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Abstract. Let S denote the set of positive integers that may
appear as the strong symmetric genus of a finite abelian group.
We obtain a set of (simple) necessary and sufficient conditions for
an integer g to belong to S. We also prove that the set S has an
asymptotic density and approximate its value.

1. Introduction

Let G be a finite group. Among the various genus parameters as-
sociated with G, the most classical is perhaps the strong symmetric
genus σ0(G), the minimum genus of any Riemann surface on which
G acts faithfully and preserving orientation. Work on this parame-
ter dates back over a century and includes the fundamental bound
σ0(G) ≤ 84(g − 1) due to Hurwitz [4].

A natural problem is to determine the positive integers that occur as
the strong symmetric genus of a group (or a particular type of group),
that is, to determine the strong symmetric genus spectrum for the
particular type of group. This basic problem was settled for the family
of all finite groups by May and Zimmerman [6]: there is a group of
strong symmetric genus g, for all g ∈ N. Our focus here is to describe
the strong symmetric genus spectrum of abelian groups.

Let

S =
{
g ∈ N : g = σ0(A) for some abelian group A

}
denote the strong symmetric genus spectrum of abelian groups. We
will refer to S simply as the “spectrum.” The abelian groups of strong
symmetric genus zero are exactly the cyclic groups and the Klein group
Z2×Z2, and those of strong symmetric genus one are exactly the abelian
groups of rank 2 and Z2×Z2×Z2. These facts are a direct consequence
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of the classification of the groups of strong symmetric genus zero or one
(see Gross and Tucker [2, §6.3]). In the remainder of this note we shall
focus on abelian groups of rank r ≥ 3.

One can find the strong symmetric genus of any abelian group of rank
r ≥ 3 by applying a classical result due to Maclachlan [5, Theorem 4].
Recall that every finite abelian group A has a canonical representation
A ∼= Zm1 × Zm2 × · · · × Zmr , with standard invariants m1,m2, . . . ,mr

subject to m1 > 1 and mi|mi+1 for 1 ≤ i < r. We extend the list of
standard invariants by adding m0 = 1 to it. Maclachlan [5] proved that
if A is an abelian group of rank r ≥ 3, with |A| ≥ 10, then

σ0(A) = 1+
|A|
2

min
0≤γ≤r/2

{
2γ−2+

r−2γ∑
i=1

(
1− 1

mi

)
+

(
1− 1

mr−2γ

)}
. (1.1)

For example, when a > 1 and a3n ≥ 10, Maclachlan’s formula yields

σ0(Za × Za × Zan) = 1− a2 + a2(a− 1)n. (1.2)

In particular, when a = 2, this reveals that S contains the entire residue
class g ≡ 1 (mod 4). The first goal of the present paper is to take such
observations a step further and to provide a relatively simple test that
can be used to check whether a given positive integer g belongs to
the spectrum S. Theorem 1 below is exactly such a test, as each of
conditions (ii)–(iv) can be checked easily given the prime factorization
of the integer g − 1.

Theorem 1. Let g ≥ 2. Then g ∈ S if and only if g satisfies one of
the following conditions:

(i) g ≡ 1 (mod 4) or g ≡ 55 (mod 81);
(ii) g − 1 is divisible by p4 for some odd prime p;

(iii) g − 1 is divisible by a2 for some odd integer a with (a− 1) | g;
(iv) g − 1 is divisible by b2a2(a− 1) for some odd integers a, b > 1,

with a ≡ 3 (mod 4).

We note two more results on the structure of S. While the next two
results are direct consequences of Theorem 1 and its proof, they are of
independent interest.

Theorem 2. If g ≥ 2 and g − 1 is squarefree, then g /∈ S.

Theorem 3. Suppose that A is an abelian group of rank 5 or higher.
Then there exists an abelian group B of rank 3 or 4 such that σ0(A) =
σ0(B).
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If A is a set of integers, its lower and upper asymptotic densities,
denoted δ(A) and δ(A), are given by

δ(A) = lim inf
X→∞

X−1A(X) and δ(A) = lim sup
X→∞

X−1A(X),

where A(X) = |A ∩ [1, X]|. A set A is said to have an asymptotic
density, if δ(A) = δ(A); when A does have an asymptotic density, it is
denoted δ(A). Since the set of squarefree integers is known to have an
asymptotic density of 6π−2 ≈ 0.6079 (see Montgomery and Vaughan [7,
Theorem 2.2]), we find as a direct corollary of Theorem 2 that δ(S) ≤
0.3921. On the other hand, since all the integers in the congruence
class g ≡ 1 (mod 4) are in the spectrum, we have δ(S) ≥ 0.25. It is
therefore natural to ask whether the spectrum S has an asymptotic
density—which is not obvious—and what its potential value is. The
second main result of the paper establishes that the asymptotic density
does indeed exist.

Theorem 4. The spectrum S has an asymptotic density δ(S) ≈ 0.3284.

We remark that this shows that the lower bound δ(S) ≥ 0.3175...
given by Borror, Morris and Tarr [1] is quite tight.

2. The structure of S

In this section, we prove Theorem 1.

2.1. The spectrum of groups of rank 3. We first study genera of
abelian groups of rank 3 and establish the following result.

Proposition 5. The spectrum of abelian groups of rank 3 consists of
the congruence class g ≡ 1 (mod 4) and the integers g satisfying con-
ditions (iii) or (iv) of Theorem 1.

Proof. Recall that by (1.2) with a = 2, all integers g ≡ 1 (mod 4) are
part of the spectrum of abelian groups of rank 3. The spectrum of the
groups of type Za×Za×Zan, with a odd, are the integers g satisfying
a congruence of the form

g ≡ 1− a2 (mod a2(a− 1))

for some odd a > 1. These are exactly the integers described by con-
dition (iii) of Theorem 1, since we may apply the Chinese Remainder
Theorem to rewrite the above congruence as the pair of congruences

g ≡ 1 (mod a2), g ≡ 0 (mod a− 1).

When b ≥ 2 and bn > 2, Maclachlan’s formula (1.1) gives

σ0(Za × Zab × Zabn) = 1 + b2a2(a− 1)n. (2.1)
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When a and b are odd, with a ≡ 3 (mod 4), these are the integers
described in condition (iv) of Theorem 1. In the remaining cases, the
expression b2a2(a − 1) is divisible by 4, so in those cases the groups
Za × Zab × Zabn have genera g ≡ 1 (mod 4). By (1.2), the rank-3
groups of types Za×Za×Zan, with a even, also contribute also genera
g ≡ 1 (mod 4). Finally, the same conclusion holds for groups of type
Za × Z2a × Z2a, since

σ0(Za × Z2a × Z2a) = 1− 5a2 + 4a3. �

2.2. The spectrum of groups of rank 4. The main result of this
section is the following proposition.

Proposition 6. The spectrum of abelian groups of rank 4 is a subset
of the integers satisfying conditions (i) or (ii) of Theorem 1. Moreover,
the spectrum of abelian groups of ranks 3 or 4 contains all the integers
satisfying condition (ii) of Theorem 1.

Proof. Let A ∼= Za × Zab × Zabc × Zabcn, with a > 1. By (1.1),

σ0(A) = 1 +
|A|
2

min

{
2, 3− 1

a
− 2

ab
, 3− 1

a
− 1

ab
− 1

abc
− 2

abcn

}
.

When a is even, the last expression is 1 modulo 4, so we may assume
that a is odd. When a ≥ 5 or a = 3 and b ≥ 2, we deduce that
σ0(A) = 1 + |A|. In particular, σ0(A) ≡ 1 (mod 4) when a is odd and
b is even.

Assume now that ab is odd. Then we have σ0(A) = 1 + |A| unless
A isomorphic to Z3 × Z3 × Z3 × Z3n or Z3 × Z3 × Z6 × Z6. Since the
order |A| is divisible by p4 for any prime divisor p of a, we conclude
that σ0(A) satisfies condition (ii) of the theorem unless A is one of the
exceptional groups. By (1.1),

σ0(Z3 × Z3 × Z3 × Z3n) = 81n− 26,

so the congruence class g ≡ 55 (mod 81) is part of the spectrum of
abelian groups of rank 4. We remark that this congruence class includes
also the genus of Z3 × Z3 × Z6 × Z6, since

σ0(Z3 × Z3 × Z6 × Z6) = 298 ≡ 55 (mod 81).

It remains to show that all integers g satisfying condition (ii) belong
to S. For a prime p ≥ 5, we have

σ0(Zp × Zp × Zp × Zpn) = 1 + p4n.

Finally, by applying (2.1) to the groups of types Z3 × Z9 × Z9n and
and (1.2) to Z3 × Z3 × Z3n, we see that the congruence classes g ≡ 1
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(mod 162) and g ≡ 10 (mod 18) are part of the spectrum of groups of
rank 3. Thus, so is the class g ≡ 1 (mod 81). �

2.3. Groups of higher ranks. To complete the proof of Theorem 1,
we now establish Theorem 3. When rank(A) ≥ 5 and the smallest
invariant m1 of A is even, we have that 1

2
m1 · · ·mr−1 must be a factor

of σ0(A) − 1. In particular, in this case, σ0(A) ≡ 1 (mod 4) and
we may choose B of the form Z2 × Z2 × Z2n. On the other hand,
when rank(A) ≥ 5 and m1 odd, we have that pr−1 must be a factor of
σ0(A) − 1 for any prime divisor p of m1. Thus, σ0(A) ≡ 1 (mod p4)
and the existence of B follows from Proposition 6.

3. The asymptotic density of S

In this section, we establish Theorem 4. Let Sj, 1 ≤ j ≤ 4, denote
the set of integers that satisfy the jth condition of Theorem 1 but none
of the previous conditions (if any). We deal with each of these four sets
separately and show that each Sj has an asymptotic density.

Densities of residue classes play a major role in our proofs, so we
begin by recalling that the residue class x ≡ a (mod q) has asymptotic
density 1/q. Also, by the Chinese Remainder Theorem, the density of
the intersection of two residue classes x ≡ ai (mod qi), i = 1, 2, has
density {

[q1, q2]
−1 if (q1, q2) | (a1 − a2),

0 otherwise.

Here and in the sequel, for integers a, b, . . . , we use (a, b, . . . ) and
[a, b, . . . ] as abbreviations for lcm[a, b, . . . ] and gcd(a, b, . . . ), respec-
tively. In particular, using the inclusion-exclusion principle, we see
that the density of S1, the set of integers g satisfying condition (i) of
Theorem 1, is

δ1 =
1

4
+

1

81
− 1

324
=

7

27
.

3.1. The density of S2. We split S2 into subsets S2,j, 2 ≤ j ≤ 4,
subject to g ≡ j (mod 4). We will prove that each of these sets has
asymptotic density

δ(S2,j) =
1

4

(
80

81
− 79

75ζ(4)

)
, (3.1)

where ζ(s) denotes the Riemann zeta-function. Thus,

δ2 = δ(S2) =
4∑
j=2

δ(S2,j) =
20

27
− 79

100ζ(4)
≈ .0108. (3.2)
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The calculation of the density (3.1) uses some basic facts about the
distribution of biquadrate-free integers. When k ≥ 2, let αk(n) denote
the characteristic function of the integers n that are not divisible by pk

for any prime p. It is well-known that

αk(n) =
∑
dk|n

µ(d), (3.3)

where µ(d) is the Möbius function and the summation is over all kth
powers that divide n. One needs little more than (3.3) to establish the
next lemma (see Prachar [8]).

Lemma 7. Let (a, q) = 1. Then for any fixed ε > 0, one has∑
n≤X

n≡a (mod q)

αk(n) =
X

qζ(k)

∏
p|q

(
1− p−k

)−1
+O

(
X1/k+ε

)
,

the implied constant in the O-term depending on q and ε.

Let Tj(X) denote the number of integers g ≡ j (mod 4), with g ≤ X,
that satisfy condition (ii) of Theorem 1. When j = 2 or 4, we have

Tj(X) =
X

4
−

∑
h≤X

h≡j−1 (mod 4)

α4(h) +O(1),

and Lemma 7 yields

Tj(X) =
X

4

(
1− 16

15ζ(4)

)
+O

(
X1/3

)
. (3.4)

When j = 3, we write g = 2h+ 1 to get

T3(X) =
X

4
−

∑
h≤X/2

h≡1 (mod 2)

α4(h) +O(1),

and Lemma 7 again leads to (3.4).
Next, let T ′j(X) denote the number of integers g counted by Tj(X)

that satisfy also the congruence g ≡ 55 (mod 81). A variant of the
above argument yields

T ′j(X) =
X

324

(
1− 27

25ζ(4)

)
+O

(
X1/3

)
. (3.5)

The desired result (3.1) follows from (3.4) and (3.5), after noting
that the counting function S2,j(X) of S2,j can be expressed as

S2,j(X) = Tj(X)− T ′j(X).
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3.2. The density of S3. Recall that condition (iii) is equivalent to
the requirement that

g ≡ 1− a2 (mod a2(a− 1)) (3.6)

for some odd a > 1. Let A be the set of such g, and write A(X) =
A ∩ [1, X]. Also, let Aa(X) denote the set of g ∈ A(X) such that a is
the least odd integer for which (3.6) is satisfied.

Let S ′3(X) denote the counting function of the integers g that sat-
isfy (3.6) but fail condition (ii) of Theorem 1. Note together these
requirements restrict a to squarefree values. By (3.3),

S ′3(X) =
∑

g∈A(X)

α4(g − 1) +O(1) =
∑

g∈A(X)

∑
d4|(g−1)

µ(d) +O(1)

=
∑

d≤X1/4

µ(d)
∑

g∈A(X)
d4|(g−1)

1 +O(1)

=
∑
d≤D

µ(d)
∑

g∈A(X)
d4|(g−1)

1 +O
(
XD−3

)
. (3.7)

To estimate the sum on the right side of (3.7), we first observe that
the contribution from residue classes (3.6) with a > A is bounded above
by ∑

d≤D

∑
a>A

X

a2(a− 1)
= O

(
XDA−2

)
.

Upon choosing A = D2, we deduce that

S ′3(X) =
∑
d≤D

µ(d)
∑

3≤a≤A

∑
g∈Aa(X)
d4|(g−1)

1 +O
(
XD−3

)
. (3.8)

We now call a set of squarefree integers {a1, a2, . . . , ak} d-admissible if
ai > 1 for all i and

(ai, aj − 1) = (ai − 1, d) = 1 for all i, j ∈ {1, 2, . . . , k}. (3.9)

The d-admissibility of a set {a1, a2, . . . , ak} means that the congruences
(3.6) with a = ai, 1 ≤ i ≤ k, are consistent with one another and also
with the condition d4 | (g − 1). In particular, if {a} is d-admissible
(i.e., if (a− 1, d) = 1), an inclusion-exclusion argument shows that the
set Aa has density

δ(d, a) = f0(d, a)−
∑′

b<a

f1(d, a, b) +
∑′

b2<b1<a

f2(d, a, b1, b2)− · · · ,
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where fk(d, a, b1, . . . ) = [d4, a2(a−1), b21(b1−1), . . . ]−1 and the summa-
tions are over odd integers b, b1, b2, . . . such that the sets {a, b}, {a, b1, b2}, . . .
are d-admissible. The same argument lets us rewrite (3.8) as

S ′3(X) = X
∑
d≤D

µ(d)
∑′

3≤a≤A

δ(d, a) +O
(
D2A +XD−3

)
.

Hence, if we choose D = b
√

lnXc (and keep A = D2), we obtain

S ′3(X) = X
∑
d≤D

µ(d)
∑′

3≤a≤A

δ(d, a) +O
(
XD−3

)
.

Recalling that a above is restricted to odd values, we conclude that

lim
X→∞

X−1S ′3(X) =
∑

(d,2)=1

µ(d)
∑′

(a,2)=1

δ(d, a). (3.10)

Let S ′′3 (X) be the part of S ′3(X) that counts integers g subject to
g ≡ 55 (mod 81). We can estimate S ′′3 (X) using a variant of the above
argument. It is not difficult to see that the conditions

d4 | (g − 1), g ≡ 55 (mod 81), g ≡ 1− a2i (mod a2i (ai − 1)),

where 1 ≤ i ≤ k, are consistent if and only if (d, 6) = 1, the moduli
a1, a2, . . . , ak satisfy (3.9) with 3d in place of d, and none of the ai’s
is divisible by 9. However, since we are only interested in squarefree
ai’s, the latter condition is superfluous. Thus, the argument leading to
(3.10) also gives

lim
X→∞

X−1S ′′3 (X) =
∑

(d,6)=1

µ(d)
∑′

(a,2)=1

δ(3d, a). (3.11)

Finally, we note that the difference S ′3(X) − S ′′3 (X) is exactly the
counting function of S3. Hence, by (3.10) and (3.11), the set S3 has
density

δ3 =
∑

(d,2)=1

µ(d)
∑′

(a,2)=1

δ(d, a)−
∑

(d,6)=1

µ(d)
∑′

(a,2)=1

δ(3d, a).

A simple calculation using Mathematica yields δ3 ≈ .0564.

3.3. The density of S4. The integers g that satisfy condition (iv) of
Theorem 1 never satisfy condition (iii) for parity reasons, so we only
need to exclude those g that satisfy conditions (i) or (ii). Consequently,
the calculation of δ(S4) is very similar to that we just went through
to calculate δ3. Let B be the set of biquadrate-free values that the
polynomial b2a2(a − 1) takes when a ≡ 3 (mod 4) and b > 1 is odd.
Note that this restricts a and b to be squarefree and relatively prime.
We reduce the calculation of the density of S4 to estimates for the



THE STRONG SYMMETRIC GENUS SPECTRUM OF ABELIAN GROUPS 9

distribution of sets of multiples of B in residue classes. The next lemma
is a slight generalization of a classical result on the density of a set of
multiples.

Lemma 8. Let B = {b1, b2, . . . } be a set of positive integers such that∑
k b
−1
k converges, and let a, q be positive integers. Then the set

M(B; q, a) =
{
n ∈ N : n ≡ a (mod q), n divisible by some b ∈ B

}
has an asymptotic density given by
∞∑
k=1

(
ε(q, a; bk)

[q, bk]
−
∑

1≤j<k

ε(q, a; bk, bj)

[q, bk, bj]
+

∑
1≤i<j<k

ε(q, a; bk, bj, bi)

[q, bk, bj, bi]
− · · ·

)
,

where ε(q, a; bk, bj, . . . ) is the indicator function of the condition that a
is divisible by gcd(q, [bk, bj, . . . ]).

Proof. The case q = 1 is Halberstam and Roth [3, Theorem V.9]. The
proof of that result uses the inclusion-exclusion principle to count the
elements of the union of the residue classes x ≡ 0 (mod bk). When
q > 1, we use the Chinese Remainder Theorem to replace the latter
union with the union of residue classes modulo [q, bk], defined by the
conditions

x ≡ 0 (mod bk), x ≡ a (mod q),

when those conditions are consistent (i.e., when ε(q, a; bk) = 1). We
then follow the argument of Halberstam and Roth. �

We remark that the set B defined at the beginning of the section
satisfies the hypothesis of Lemma 8. We may therefore apply Lemma 8
to sets M(B; q, a) for various choices of q and a.

We have S4 = S ′4 \ S ′′4 , where

S ′4 =
{
h+ 1 : h ∈M(B; 4, 2), h biquadrate-free

}
,

S ′′4 =
{
h+ 1 : h ∈M(B; 324, 54), h biquadrate-free

}
.

Let S ′4(X) and S ′′4 (X) denote the counting functions of these two sets.
Similarly to (3.7), we have

S ′4(X) =
∑
d≤D

(d,2)=1

µ(d)
∑
h≤X

h∈M(B;4d4,2d4)

1 +O
(
XD−3

)
,

where D is a large integer. When X is sufficiently large in terms of D,
we may use Lemma 8 to get

S ′4(X) = X
∑
d≤D

(d,2)=1

µ(d)β(d) +O
(
XD−3

)
,
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with

β(d) =
∞∑
k=1

(
ε(4d4, 2d4; bk)

[4d4, bk]
−
∑

1≤j<k

ε(4d4, 2d4; bk, bj)

[4d4, bk, bj]
+ · · ·

)
,

where B = {b1 < b2 < · · · }. Since B is contained in the residue class
x ≡ 2 (mod 4) and d4 ≡ 1 (mod 16), we have

ε(4d4, 2d4; bk, bj, . . . )

[4d4, bk, bj, . . . ]
=

1

2[d4, bk, bj, . . . ]
.

Hence,

β(d) =
1

2

∞∑
k=1

(
1

[d4, bk]
−
∑

1≤j<k

1

[d4, bk, bj]
+ · · ·

)
.

By letting X →∞ and then D →∞, we conclude that

δ(S ′4) =
1

2

∑
(d,2)=1

µ(d)
∞∑
k=1

(
1

[d4, bk]
−
∑

1≤j<k

1

[d4, bk, bj]
+ · · ·

)
.

A similar argument can be applied to S ′′4 to show that

δ(S ′′4 ) =
1

2

∑
(d,6)=1

µ(d)
∞∑
k=1

(
ε(81, 27; bk)

[81d4, bk]
−
∑

1≤j<k

ε(81, 27; bk, bj)

[81d4, bk, bj]
+ · · ·

)
.

Note that ε(81, 27; bk, bj) is 0 or 1 according as 81 divides some or
none of the integers bk, bj, . . . . Recalling that the elements of B are
biquadrate-free, we deduce that

δ(S ′′4 ) =
1

2

∑
(d,6)=1

µ(d)
∞∑
k=1

(
1

[81d4, bk]
−
∑

1≤j<k

1

[81d4, bk, bj]
+ · · ·

)
.

We conclude that the density of S4 is

δ4 = δ(S ′4)− δ(S ′′4 ) ≈ 0.0019

(after another computer calculation). This concludes the proof of The-
orem 4.
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