by Huang [8] on solubility for “almost all” n and on the number
of exceptions for representations by six almost equal squares. Indeed, by adapting the ideas in [15, §9], we
obtain the following theorems.

Theorem 2. Let k > 2, s > k(k +1)/2, 0 > 31/40, and N — oo. There is a fized 6 > 0 such thal equation
(1.1) has solutions in primes pi,...,ps satisfying (1.2) with H = n%* for all but O(N'~%) integers n < N
subject to n € Hy,s (and, when k =3 and s =7, also 9 n).

Theorem 3. Let 6 > 31/40, and N — oo. Let Eg(N; H) denote the number of integers n = 6 (mod 24),
with |n — N| < HNY2, such that equation (1.1) with k = 2 and s = 6 has solutions in primes p1,...,Ds
satisfying (1.2). There is a fized § > 0 such that

Eg(N; N2y « NA=0)/2-3

Notation. Throughout the paper, the letter € denotes a sufficiently small positive real number. Any
statement in which e occurs holds for each positive €, and any implied constant in such a statement is
allowed to depend on €. The letter ¢ denotes a constant that depends at most on k and s, not necessarily
the same in all occurrences. As usual in number theory, u(n), A(n), ¢(n), and 7(n) denote, respectively,
the Mobius function, von Mangoldt’s function, Euler’s totient function, and the number of divisors function.
We write e(z) = exp(2mix) and (a,b) = ged(a,b), and we use m ~ M as an abbreviation for the condition
M < m < 2M. If x denotes a Dirichlet character, we set J,, = 1 or 0 according as x is principal or not.
The sums Zx mod ¢ and Z;’Z mod ¢ d€note summations over all the characters modulo g and over the primitive
characters modulo ¢, respectively.

2. OUTLINE OF THE PROOF
Let x = (n/s)Y*, y =2 T = (z — y,z + y], and write
Ry s(n) = Z 1.

n=py +-+p;
pi€L

Let 1p denote the indicator function of the primes, and suppose that we have arithmetic functions A* such
that, for me Z,

A~ (m) < 1p(m) < AT (m). (2.1)
Then the vector sieve of Briiddern and Fouvry [3, Lemma 13] yields
5
1p(my) -+ 1p(msz) = D A7 (ma) [ [AT(my) — 4XF (my) -+~ AF (ms). (2:2)
i=1 j#i

Thus, by the symmetry of the problem, we have

Rk’s(n) = 5Rk,5(n, )\_) — 4Rk,s(n, )\+)7 (23)
where
Ris(n, \) = > Am)At (ma) - AT (ms).
n=ph 4 4pk_Amb 4 pm?b
pi,m]‘EI

To prove the theorem, we show that one can choose sieve functions A% satisfying (2.1) so that the right
side of (2.3) is positive. Our choice of A* is borrowed from Baker, Harman and Pintz [1]—namely, A~ and
AT are, respectively, the functions ag and a; constructed in §4 of that paper. In many ways, the functions
A% imitate the indicator function 1p of the primes p € Z. We will discuss the similarities in detail later (see
83 below) and will focus here on their most crucial property:
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(A0) Let A, B > 0 be fixed (possibly large) numbers and let & — co. If x is a Dirichlet character modulo

q < (logz)® and 2'"/20% <y < wexp (— (logz)'/?), then one has
2y
ME(m)x(m) = ——=— (6, x4 + O((logz)™4)), 2.4
3 Nmim) = e (ems + Of(log))) (2.4)
where k4 are absolute constants satisfying
Kk_ > 0.99, k4 < 1.01. (2.5)

We now sketch the application of the circle method to Ry s(n,\). Let § > 0 be a fixed number, to be
chosen later sufficiently small in terms of k, s and 6, and set

P=y’, Q=2"%2P7', L=loguz. (2.6)
We write
M(q,a) = {a € R:|ga —a| <Q'},

and define the sets of major and minor arcs by

m=|J Mga) and m=[Q " 1+Q ']\, (2.7)
1<a<q<P
(a,q)=1

respectively. Further, for any Lebesgue measurable set 8B, we write

Rps(n, \iB) = L Flou 1) F(a A) e, M) re(—na) da,

where
fla,A) = Z A(m)e(mFa). (2.8)
meZl
By orthogonality and (2.7), we have
Ry s(n, A) = Ri s(n, \; M) + Ry s(n, A;m). (2.9)
In §4, we show that when s > k? + k+ 1, § < 1/(16k), and 6 > 31/40, one has
Rps(n, \;m) « y*~170/BR)gl=k (2.10)
Then, in §5, we show that when § < 2(6 — 31/40), one has
Ris(n, A5 0) = €(n)y* o' " FL™% (kpkt + O(L7Y)), (2.11)

where 1 « €(n) « 1 for sufficiently large n € Hy s, and x4 are the constants from (2.4). Theorem 1 follows
from (2.3), (2.5), and (2.9)—(2.11). O

3. THE SIEVE WEIGHTS

As we said before, we use sieve weights A* constructed by Baker, Harman and Pintz [1] to have properties
(2.1) and (A0) above. We remark that (A0) is a short-interval version of the Siegel-Walfisz theorem: when
the functions A* are replaced by 1p, the asymptotic formula (2.4) with x = 1 and y > x7/12+¢ ig a well-known
extension of a celebrated result of Huxley [9]. In this section, we record some additional properties of the
weights A* that we will need later in the paper:

(A1) The functions A*(m) vanish if m has a prime divisor p < z/1°.

(A2) Let S = {p’ : pe P,j > 2}. When m ~ 2z/3, one can express A\*(m) as a linear combination of a
bounded function supported on S and of O(L€) triple convolutions of the form

2 gunvng

m=uvw

u~U, v~V

where |&,| < 7(u)¢, || < 7(v)¢, max(U, V) « x'Y/20) and either ¢, = 1 for all w, or |¢,| < 7(w)°
and UV » x27/35,
3



(A3) Let A, B,e > 0 be fixed, let x be a Dirichlet character modulo ¢ < LZ, and put Ty = exp(L'/?) and
Ty = 29/29=¢_ Then
T
),

Of the three properties above, (A3) is the easiest to justify, since it is a part of the proof of (A0) in
[1]. Indeed, the method of Baker, Harman and Pintz reduces (2.4) to the classical Siegel-Walfisz theorem
by decomposing AT into a linear combination of O(L¢) arithmetic functions for which (A3) holds and then
applying [1, Lemma 11] to each of them. In order to justify that the functions A\* have also properties (A1)
and (A2), we need to provide some details on their construction.

The core idea behind the construction of A* is explained in [1, pages 32-33, 41-42]. It amounts to setting

ME(m)x(m)m =2 dt « 22074,
m~2x/3

JE
AE(m) = 1p(m) £ Y A5 (m) (3.1)
j=1
where J* = O(1) and the arithmetic functions )\;i have the form
)\ji(m)= Z E(uty ... uge1) (4<d<),
M=t
with £(uq,...,uq+1) = 1 or 0. The latter functions impose various restrictions on the sizes and arithmetic
properties of uq,...,uq+1 that amount to restricting the support of /\ji to integers m with very specific

(undesirable) factorizations. Moreover:
(i) Only the cases d = 4 and d = 6 occur in the construction of A~, whereas only d = 5 and d = 7 occur
in the construction of A\T.
(i) €(u,...,uge1) = 0 if any of uy,...,uqy; has a prime divisor < 2'/1°, Note that property (A1) is
an immediate consequence of this observation.
(i) When d = 5, AT is supported on integers m that have a divisor u in the range z%4¢ < u < x'/2: see
[1, p. 42].
(iv) When d = 4, )\; is supported on integers m = njngns, where n;, = % with a = (a1, as) lying in
one of regions I'; Ag, Az, or Ay in [1, Diagram 1 on p. 33].
We now turn to property (A2). We note that when /\ji is supported on integers m = wwv, with 2920 <
u < x'Y/2% it has property (A2). Thus, by (iii) above, property (A2) holds for all terms /\j+ with d = 5.
Moreover, the same is true for \; with d = 4 and « in one of the regions As or Ay: we have 0.46 < a; < 0.5
when a € Ay, and 0.46 < a1 + as < 0.54 when a € As.
We next consider the case d > 6 and suppose that the variables u; have been labelled so that uy > us >

<o+ = ugy1. When )\ji is supported on integers m = uy - - - ug+1 with ug---uge1 = x11/20, we have
U U U3 K 2920 and ug < Juiugus K 23/20,
Since us - - - ugy1 < /2, we can then verify that )\ji has property (A2) by grouping the variables u1, ..., ud+1

into u = ujusuz, v = uUs---ugr1, and w = uy. On the other hand, when /\;L is supported on integers

11/20

m=ujy---uUgy; with ug---ugy1 <2z , we note that

ULUy K 72 and us < Yuruguz < /0.
Thus, we can verify that )\ji has property (A2) by grouping the variables ui,...,ug441 into u = wujug,

U =1Ug- - Ugy1, and w = ug.
The functions A; withd=4and a € A, are supported on integers m = ui - - - us, where

210 <uy <ug <us <wup, and  2%%% < wuqug < 2096, (3.2)

(These functions arise by “decomposing twice the variable ng” in [1, (4.24)], so we have ujug = z*1722.)
Since the inequalities (3.2) imply that

210 <y < uz < 2% wyugug < 2%, ug « 208,
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we can verify that A; has property (A2) by grouping the variables w1, ..., us into u = ujugug, v = us, and
w = uy. Similarly, the functions /\; with d = 4 and a € I are supported on integers m = uj - - - us, where

36

2032 « UL U2, U3Uy K 2% , and us < 213,

(In this case, we have ujus = x** and us = x*2.) If we assume that the variables are labelled so that u; < us
and uz < u4, we have

52 0.18

2052 <% , uz<zxT .

0.18,.1/3

uguy < 27/ (uyus) < , Uiz < T

Hence, we can once again verify that A; has property (A2) by grouping the variables ug, ..., us into u = uguy,
v = ujus, and w = us.

We have shown that each term )\ji on the right side of (3.1) satisfies (A2). It remains to show that so
does the indicator function 1p. The proof of [4, Theorem 1.1] uses Heath-Brown’s identity to establish (A2)
for von Mangoldt’s function. In the case of 1p, we can use a variant of that argument based on Linnik’s
identity instead of Heath-Brown’s.

4. THE MINOR ARCS

In this section, we establish inequality (2.10). Our main tools are Propositions 1 and 2 below.

Proposition 1. Suppose that k =2, s = k> + k, and y = x'/2. Then for any bounded arithmetic function
A, one has

1
I,(\) = L |f(a, N)|® da « y* Lot =RFe, (4.1)

Proposition 2. Let k =2, 0 < 6 < 1/(16k), and y = x40, and suppose that o € m. Then
f(a, 1]P’) « y175/(2k)+e.

It is straightforward to deduce (2.10) from these propositions. First, we remark that the functions A\* are
bounded by construction—they are linear combinations of a bounded number of indicator functions. Thus,
we may apply Proposition 1 to A = A\*. By Hélder’s inequality,

|Rk,3(n7 A m)| < (SUP ‘f(aa 111”)|>IS—l(A)uIS—l()‘+)4UIS—1(1P)175H7

aeEm
where u = (s — 1)71. Thus, when s > k? + k + 1, we may use Propositions 1 and 2 to get

1—6/(2k)+6ys—2x1—k+5 s—l—tS/(3k:)‘,L,1—k7

Ris(n,Am) <y Ly
provided that § and y satisfy the hypotheses of Proposition 2 and e is chosen sufficiently small; this verifies
(2.10). In the remainder of this section, we prove the propositions.

4.1. Proof of Proposition 1. This is a variant of [15, Proposition 2.2], which we have extended in two
ways. First, we have included the arbitrary coefficients A\. This is straightforward, due to the “maximal
inequality”

1 1
[ 7@ da g e ) da (42)
0 0

where 1 is the constant function 1(n) = 1 (compare this to [15, p. 1136]). Like Wei and Wooley, we estimate
the right side of (4.2) by means of [5, Theorem 3] and standard bounds for Vinogradov’s mean-value integral.
In particular, the recent work of Bourgain, Demeter and Guth [2] allows us to reduce the lower bound on s
to the one stated above. O



4.2. Proof of Proposition 2. Although it looks somewhat different, Proposition 2 is merely a slight
variation of the main theorem of Huang [8], and our proof follows closely Huang’s. We first obtain variants
of some technical estimates from [8] by making some slight changes to Huang’s arguments.

Lemma 1. Let k = 2 be an integer and p be real, with 0 < p < t,;l, where

P ifk =2,
k=19, ;
K2kl ifk>3.

Suppose also that y = x?, where

! <6<l
2 —tp

Then either
Z e(mFa) « yl=rte,
r<m<zr+y

or there exist integers a,q such that

1<qg<y™, (a,q) =1, |ga—a|<a'Fyrt
and
k 1—p+e Yy
Z e(ma) « y 7P+ = -
r<m<z+y (q + yxr 1|q0& - a|)1/

Proof. When k > 3, we follow the argument of Huang [8, Lemma 1] with v = p=1(¢;, — 1)~!. Within that
argument, we apply the latest version of Vinogradov’s mean-value theorem due to Bourgain, Demeter and
Guth [2] in place of the earlier version by Wooley [16] used by Huang. When k = 2, we follow the same
argument with v = (2p)~! but observe that in this case the bound at the top of [8, p. 512] can be improved
to
A « q1/2+e(1 +x2(qQo)71)1/2 « P01/2+exy71.

This slight improvement is possible, because in the quadratic case, Daemen’s proof of [5, (3.5)] does not
require the iterative process in [5, p. 78]. Thus, we need not incur a loss of a factor of ¢~ /2 in the above
bound which the iterative method causes when k > 3. |

Lemma 2 (Type Il sum). Let k = 2 be an integer, let p be real, with 0 < p < min ((4tk)*1, %), and suppose
that y = 2%, where

3
—F << 1 4.3
4 —A4tgp (43)

Suppose also that o € m and that the coefficients &y, n, satisfy &, < 7(w)® and n, < 7(v)¢. Then

Z Z Cunpe(uFvFa) « y'=rFe 4yl Tepm /R,
u~U uvel
provided that
xyflJrQP <« U « y172p' (44)

Proof. This is a version of [8, Proposition 2] that applies Lemma 1 above in place of [8, Lemma 1]. We have
also altered slightly the choice of v in Huang’s argument by choosing it so that Y” = y??L~"! as opposed to
YV = 2?P L7 (see [8, p. 515)). O

Lemma 3 (Type I sum). Let k = 2 be an integer, let p be real, with 0 < p < min ((4tk)_1, %), and suppose
that y = 2%, with 6 in the range (4.3). Suppose also that o € m and that the coefficients &, satisfy &, < 7(u)C.
Then

2 2 £ue(ukvka) < ylmrte g y1+eP71/(2k)’
u~U wvel
provided that
v (15)
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Proof. This is a version of [8, Proposition 1]. Following the proof of that result, with our Lemma 1 in place
of [8, Lemma 1] and with v chosen so that Y” = y”L~!, one obtains the above bound when

U « o~ ly2 0, U2k« gh=1y1=2kp,
On the other hand, when either of these inequalities fails, one has U » zy~'72# and the result follows from

Lemma 2. O

Proof of Proposition 2. It suffices to bound f(c, A), where A is von Mangoldt’s function. Let p = (31t;)~!
and X = zy~!*2. We note that this choice of p ensures that (4.3) holds for all §# > 31/40 and that
X < p9/40+B1)/20 < 21/4 We may thus apply Vaughan’s identity for A (see [14, p. 28]) to decompose
fla, A) into O(L) type I sums with U < X2 and O(L) type II sums with X < U < X ~!. By the choice
of X and p, Lemma 2 can be applied to the arising type II sums. Moreover, since X? < X! = y1=2¢,
Lemma 3 can be applied to the type I sums. We conclude that when « € m, one has

f(Oé,A) « ylprre + ylfts/(Qk)JrE.

Since the hypothesis 6 < 1/(16k) ensures that §/(2k) < p, this completes the proof. O

5. THE MAJOR ARCS

In this section, we establish (2.11). First, we need to introduce some notation. We write

Sa)= 3 ela'/e). o(sis) = [ w et s du
(1h<h)<q z
,q)=1

and define the singular series &(n) and the singular integral J(n) by

Sm) = D6 Y, Sla.are(-ana). 3n) = [ o(3:1)e(-ng)ds.
g=1

v
1<a<gq R
(a,9)=1

If A denotes one of the functions A* and & the respective constant k4, we define a function f*(a, \) on the
major arcs I by setting

F*(e,N) = rd(g) " S(q,a)o(B; )L™ if e Mg, a).
This is the “major arc approximation” to f(«, \). We also define a major arc approximation to f(a, 1p) by
f*(a) = ¢(q) "' S(q,a)v(B; 1)L~ if a e M(q, a).

Finally, we adopt the convention that for any arithmetic function A, there is an associated Dirichlet polyno-
mial F(s, ), given by

F(s,\) = Z A(m)m=2.

m~2w/3
5.1. Some technical estimates.
Lemma 4. Let 2''/20 <y < x and suppose that P,Q satisfy

PO <y ', Q= 2920,

Suppose also that g is a positive integer, v > 1, and X\ is a bounded arithmetic function satisfying hypothesis
(A2) above. Then

. / (U0Q) 1/2
Do) ] (J If(ﬁ,Ax)IQdﬂ> « g eyt PaP L, (5.1)

r<P x mod r *1/(7’Q)

Proof. When k = 2 and v = 1 — ¢, this is [10, Lemma 4.5]. The proof for general k > 2 and v > 1 uses the
same argument with some obvious changes: e.g., T} = Az*F and H « A~'2'~* in place of the respective
statements in [10, p. 618]. O



Lemma 5. Let x be a large integer, and suppose that y,b, T are reals with: y = o(x), |yl =1/2,0<b <1
and 1 < T < x'/2. Suppose also that \ is a bounded arithmetic function. Then

1 (T
f(B,N) = F(s,\)v(B;s) d5+0((1 +yxk71|ﬂ|);1:LT71).

2ri b—iT
Proof. For any u € Z with |u| = 1/2, Perron’s formula (see [12, Corollary 5.3]) gives
b+iT

S oam=— [ FeN

r—y<m<u 27—” b—iT

el Gl Y Y (5.2)

If we change w in (5.2) to uy, where |u; —u| < 1/2, the left side will change by O(1) and the integral on the
right side will change by O(T). Hence, the integral representation (5.2) can be extended to all u € Z. The
conclusion of the lemma then follows by partial summation. O

Lemma 6. Under the assumptions of Lemma 4, we have
*
lg, 77" max |f(8,Ax)| « g~V yLe. (5.3)
o™ 2 e
Furthermore, for any given A > 0, there is a B = B(A,v) > 0 such that
—v *
IR £ A < gL (5.4)
LB<r<P Xmodr|m<1/

Proof. Let 1 < Ry < P. By a simple splitting argument,

*
Dodgrl D] o FBX0l < (GR)L Y, d"S(R.d), (5.5)
Ro<r<P x mod r ‘5|<1/ dlg
d<2R

where Ry < R < P and
max , AX)|
Z Z 1B1<1/(RQ) (8,2l

T~Rx mod r

We now estimate S(R,d). The contrlbutlon to S(R, d) from any powers of primes in the support of A can
be bounded trivially as O(yxz~'/2(R?/d)). Under the assumptions of the lemma, we have P < yz~'1/2% so
this contribution can be absorbed into the term y(R/d)L on the right side of (5.8) below. Thus, we may
assume that A is merely the linear combination of triple convolutions of the kind described in (A2). We may
also assume that z € Z and |ly| = 1/2.

Let 0 <b<1,|3] < (RQ)™, Ty = 3kra*Q~!, and Ty = T1/R. Then, by Lemma 5 with 7' = T},

1 b+t
f8.20 =55 | FlsXu(Bis)ds + O(yR™'L). (5.6)
Letting b | 0 in (5.6), we obtain
Ty
F8.20 = 5 | Flit, Axju(Bsit) di + O(yR™L). (5.7)

When || < (RQ)~! and |t| > Tp, we have
v(Byit) < [t~
by the first-derivative test for exponential integrals (see [13, Lemma 4.5]). Combining this bound with (5.7)
and the trivial estimate |v(f;it)| « yz~!, we find that
To

|F(it, Ax)| dt +f |F(it, AX)\ by yR™'L.

To<|t|<T: 1t

(B M) < ! f

—To
Summing this inequality over r and x and then splitting the range of ¢ in the second integral into dyadic
intervals, we deduce that

S(R,d) « yz 'Sy (R, d; To) + Y (2'Tp) 'S (R, d; 2 Ty) + y(R/d)L, (5.8)

2<R
8



where

% T
Si(R,d;T) = Y J |F(it, Ax)| dt.

r~Rx mod r =T

d|r

Since A is assumed to be a linear combination of convolutions of the type in (A2), we may apply [4, Theorem
2.1] to obtain the bound

S1(R,d;T) « (z + (RQT/d)a:H/QO)LC.
Combining this bound, (5.5) and (5.8), we conclude that the left side of (5.3) is
« g ey (1 4+ 2FU0Q! 4 gt Ry pQ + Prlt/20y ) e,

This establishes the first claim of the lemma.
When g = 1, the above argument yields the bound

«yRY™V(1+ ZF=9/200=1 | gl=ky=1p() | lel/QOy—l)Lc
for the left side of (5.4). When Ry = L® for a sufficiently large B > 0, this establishes the second claim of

the lemma. 0

Lemma 7. Let 2'Y/20%2¢ <y < 2'~¢ and suppose that P,Q satisfy
PQ < yl’k_l, Q > :Ek_9/20+26. (59)

Suppose also that v > 1 and X is a bounded arithmetic function that satisfies hypotheses (A0), (A2) and
(A3) above. Then, for any given A >0,

*
rY max  |f(B,A\x) — pyv(B; 1) « yL~=4, 5.10
T B e V(5 — B (5.10)

where py, = 6, kL™, K being the constant in hypothesis (AO) for \.

Proof. By the second part of Lemma 6, it suffices to show that

e |£(B,Ax) — pyv(B;1)| « yL= B4 (5.11)

for all primitive characters y with moduli » < L?, where B = B(A,v) is the number that appears in (5.4).
Let x be such a character and suppose that |[3| < Q~!. By Lemma 5 with b= 1/2 and T = T} = 2%/20~,

1 Y2+t - - -
f(B,2x) = 3 eir F(s,Ax)v(B;s) ds+O(y;p €/2 + ya® 9/20+6Q IL). (5.12)
Ty

Since v(B;1/2 + it) « yx~ 2, we deduce from (5.12) and hypothesis (A3) that

1 1/2+iT,

JACIPNY) F(s,A)v(B;8) ds + O(yL~P~4),

- 2mi 1/2—iTo
where Ty = exp(L'/?). Note that when Re(s) = 1/2,

v(B;s) —2° to(B;1) « (|s| + 1)y2a—3/2,

Hence,
-1 1/244To .
F(B,Ax) = ”(5’, ) f F(s,\x)z* 1 ds + O(yL=2~4). (5.13)
2mi 1/2—iTy
When § = 0, we can evaluate the left side of (5.13) directly by means of hypothesis (A0). Thus,
1 [Y2+iTo
F(s, \x)z° tds = py + O(L~B=4). (5.14)

2mi 1/2—iT,

The desired inequality (5.11) follows from (5.13) and (5.14). O
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Lemma 8. Let 27/1272¢ <y < '€ and suppose that P,Q satisfy
PQ < yxkfl, Q > xkf5/12+é.

Suppose also that v > 1. Then, for any given A > 0,
Z v Z max |f(B,1px) — (5XL_1U(B; 1)] « yL=A. (5.15)

o N C S V)

Proof. This is a slight variation of [10, Lemma 4.7]. We use the same argument, but we alter slightly the
choice of T in [10, p. 620]: instead of T = (x/y)?z>¢, we choose

T = x°max (xyil, kufl),
which suffices to complete the proof. O

5.2. The asymptotic formula for Ry, ;(n, \;91). We have

Rys(m i) = Y f Flas N fas A Yre(—nga) da, (5.16)
P1,---,Pt€L
wheret = s —5 and np, =n — p¥ — -+ — pF. We now proceed to show that, for any fixed A > 0, one has
J (Fla, N (@, AT = F*(a, A) f* (e, AN e(—npa) da « yra'~F LA (5.17)
I

Let o € M(q,a) and write 8 = a — a/q. Since ¢ < P, property (Al) ensures that the function A is
supported on integers m with (m,q) = 1. Hence, by the orthogonality of the characters modulo ¢, we have

fla,A) = > elah¥/q) >, Am)e(m*B)

1<h<q meZL

(h,q)=1 m=h (mod q)
D S06a)f(B, M),
x mod g
where
q
Z e(ah® /q).
Hence,
fla,N) = f* (o, A) + A, M), (5.18)
where

Ala, ) =¢(g)™" Y. St a)W(B,Ay),

x mod g
W(Ba )‘X) = f(ﬂvAX_px)v Px = 5XKZL71'
Using (5.18), we can express the integral in (5.17) as the linear combination of integrals of the form

Lﬁ FH i, ) A, )0 f* (a, AP A, M) Pe(—npa) da, (5.19)

where a € {0,1}, b € {0,1,--- ,4} and a + b < 5. The estimation of all those integrals follows the same
pattern, so we shall focus on the most troublesome among them, namely,

f Ao, M)A, A e(—npa) da. (5.20)
m

We can rewrite (5.20) as the multiple sum

22 2 Baxa o) (@ xs), (5.21)

g<P x1 mod q X5 mod g
10



where

B(Q;Xla"'7x5 Z SXla (X57 ) ( anp/q>7
1<a<gq
(asQ)=1
1/9Q
Taxaex) = | VAW (A ) WX X )e(np) d.
—1/q

First, we reduce (5.21) to a sum over primitive characters. If x is a Dirichlet character modulo ¢ that is
induced by a primitive character x* modulo 7, r | ¢, then by property (A1), Ay = Ax*. Thus,

W (B, AFx) = W (8, AFx*). (5.22)
Let xF modulo r;, 7;|g, be the primitive character inducing x; and set ¢ = [r1,...,75]. By (5.22), we have
Therefore, the sum (5.21) does not exceed
* *
Z Z Z Z JO(Xla"'aXS)BO(Xla"'7X5)a
r1<Px1 mod 71 rs<Px5 mod 75

where

BO(Xla'-'aX5) = Z |B(q7X17aX5)‘7

gsP
qolq
1/(Q0Q)
Jo(x1,---5X5) = J @) |W(ﬁv>\X1)W(Ba)‘+X2) ) "W(ﬁv)\JrXs)\ dg.
—1/(qo0

Recalling the bound (see [15, Lemma 6.1])

BO<X17 e ,X5> < qO 3/2+ELC

we conclude that the sum (5.21) is
* - €
«rs 3 N ST PRV )V (A ) VI s WO X)W (A xs), (5.23)
r1<Px1 mod 7 rs<Px5 mod 75

where for a character y modulo r, we write

V) = W(B,\
(Ax) winl?(}f«@)' (B, A0)],

1/(rQ) 1/2
W) = ( | IW(B,AX)|2d6> |
—-1/(rQ)

Next, we proceed to estimate the sum in (5.23) by Lemmas 4, 6 and 7, which we will denote by ¥. When
y = 2% with > 31/40 and § < 2(6 — 31/40), the definitions of P and @ (recall (2.6)) ensure that they
satisfy inequalities (5.9). Since the sieve functions A* have properties (A0)—(A3), this means that all the
hypotheses of the lemmas are in place.

To begin the estimation of ¥, we note that Lemma 4 yields

Z Z [g, 7] "W (\Tx) « gil’“yl/zx(l*k)pljC + 97”13/2, (5.24)

r<Px mod r

1/Q
I =J l0(8;1)[2dB « ”%
I2

-1/Q + Juf — ug| (5.25)

where

<yt R 4+ yLQ 7! « yal k.

11



(We remark that the second term on the right side of (5.24) accounts for the contribution of p, to W (8, Ax)—
which is present only when r = 1.) Similarly, the first part of Lemma 6 yields

2 Z [9,7] "V (ATx) « g7V TeyLE. (5.26)
r<Px mod r

Applying (5.24) to the summations over r5 and r4 in ¥ and then (5.26) to the summations over r3 and o,

we obtain
E <« y3xl kLC Z Z —3/2+5€V )

r<Px mod r

Finally, we apply Lemma 7 to the last sum and conclude that
Y« y4x1_kL_A
for any fixed A > 0. This inequality and its variants for other integrals of the form (5.19) establish (5.17).
Having established (5.17), we can combine it with (5.16) to get
Ry s(n, \; M) = f Flo, 1p)E f* (o, N) F* (a, AT)e(—na) do + O(ys_lxl_kL_A).
m

We now define a new, slimmer set of major arcs My, given by (2.7) with Qo = z*~1yP~! in place of Q.
From the bound

f*(a,\F) « yq_1/2+£(1 + yzta — a/q|)_1/2 if « € M(q,a),

we find that
[ e eyl Y e
Fla, 1) £ (o, A) f* (o, A da « J dpg
M\ l<a<q<P Y181=1/(aQo) (1 + yak=1|B])5/2
(a,9)=1
« ys—lxl—kP—l/Qﬁ-e.
Hence, for any fixed A > 0, we have
Ry s(n, \; M) = Floy 1p) f*(, ) f* (e, AT) e(—na) da + O (y*tat=FL4). (5.27)
Mo
Finally, we have
| (o) = (@) £ @0 (@A e(-na) da « g~ FL A, (5.28)
Mo

The proof of this inequality is simlar to the proof of (5.17), except that we do not need to use Lemma 4
(the bound (5.25) can be used instead) and we use Lemma 8 instead of Lemma 7. We remark that during
the process, we need to verify the hypotheses Q = 2¥=920 and Q > x#~5/12*¢ of those lemmas for Q = Qy;
with our choice of Qg, those hypotheses are satisfied when y > z7/12+9,

By (5.27) and (5.28), we have

Ry s(n, \; M) = kK’ ¥ (@)’e(—na) da + O(ys_lxl_kL_A).
Mo

The evaluation of the last integral uses standard major arc techniques (e.g., see Wei and Wooley [15, pp.
1150-1151]), so we can omit it and report that

o f*(@)’e(—na)da = &(n)I(n)L™* + O(y*'z!~FpP~1).

We note that &(n) is the standard singular series in the Waring—Goldbach problem for s kth powers. In
particular, it is known that 1 « &(n) « 1 when n € Hy 5. Since the inequality

ys_ll‘l_k « j( )<< ys 1.131 k

is also standard (compare to [15, (6.5)]), we conclude that (2.11) holds with

&(n) = &(n)I(n)y*szk1
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