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ABSTRACT. Exponential sums over primes have many applications in analytic number theory.
The first estimates for such sums were obtained in the late 1930’s by I.M. Vinogradov, who used
an elaborate combinatorial method to reduce the estimation of sums over primes to the es-
timation of “double sums.” By the early 1980’s, Vinogradov’s combinatorial method was sup-
planted in most applications by combinatorial identities discovered by R.C. Vaughan and D.R.
Heath-Brown. Subsequent work has revealed that when considered within the context of com-
binatorial sieve theory, those two approaches have much more in common than meets the eye.
Moreover, the sieve viewpoint to such estimates leads to quantitative improvements in many
applications, since it often allows for a more efficient deployment of the available harmonic
analytic tools. In these notes, I explain the philosophy of the combinatorial sieve approach to-
wards exponential sums over primes and present some applications to additive prime number
theory.

INTRODUCTION

A great deal of our knowledge about the distribution of primes in various arithmetic se-
quences depends on estimates for exponential sums of the form

(1)
∑

p∼X
e( f (p)),

where e(x) = exp(2πix), f is a “well-behaved” function, and the summation is over primes p
with X /2 ≤ p < X . The first estimates for such exponential sums were obtained by I.M. Vino-
gradov in 1937 and were the crucial ingredient in his proof of the Goldbach–Vinogradov three
primes theorem [31, 32]. Vinogradov’s idea was to reduce the estimation of the exponential
sum (1) to the estimation of double exponential sums∑

m∼M

∑
mn∼X

ambne( f (mn))

of the following two types:

• Type I: |am |¿ 1, bn = 1, and M is not “too large;”
• Type II: |am |¿ 1, |bn |¿ 1, and M is “neither small, nor large.”

To achieve the transition from (1) to double sums, Vinogradov developed an intricate com-
binatorial technique. Nowadays, Vinogradov’s combinatorial method can be classified as a
combinatorial sieve and be understood within the context of sieve theory, but back in its day
it was shrouded in mystery for all but a few “specialists.” That remained the state of the sub-
ject until 1977, when R.C. Vaughan [28] published an identity for von Mangoldt’s functionΛ(n)
(see (7) below) that demystified the transition from sums over primes to double sums.

The discovery of Vaughan’s identity (and of a related identity by D.R. Heath-Brown [10])
was part of a period of great excitement in analytic number theory. Another development that
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originated at about the same time (but really flourished during the 1990s) is the idea of prime-
detecting sieves. These are sieve methods that utilize bounds for double sums to establish
the existence of primes in various arithmetic sequences. While most prime-detecting sieves
in the literature draw on the same basic ideas, their formulations differ from one circle of
applications to another. The purpose of these notes is to describe in reasonable detail the
applications of one such method—G. Harman’s “alternative sieve”—to additive problems with
prime variables. The reader will find an excellent introduction to applications of the same
method to other problems in Harman’s monograph [7].

The plan of the survey is as follows. We start with a motivating example from the theory
of Diophantine approximations: we study the distribution modulo one of the sequence (αp),
where α is an irrational real and p is a prime. This question provides a convenient setting
to introduce an inexperienced reader to Vaughan’s identity and to the main idea behind Har-
man’s sieve. Indeed, Harman [4, 5] developed his method while studying this very problem.
We also use the opportunity to explain some of the technical details involved in the sieve so
that those details do not distract from more important things in later sections. The second
part of the paper discusses the application of the sieve method to the problem of estimation
of the size of the exceptional sets for sums of squares of primes. We sketch the application
of the circle method to this problem and provide (without proofs) the necessary background
on quadratic exponential sums over primes. We then present the details of the proofs of two
applications of Harman’s sieve to sums of four squares of primes. First, we present the proof
of the earliest such theorem due to Harman and the author [8]. Then, we present the proof of
a recent result of L. Zhao and the author [17], which is the sharpest result of this kind to date.
We also describe a clever idea of Zhao that greatly simplifies the handling of the major arcs in
the underlying application of the circle method.

1. A BASIC EXAMPLE: THE DISTRIBUTION OF αp MODULO ONE

Let ‖x‖ denote the distance from a real number x to the nearest integer. In this section, we
address the following question.

Question 1. Suppose that α ∈R\Q. For what θ > 0 does the Diophantine inequality

(2) ‖αp‖ < p−θ

have infinitely many solutions with p prime?

This problem has a long history [33, 29, 4, 13, 5, 14, 11, 25] that begins with the work of I.M.
Vinogradov [33] and culminates in a recent result of K. Matomäki [25] that answers Question 1
for all θ < 1/3. Here, we sketch the proofs of a result of R.C. Vaughan [29] that the range
0 < θ < 1/4 is acceptable and of Harman’s first result [4] on this question, where he extends
Vaughan’s range to 0 < θ < 3/10.

1.1. First result. Vaughan’s identity. We first use harmonic analysis to reduce the above ques-
tion to one about exponential sums. Let X be a large real number, and let Sα(X ) denote the
number of solutions of (2) with p ∼ X . Set ∆ = X −θ, and choose a function φ ∈ C∞(R) that
satisfies

0 ≤φ(x) ≤ 1(x; [−∆,∆]),
∫
R
φ(x)d x =∆;
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here, 1(x; A) denotes the indicator function of a set A. Then Φ(x) = φ(‖x‖) is 1-periodic and
has a Fourier expansion of the form

Φ(x) =∆+ ∑
h 6=0

Φ̂(h)e(hx),

with Fourier coefficients satisfying

(3) |Φ̂(h)|¿k
∆

(1+∆|h|)k
(k ≥ 0).

We will use Φ and its Fourier expansion to estimate Sα(X ). By the construction of Φ,

Sα(X ) ≥ ∑
p∼X

( log p

log X

)
Φ(αp) = ∑

p∼X

( log p

log X

)(
∆+ ∑

h 6=0
Φ̂(h)e(αhp)

)
.

Let H0 = X θ+ε. By (3) with k sufficiently large, the contribution to the last sum from h with
|h| > H0 is bounded. Hence, by the prime number theorem,

(4) Sα(X ) ≥ X 1−θ

2log X
(1+o(1))+ ∑

0<|h|≤H0

Φ̂(h)

log X

∑
p∼X

(log p)e(αhp).

Thus, we have reduced the original problem to the estimation of an exponential sum. It now
suffices to show that

(5) max
1≤H≤H0

∑
h∼H

∣∣∣ ∑
p∼X

(log p)e(αhp)
∣∣∣¿ X 1−ε.

Next, we turn attention to the above exponential sum bound. We will use Vaughan’s identity
to establish the closely related inequality

(6) max
1≤H≤H0

∑
h∼H

∣∣∣ ∑
x∼X

Λ(x)e(αhx)
∣∣∣¿ X 1−ε,

where Λ is von Mangoldt’s function. Suppose that U is a parameter to be chosen later subject
to U ≤ X 1/2−ε. The simplest form of Vaughan’s identity states that

Λ(x) = ∑
mn=x
m≤U

µ(m)(logn)− ∑
r st=x
r,s≤U

Λ(r )µ(s)+ ∑
r st=x
r,s>U

Λ(r )µ(s),(7)

where µ is the Möbius function. If we put

am = ∑
r s=m
r,s≤U

Λ(r )µ(s), bn = ∑
r t=n
r>U

Λ(r ),

we can use (7) to derive the identity∑
x∼X

Λ(x)e(αhx) = ∑
m≤U

∑
mn∼X

µ(m)(logn)e(αhmn)

− ∑
m≤U 2

∑
mn∼X

ame(αhmn)

+ ∑
m,n>U

∑
mn∼X

µ(m)bne(αhmn).

Note that |am | ≤ logm and |bn | ≤ logn. Hence, the first two sums on the right side of the last
identity can be split into subsums of Type I with M ≤U 2, while the third sum can be split into
subsums of Type II with U ≤ M ≤ X /U . We have thus reduced the problem to the following:
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Can we choose U ≤ X 1/2−ε so that we can estimate the contributions to the left side of (6) from
all those Type I and Type II sums?

The techniques for estimation of double sums fall outside the scope of these notes, so we
simply state the needed exponential sum bounds and treat them as “black boxes.” In the
present application, after a suitable choice of the large parameter X , we can report the esti-
mate1 ∑

h∼H

∣∣∣ ∑
m∼M

∑
mn∼X

ambne(αhmn)
∣∣∣¿ X 1−2ε,

provided that 1 ≤ H ≤ H0 and one of the following holds:

• the sum over m,n is of Type I with M ≤ X 1−θ;
• the sum over m,n is of Type II with X θ ≤ M ≤ X 1−2θ or X 2θ ≤ M ≤ X 1−θ.

Suppose now that θ < 1/4. Then the two ranges for M in the Type II sum bound overlap,
and we can estimate contributions of Type I sums with M ≤ X 1−θ and of Type II sums with
X θ ≤ M ≤ X 1−θ. Let us compare the constraints

(8) M ≤ X 1−θ, X θ ≤ M ≤ X 1−θ

with the ranges

(9) M ≤U 2, U ≤ M ≤ X /U

that emerged from the application of Vaughan’s identity. We notice that if we choose U = X θ,
inequalities (8) imply inequalities (9). Thus, when θ < 1/4, we can apply Vaughan’s identity
with U = X θ and the above triple-sum estimates to prove (6), and hence, also (5). Finally,
combining (4) and (5), we easily get2

Sα(X ) ≥ X 1−θ

2log X
(1+o(1)).

This completes the proof of the following

Theorem 1.1 (Vaughan, 1977). When α ∈R\Q and 0 < θ < 1/4, the Diophantine inequality (2)
has infinitely many solutions with p prime.

1.2. Preparation for the sieve. We would like to extend the range of θ in Theorem 1.1. To
that end, let us examine its proof and the source of the restriction θ < 1/4. We established an
asymptotic formula, ∑

p∼X
(log p)Φ(αp) = X 1−θ(0.5+o(1)).

Our proof had two parts: harmonic-analytic (Fourier series) and combinatorial (Vaughan’s
identity). The harmonic analysis was relatively simple and came first. It produced the main
term in our asymptotic formula and left us to deal with an error term in the form of the ex-
ponential sum (5). The combinatorial analysis then transformed (5) into a number of sums of
the form ∑

h∼H

∣∣∣ ∑
m∼M

∑
mn∼X

ambne(αhmn)
∣∣∣,

1For proofs, see Vaughan [29] or Harman [7, §2.3].
2In fact, with a little more effort, we can turn this lower bound into an asymptotic formula with the same main

term.
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where the double sums are either Type I or Type II. A successful proof required that we be able
to estimate all the resulting triple sums, and their estimation for θ < 1/4 was pretty straight-
forward. On the other hand, when θ > 1/4, we do not have an estimate for Type II sums with
X 1−2θ ≤ M ≤ X 2θ, and so there is no choice of U such that we can estimate all Type II sums
with U ≤ M ≤ X /U . Thus, the approach from §1.1 fails when θ > 1/4. This is especially frus-
trating when θ = 1/4+ε, as in that case we can estimate all the triple sums except for a small
number of Type II sums with X 1/2−ε ≤ M ≤ X 1/2+ε. Yet, even though we have lost control over
just a few sums, we have lost the result completely.

Harman’s alternative sieve is designed to achieve further progress in situations such as the
just described. The main idea is to interchange the order of the harmonic and combinatorial
analyses. That is, we start with the combinatorial analysis and apply it directly to

∑
pΦ(αp)

(as opposed to the exponential sums that appear in the harmonic analysis of this sum). Our
goal will be to organize the combinatorics so that the “bad” Type II sums can be avoided.

Let us define, for z ≥ 2,

ψ(n, z) =
{

1 if n has no prime divisor p with p ≤ z,

0 otherwise.

It is also convenient to extend the definition of ψ(n, z) to all positive real n by setting ψ(n, z) =
0 when n ∉ Z. For integers n with n ∼ X , ψ(n, X 1/2) is simply the indicator function of the
primes. Hence,

(10)
∑

p∼X
Φ(αp) = ∑

n∼X
ψ(n, X 1/2)Φ(αn).

Harman’s combinatorial argument is based on Buchstab’s identity,

(11) ψ(n, z2) =ψ(n, z1)− ∑
z1<p≤z2

ψ(n/p, p) (2 ≤ z1 < z2),

which is merely a form of the inclusion-exclusion principle. Applying Buchstab’s identity to
the right side of (10), we get∑

n∼X
ψ(n, X 1/2)Φ(αn) = ∑

n∼X
ψ(n, z)Φ(αn)− ∑

n∼X

∑
z<p≤X 1/2

ψ(n/p, p)Φ(αn)

= ∑
n∼X

ψ(n, z)Φ(αn)− ∑
z<p≤X 1/2

∑
mp∼X

ψ(m, p)Φ(αmp)

=Σ1 −Σ2, say.

Let us now take a look at the double sum Σ2 in the above decomposition. Using the Fourier
expansion of Φ and the bound (3) for its Fourier coefficients, we obtain

Σ2 =
∑

z<p≤X 1/2

∑
mp∼X

ψ(m, p)
(
∆+ ∑

0<|h|≤H0

Φ̂(h)e(αhmp)
)
+O(1)

=∆T2(0)+O
(
∆

∑
h≤H0

|T2(h)|+1
)
,

where
T2(h) = ∑

z<p≤X 1/2

∑
mp∼X

ψ(m, p)e(αhmp).

The sum T2(0) that appears in the main term can be evaluated using standard techniques
from prime number theory. The prime number theorem and the following lemma (itself a
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consequence of the prime number theorem) are the main tools for evaluating T2(0) and other
similar sums that appear in the sequel.

Lemma 1.2. Suppose that x is large and z = xζ, with 0 < ε≤ ζ≤ 1. Then, for any fixed A > 0,∑
n≤x

ψ
(
n, xζ

)= 1

log z

∑
n≤x

ω
( logn

log z

)
+O

(
x(log x)−A)

= x

log x

(
ζ−1ω(1/ζ)+O

(
(log x)−1)),

where ω is Buchstab’s function: the continuous solution of the differential delay equation{
ω(u) = 1/u when 1 ≤ u ≤ 2,

(uω(u))′ =ω(u −1) when u > 2.

Using the above lemma, we get

(12) T2(0) = X

2log X
(c2 +o(1)), c2 =

∫ 1/2

ζ
ω

(1− t

t

) d t

t 2
=

∫ 1/ζ

2
ω(u −1)du,

where z = X ζ. Superficial technical details aside, this evaluation is standard, and we are really
interested in the sums T2(h), with 1 ≤ h ≤ H0, appearing in the remainder term above. Those
sums resemble Type II sums but for one important detail: the coefficients ψ(m, p) are not
products of the form ambp . Since that structure of the coefficients of the Type II sum plays
a central role in its estimation, this difference is an obstacle to the direct estimation of T2(h).
However, by a simple trick using Perron’s formula (see Harman [7, §3.2]), we can show that

(13) T2(h) ¿ (log X )
∣∣∣ ∑

z<p≤X 1/2

∑
mp∼X

ambp e(αhmp)
∣∣∣,

where the coefficients am and bp are complex numbers with |am | ≤ 1 and |bp | ≤ 1. The latter
sum can be split into O(log X ) subsums, each of which is a genuine Type II sum with z ≤ M ≤
X 1/2. Therefore, when 0 < θ < 1/4 and z ≥ X θ, we can use our Type II sum bound to deduce
that

Σ2 = X 1−θ

2log X
(c2 +o(1)).

Is it possible to use the same approach to obtain an approximation for Σ1? If we were to try,
we would discover that we need an asymptotic formula similar to (12) for T1(0) and an upper
bound for T1(h), with 1 ≤ h ≤ H0, where

T1(h) = ∑
n∼X

ψ(n, z)e(αhn).

The sum T1(h) is neither of Type I nor of Type II, and thus, we currently know no bound for
it. It turns out, however, that we can derive a bound for this sum (and for more general sums)
from bounds for Type I and Type II sums.

Lemma 1.3. Let α, X and H0 be as above. Suppose that M ≤ X 1−θ, 1 ≤ H ≤ H0, z ≤ X 1−3θ, and
(am) is a complex sequence, with |am | ≤ 1. Then∑

h∼H

∣∣∣ ∑
m∼M

∑
mn∼X

amψ(n, z)e(αhmn)
∣∣∣¿ X 1−1.5ε.
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We will not give a complete proof of the lemma and will be content with a sketch of the
main idea instead.

Sketch of the proof. Let Π(z) = ∏
p≤z p. By the properties of the Möbius function, the given

exponential sum is∑
m∼M

∑
mn∼X

∑
d |(n,Π(z))

amµ(d)e(αhmn) ¿ (log X )
∣∣∣ ∑

m∼M

∑
d |Π(z)
d∼D

∑
mkd∼X

amµ(d)e(αhmkd)
∣∣∣,

for some D ¿ X /M . We consider two cases:
Case 1: MD ¿ X 1−θ. Then the above sum can be rewritten as a Type I sum.
Case 2: MD À X 1−θ. Then d = p1p2 · · ·ps , s ≥ 1, where the p j ’s are primes with

p1 < p2 < ·· · < ps ≤ z, mp1p2 · · ·ps À X 1−θ.

Let 1 ≤ t ≤ s be such that mp1p2 · · ·pt À X 1−θ À mp1p2 · · ·pt−1. Recalling that pt ≤ z ≤ X 1−3θ,
we deduce that

X 2θ ¿ mp1p2 · · ·pt−1 ¿ X 1−θ.

We can use this observation and the argument behind (13) to bound the given sum by a linear
combination of O

(
(log X )3

)
Type II sums. �

The kind of sum that appears in Lemma 1.3 is not quite as general as a Type II sum, but it
is more general than a Type I sum. Indeed, if z = 1, ψ(n, z) = 1 and the above sum turns into
a Type I sum. We shall refer to this type of sum as a Type I/II sum. Note that the sum T1(h)
above is a Type I/II sum with M = 1 (which is acceptable in the lemma). Thus, if z ≤ X 1−3θ, we
can use the lemma to estimate T1(h) and to show that

(14) Σ1 = X 1−θ

2log X
(c1 +o(1)), c1 = ζ−1ω(1/ζ).

When 0 < θ < 1/4, we can choose z = X 1/4 in the above analysis of Σ1 and Σ2 to obtain an
alternative proof of the asymptotic formula∑

p∼X
Φ(αp) = X 1−θ

2log X
(c1 − c2 +o(1)) = X 1−θ

2log X
(1+o(1)),

which of course we already knew. However, the real gain from the above discussion will come
in the next section, where we will replace the asymptotic formula for Σ2 with an upper bound
valid in a wider range for θ.

1.3. A simple lower-bound sieve. Let us consider again how things change as θ crosses over
the threshold θ = 1/4. The argument in §1.2 required that we choose z with X θ ≤ z ≤ X 1−3θ.
When θ > 1/4, this is not possible, so we set z = X 1−3θ. The analysis of Σ1 then remains the
same for θ < 1/3, but we need to revisit Σ2. We write

Σ2 =
{ ∑

z<p<X θ

+ ∑
X θ≤p≤X 1−2θ

+ ∑
X 1−2θ<p≤X 1/2

} ∑
mp∼X

ψ(m, p)Φ(αmp)

=Σ3 +Σ4 +Σ5, say.
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We can use our Type II sum bound to evaluate Σ4 similarly to how we evaluated the entire Σ2

in the case θ < 1/4. This yields

Σ4 = X 1−θ

2log X
(c4 +o(1)), c4 =

∫ 1−2θ

θ
ω

(1− t

t

) d t

t 2
.

We now turn to Σ3. The harmonic analysis of this sum produces exponential sums of Type II
that we cannot estimate. However, we can apply Buchstab’s identity to Σ3 to get

Σ3 =
∑

z<p<X θ

∑
mp∼X

ψ(m, z)Φ(αmp)− ∑
z<p<X θ

∑
mp∼X

∑
z<q≤p

ψ(m/q, q)Φ(αmp)

= ∑
z<p<X θ

∑
mp∼X

ψ(m, z)Φ(αmp)− ∑
z<q≤p<X θ

∑
kpq∼X

ψ(k, q)Φ(αkpq) =Σ6 −Σ7, say;

here q also denotes a prime number. Note that Σ6 is a Type I/II sum, which can be evaluated
similarly to Σ1; we have

Σ6 = X 1−θ

2log X
(c6 +o(1)), c6 = 1

1−3θ

∫ θ

1−3θ
ω

( 1− t

1−3θ

) d t

t
.

We can give a similar further decomposition for Σ5. However, before we do that, we note
that in the case of Σ5, the only integers m with mp ∼ X and ψ(m, p) 6= 0 are the primes q ∼
X /p. Hence, on writing Yp = (X /p)1/2, we have

Σ5 =
∑

X 1−2θ<p≤X 1/2

∑
mp∼X

ψ(m,Yp )Φ(αmp)

= ∑
X 1−2θ<p≤X 1/2

∑
mp∼X

ψ(m, z)Φ(αmp)− ∑
X 1−2θ<p≤X 1/2

z<q≤Yp

∑
kpq∼X

ψ(k, q)Φ(αkpq) =Σ8 −Σ9.

Again, Σ8 is a Type I/II sum and we have

Σ8 = X 1−θ

2log X
(c8 +o(1)), c8 = 1

1−3θ

∫ 1/2

1−2θ
ω

( 1− t

1−3θ

) d t

t
.

Combining all the decompositions and evaluations, we now obtain

(15)
∑

p∼X
Φ(αp) = X 1−θ

2log X
(c1 − c4 − c6 − c8 +o(1))+Σ7 +Σ9.

We still do not know how to evaluate Σ7 and Σ9, but they have one important advantage over
their exponential sum counterparts—they are non-negative! Hence, (15) gives

(16)
∑

p∼X
Φ(αp) ≥ X 1−θ

2log X
(c1 − c4 − c6 − c8 +o(1)),

which is non-trivial whenever c1 − c4 − c6 − c8 > 0. It is easy to see that this already supersedes
the earlier result. Indeed, when θ = 1/4 + ε, with ε > 0 small, one can show that the sum
c4 + c6 + c8 is close to c2, whence c1 − c4 − c6 − c8 is close to 1. Thus, we can get a result with
θ = 1/4+ε for some ε> 0.

Before we try to go any further with this sieve idea, let us analyze the constant c1−c4−c6−c8

appearing in the lower bound (16). We decomposed the left side of (16) as∑
p∼X

Φ(αp) =Σ1 −Σ4 −Σ6 +Σ7 −Σ8 +Σ9.
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We expect that

Σi = X 1−θ

2log X
(ci +o(1))

for all six values of i that appear in the above decomposition, but we can prove those asymp-
totic formulas only for i = 1,4,6, and 8. For Σ7 and Σ9, we expect such asymptotic formulas
with

c7 =
∫ θ

1−3θ

∫ u

1−3θ
ω

(1−u − v

v

) d v du

uv2
and c9 =

∫ 1/2

1−2θ

∫ (1−u)/2

1−3θ
ω

(1−u − v

v

) d v du

uv2
,

respectively, but we cannot prove them. However, it follows easily from our combinatorial
decomposition and the prime number theorem that

c1 − c4 − c6 + c7 − c8 + c9 = 1,

whence

c1 − c4 − c6 − c8 = 1− c7 − c9.

We note that c7 and c9 are the constants in the main terms of the two expected asymptotic
formulas that we missed. One may think of this as follows: Each sum (like Σ7 and Σ9 above)
which we cannot evaluate and estimate trivially results in a “loss” being subtracted from the
expected asymptotic formula for the original sum; the resulting lower bound is non-trivial if
the total of such losses does not exceed the expected main term (which has a constant coeffi-
cient equal to 1). This observation is useful in the final stage of the application of the method.
Indeed, the sum c7 +c9 is an increasing function of θ, and so the real limit of our simple sieve
is the solution θ0 of the transcendental equation c7(θ)+ c9(θ) = 1. It is very difficult (perhaps,
even impossible) to solve this equation in closed form, but a numerical approximation to θ0

is definitely within reach. Numerical integration yields

c7(0.284)+ c9(0.284) < 0.951, c7(0.285)+ c9(0.285) > 1.003,

so θ = 0.284 presents a reasonable lower estimate for θ0. Thus, we obtain an affirmative an-
swer to Question 1 when θ ≤ 0.284.

We can easily improve on the above result. For example, there is no need to discard all of
Σ9. Recall that

Σ9 =
∑

X 1−2θ<p1≤X 1/2

∑
z<p2<Yp1

∑
kp1p2∼X

ψ(k, p2)Φ(αkp1p2).

We can use our Type II sum bound to evaluate the part of this sum where X 2θ ≤ p1p2 ≤ X 1−θ.
The evaluation of this sum will reduce the loss from Σ9 from c9 to

b9 =
Ï

D9

ω
(1−u − v

v

) d v du

uv2
,

where D9 is the two-dimensional region defined by the inequalities

1−2θ ≤ u ≤ 1/2, 1−3θ ≤ v ≤ (1−u)/2, u + v ∉ [2θ,1−θ].

Similarly, we can use Type II sum bounds to evaluate the part of Σ7 sum where X θ ≤ p1p2 ≤
X 1−2θ. Let us examine further the two parts of Σ7 which are subject to the conditions

p1p2 < X θ or p1p2 > X 1−2θ.
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Let Σ10 denote the part of Σ7 subject to p1p2 < X θ. This sum may be empty (it is empty
when θ ≤ 2/7), but even when Σ10 does not vanish, we can evaluate most of it by further use
of Buchstab’s identity. Two more appeals to Buchstab’s identity yield∑

z<p2≤p1

p1p2<X θ

∑
mp1p2∼X

ψ(m, p2)Φ(αmp1p2) = ∑
z<p2≤p1

p1p2<X θ

∑
mp1p2∼X

ψ(m, z)Φ(αmp1p2)

− ∑
z<p3≤p2≤p1

p1p2<X θ

∑
mp1p2p3∼X

ψ(m, z)Φ(αmp1p2p3)

+ ∑
z<p4≤p3≤p2≤p1

p1p2<X θ

∑
mp1···p4∼X

ψ(m, p4)Φ(αmp1 · · ·p4).

Note that the first two sums on the right can be evaluated using our Type I/II sum bound.
Furthermore, we can use a Type II sum estimate to evaluate any part of the quintuple sum
over m, p1, . . . , p4 in which a subproduct of p1p2p3p4 lies in one of the ranges [X θ, X 1−2θ] or
[X 2θ, X 1−θ]. The remaining, “bad” parts of the quintuple sum we discard. At the end, the total
loss from discarding those “bad” sums will be measured by the quadruple integral

b10 =
∫∫∫∫

D10

ω
(1−u1 −u2 −u3 −u4

u4

) du4 · · ·du1

u1u2u3u2
4

,

where the domain of integration is defined by the conditions

1−3θ ≤ u4 ≤ u3 ≤ u2 ≤ u1 < u1 +u2 ≤ θ,

no subsum of u1 +·· ·+u4 lies in [θ,1−2θ]∪ [2θ,1−θ].

A similar argument can be applied to the part of Σ7 where3 p1p2 > X 1−2θ and p1p2
2 ≤ X 1−θ.

The ensuing loss from discarded quintuple sums is given by the integral

b11 =
∫∫∫∫

D11

ω
(1−u1 −u2 −u3 −u4

u4

) du4 · · ·du1

u1u2u3u2
4

,

where the domain of integration is defined by the conditions

1−3θ ≤ u4 ≤ u3 ≤ u2 ≤ u1 ≤ θ, u1 +u2 ≥ 1−2θ, u1 +2u2 ≤ 1−θ,

no subsum of u1 +·· ·+u4 lies in [θ,1−2θ]∪ [2θ,1−θ].

Finally, the total loss from discarding the part of Σ7 where p1p2 > X 1−2θ and p1p2
2 > X 1−θ is

b12 =
Ï

D12

ω
(1−u − v

v

) d v du

uv2
,

where the domain of integration is defined by the conditions

1−3θ ≤ v ≤ u ≤ θ, u + v > 1−2θ, u +2v > 1−θ.

Altogether, we reduced the loss from Σ7 and Σ9 from c7 + c9 to b9 +·· ·+b12. This is a sub-
stantial saving: a rather crude numerical estimation shows that

c7(0.3)+ c9(0.3) > 3.28, b9(0.3)+·· ·+b12(0.3) < 0.71.

In particular, this establishes the following

3The latter inequality ensures the respective quadruple sum over m, p1, p2, p3 is an acceptable Type I/II sum.
10



Theorem 1.4 (Harman, 1983). When α ∈R\Q and 0 < θ ≤ 3/10, the Diophantine inequality (2)
has infinitely many solutions with p prime.

We should pause here to make an important observation about the method. Whereas in
Theorem 1.1 the exponent θ = 1/4 is a “hard threshold” at which the proof breaks (hence, the
strict inequality θ < 1/4), the exponent θ = 3/10 in this result is just a nice-looking approxima-
tion for the real breaking point in the proof. It is clear from the numerical work, however, that
a Jia’s result [13] with θ ≤ 4/13 is out of reach with the above sieve construction.

2. AN APPLICATION TO ADDITIVE NUMBER THEORY:
EXCEPTIONAL SETS FOR SUMS OF SQUARES OF PRIMES

The applications of the alternative sieve to problems in Diophantine approximation (such
as the one above) and to the distribution of primes in short intervals and in arithmetic pro-
gressions are discussed in detail and at great length in Harman’s monograph [7]. In the re-
mainder of these notes, we shall focus on the applications of the method to additive problems
with prime variables. Our exposition will focus on the following two questions.

Question 2. Let X be a large real number, and write

E3(X ) = #
{
n ∼ X : n ≡ 3 (mod 24), 5 - n, n 6= p2

1 +p2
2 +p2

3

}
.

For what θ > 0 does the inequality E3(X ) ¿ X θ hold?

Question 3. Let X be a large real number, and write

E4(X ) = #
{
n ∼ X : n ≡ 4 (mod 24), n 6= p2

1 +·· ·+p2
4

}
.

For what θ > 0 does the inequality E4(X ) ¿ X θ hold?

The bounds
Ek (X ) ¿ X (log X )−A (k = 3,4)

are classical, having been proved by L.K. Hua [12] for some fixed A > 0, and by W. Schwarz
[27] for all fixed A > 0. The first to give an affirmative answer to Questions 2 or 3 for a fixed
θ < 1 were M.C. Leung and M.C. Liu [18], who established the bound E3(X ) ¿ X 1−δ for some
(very small) fixed δ > 0. A big breakthrough occurred in the late 1990’s, when J.Y. Liu and
T. Zhan [22] discovered a new technique for dealing with the major arcs in applications of
the circle method to additive problems with prime variables. A flurry of activity ensued that
produced series of results on sums of three and four squares (see [2, 23, 24, 16] and [20, 19, 34,
21], respectively) that culminated in the results of the author [16] and of J.Y. Liu, T.D. Wooley,
and G. Yu [21] that, for any fixed ε> 0,

(17) E3(X ) ¿ X 7/8+ε and E4(X ) ¿ X 3/8+ε.

It transpired from that body of work that solutions to Questions 2 and 3 obtained by the circle
method follow similar paths and one should, in general, expect simultaneous bounds of the
form

(18) E3(X ) ¿ X 1−σ and E4(X ) ¿ X 1/2−σ

for a given σ> 0.
Subsequently, G. Harman and the author [8, 9] adapted the sieve idea described in §1 to

obtain further improvements on (17). In [8] and [9], we established the bounds (18) for all
11



σ < 1/7 and σ < 3/20, respectively, thus reaffirming the conventional wisdom that results in
the two problems should move in lockstep. Our work revealed that applications of sieve meth-
ods to additive problems with prime variables may run into technical obstacles not present in
more traditional settings, like our introductory example. In particular, in both of our papers,
the breaking points σ = 1/7 and σ = 3/20 resulted from reaching technical barriers (hence,
the strict inequalities). On the other hand, the presence of multiple prime variables in Ques-
tions 2 and 3 allowed us to use J.R. Chen’s “switching trick” in ways not readily available in
conventional applications of the alternative sieve.

In a recent private communication, L. Zhao made a very clever observation about the way
the circle method is applied to Question 3. His observation sidesteps the technical difficulties
that limited what Harman and the author could achieve in [8, 9]. It allows one to push the
result on four squares in [9] to σ≤ 0.153 and to simplify the proof in process. Using that idea
and new exponential sum bounds for quadratic exponential sums (see Lemma 2.4 below),
L. Zhao and the author [17] recently proved that

(19) E4(X ) ¿ X 11/32.

Note that since Zhao’s idea is not applicable to sums of three squares of primes, we obtain no
improvement on the bound for E3(X ) in [9].

2.1. A canonical application of the circle method. We begin the discussion of sums of squares
of primes with a sketch of the proof of the result of J.Y. Liu, T.D. Wooley, an G. Yu [21] on sums
of four squares.

Theorem 2.1 (J.Y. Liu et al., 2004). Let ε> 0 be fixed. Then E4(X ) ¿ X 3/8+ε.

Let E = E(X ) denote the set of integers counted by E4(X ). For the remainder of §2, we
suppress the index 4 and write simply E(X ) = #E. To estimate E(X ), we set

R(n) = ∑
p2

1+···+p2
4=n

pi∼N

1, N = 2
3 X 1/2.

For each n ∼ X , we have

R(n) =
∫ 1

0
S(α)4e(−αn)dα, S(α) = ∑

p∼N
e(αp2).

Suppose that 1 ≤ P ≤Q ≤ X , and define the sets of major and minor arcs by

M= ⋃
1≤q≤P

⋃
1≤a≤q
(a,q)=1

( a

q
− 1

qQ
,

a

q
+ 1

qQ

)
, m= [

Q−1,1+Q−1]\M.

First, we estimate the contribution from the major arcs, which yields the main term in the
expected asymptotic formula for R(n). For any fixed A > 4, we have

(20)
∫
M

S(α)4e(−αn)dα= κn N 2(log N )−4 +O
(
N 2(log N )−A)

provided that PQ is “close” to N 2. Here, κn is a function of n which satisfies

1 ¿ κn ¿ loglog X

for n ≡ 4 (mod 24) with n ∼ X . When P = (log N )B1 and Q = N 2(log N )−B2 , with Bi = Bi (A) > 0
sufficiently large, the proof of this result is an exercise using the Siegel–Walfisz theorem and
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partial summation.4 Using the technique that he and T. Zhan introduced in [22], J.Y. Liu [19]
showed that, in fact, one can choose any P and Q such that

P ≤ N 2/5−ε, Q ≥ N 8/5+ε, PQ ≤ N 2.

Setting the difficulty of its proof aside, we view (20) as the “easy” part of R(n), similar to the
contribution from the zeroth Fourier coefficient in the study of αp modulo one.

The estimation of the contribution from the minor arcs is harder, and we can obtain a
bound only on average over n. To this end, we use a device introduced by T.D. Wooley [34].
We first note that, for any exceptional n ∈E, we have

−
∫
m

S(α)4e(−αn)dα=
∫
M

S(α)4e(−αn)dαÀ N 2(log N )−4.

Hence,

(21) −
∫
m

S(α)4Z (α)dα=− ∑
n∈E

∫
m

S(α)4e(−αn)dαÀ E(X )N 2(log N )−4,

where
Z (α) = ∑

n∈E
e(−αn).

We now estimate the left side of (21) from above. We have∫
m

S(α)4Z (α)dα¿ (
max
α∈m |S(α)|)(∫ 1

0
|S(α)|4 dα

)1/2(∫ 1

0
|S(α)Z (α)|2 dα

)1/2
(22)

¿ (
max
α∈m |S(α)|)N 1+ε(E(X )1/2N 1/2 +E(X )

)
,

where the last inequality uses some standard mean-value estimates (e.g., Hua’s lemma: see
R.C. Vaughan [30, Theorem 2.5]). Therefore, if we assume a bound of the form

max
α∈m |S(α)|¿ N 1−σ

for some fixed σ> 0, we can combine (21) and (22) to show that

E(X ) ¿ N−2(log N )4N 5/2−σ+εE(X )1/2 ¿ N 1/2−σ+3ε/2E(X )1/2,

whence, upon readjusting the choice of ε,

(23) E(X ) ¿ X 1/2−σ+ε.

This reduces the problem of estimating E(X ) to that of estimating the exponential sum f (α)
on the minor arcs. The best known estimate for f (α) goes back to work of A. Ghosh [3] in the
early 1980s and states that

(24) S(a/q +β) ¿ N 1+ε(q−1/4 +N−1/8),

provided that (a, q) = 1 and β is “small” (essentially, |β| < q−2). On the bulk of the minor arcs,
the term N−1/8 in the above bound dominates the term q−1/4. On the small set where the
situation is reversed, Ghosh’s bound has been improved by X. Ren [26] and the author [16], so
we actually have

(25) S(a/q +β) ¿ N 1+ε(q−1/2 +N−1/8),

4The motivated reader may find it worthwhile to work his/her way through this exercise. The proof of the
respective result for sums of three primes in R.C. Vaughan [30, Theorem 3.3] provides a good blueprint how to
proceed.
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for a/q +β on a minor arc. Therefore, upon choosing P,Q in the definition of the minor arcs
so that

N 1/4 ¿ P ¿ N 2/5−ε, Q = N 2P−1,

we obtain the bound (23) with σ= 1/8.

2.2. Some background on quadratic exponential sums. The exponent 3/8 in Theorem 2.1
was set by the limitations of an exponential sum bound similar to that in Vaughan’s result
on αp. In later sections, we sketch how the alternative sieve and the circle method can be
combined to yield improvements on Theorem 2.1. However, before we launch that discussion,
we take a short detour to equip the reader with the required background about exponential
sums.

The standard estimation of S(α) on the minor arc uses ideas similar to the estimation of
the exponential sum in §1. Let Mσ and mσ be the major and minor arcs corresponding to
P = N 4σ and Q = N 2P−1, where 0 <σ< 1/6. We can show that

(26)
∑

m∼M

∑
mk∼N

ambk e(αm2k2) ¿ N 1−σ+ε,

provided that α ∈mσ and one of the following holds:

• the sum is of Type I with M ≤ N 1/2−σ;
• the sum is of Type II with N 2σ ≤ M ≤ N 1−4σ or N 4σ ≤ M ≤ N 1−2σ.

When 0 < σ < 1/8, the two ranges for M in our Type II sum estimate overlap, and we have a
Type II bound whenever N 2σ ≤ M ≤ N 1−2σ. Thus, we can use Vaughan’s identity in a similar
fashion to §1 to derive a bound for S(α). This is the essence of Ghosh’s original proof of (24).

One may hope that when σ> 1/8 one can use the above Type I and II bounds through the
alternative sieve in a similar manner to §1.3, but that is not straightforward. Indeed, when
σ > 1/8, we can estimate neither a Type I nor a Type II sum with N 1−4σ ¿ M ¿ N 4σ. The
reader should compare this to the situation at the beginning of §1.2, where the Type II infor-
mation required by Vaughan’s identity disappeared, but Type I sum bounds were still available.
In general, such breakdowns in analytic information pose significant problems to Harman’s al-
ternative sieve. Here, however, we can avoid those problems, thanks to an alternative Type I
sum bound due to G. Harman [6]. Harman’s result extends the range of Type I information to
M ≤ N 1−3σ. Moreover, when σ < 1/7, our Type II sum bound boosts the range of the Type I
bound to M ≤ N 1−2σ. Once we have an estimate for Type I sums with such a range, our Type I
and Type II information mirrors the information available in §1.2 (with N and 2σ in place
of X and θ). We can then easily obtain a version of Lemma 1.3. On the other hand, when
1/7 < σ < 1/6, the argument behind Lemma 1.3 yields a Type I/II bound only for M ≤ X 1−4σ.
We summarize all these observations in the next lemma.

Lemma 2.2. Suppose that 0 <σ< 1/6 and α ∈mσ, and suppose that (am) and (bk ) are complex
sequences with |am | ≤ 1 and |bk | ≤ 1. Then (26) holds, provided that any of the following sets of
conditions is satisfied:

• Type I: M ≤ N 1−3σ and bk = 1;
• Type II: N 2σ ≤ M ≤ N 1−4σ or N 4σ ≤ M ≤ N 1−2σ;
• Type I/II: M ≤ N 1−4σ and bk =ψ(k, z), with z ≤ N 1−6σ.

Furthermore, if 0 <σ< 1/7, then (26) holds when

• Type I/II: M ≤ N 1−2σ and bk =ψ(k, z), with z ≤ N 1−6σ.
14



When 1/7 <σ< 1/6, we can still use the longer range of the above Type I bound to obtain a
stronger result for Type I/II sums with some additional structure. In [9, Lemma 10], G. Harman
and the author established the following result, in which the product M = RS can be as large
as N 1−3σ.

Lemma 2.3. Suppose that 0 <σ< 1/6, and assume the notation of Lemma 2.2. Then (26) holds,
provided that bk =ψ(k, z), with z ≤ N 1−6σ, and am is a convolution of the form

am = ∑
r s=m

r∼R,s∼S

cr ds ,

where R ≤ N 2σ, S ≤ N 1−5σ, and (cr ) and (ds) are complex sequences with |cr | ≤ 1 and |ds | ≤ 1.

This lemma and earlier results on cubic sums [15, 16, 35] motivated L. Zhao and the author
to seek a further improvement on Harman’s Type I estimate. In [17, Lemma 3.2], we prove the
following bound for Type I sums with “extra structure” to the unknown coefficients.

Lemma 2.4. Suppose that 0 <σ< 1/6, and assume the notation of Lemma 2.2. Then (26) holds,
provided that bk = 1 and am is a convolution of the form

am = ∑
r s=m

r∼R,s∼S

cr,s ,

where R ≤ N 1−3σ, RS2 ≤ εN 1−2σ, and (cr,s) is a complex sequence with |cr,s | ≤ 1.

The reader may compare this estimate with a result of R.C. Baker and G. Harman [1] on the
special case where α= a/q , with q large. In that context, Baker and Harman were able to deal
with general Type I sums with M ≤ N 1−5σ/2, whereas Lemma 2.4 allows for products M = RS
that can be as large as N 1−5σ/2 only in some special cases. Nonetheless, the above lemma
proves quite useful in extending Lemma 2.3. We have the following result [17, Lemma 3.4].

Lemma 2.5. Suppose that 0 <σ< 1/6, and assume the notation of Lemma 2.2. Then (26) holds,
provided that bk =ψ(k, z), with z ≤ N 1−6σ, and am is a convolution of the form

am = ∑
r s=m

r∼R,s∼S

cr ds ,

where R ≤ N 2σ, S ≤ N 2σ, RS ≤ N 1−3σ, and (cr ) and (ds) are complex sequences with |cr | ≤ 1 and
|ds | ≤ 1.

Sketch of the proof. As in the proof of Lemma 1.3, let Π(z) =∏
p≤z p, and bound the given sum

by

(log X )
∣∣∣ ∑

r∼R

∑
s∼S

∑
d |Π(z)
d∼D

∑
r sdk∼N

cr dsµ(d)e(αr 2s2d 2k2)
∣∣∣,

for some D ¿ N /(RS). We consider three cases:
Case 1: DRS ≤ N 1−3σ. Then the above sum is a Type I sum covered by Lemma 2.2.
Case 2: DRS > N 4σ, or DR > N 2σ, or DS > N 2σ. Then we can argue as in Case 2 of the proof

of Lemma 1.3 to bound the above sum by a linear combination of O
(
(log N )3

)
Type II sums.

Case 3: N 1−3σ < DRS ≤ N 4σ, DR ≤ N 2σ, and DS ≤ N 2σ. Then have

RS ≤ N 1−3σ, RSD2 = (DR)(DS) ≤ N 4σ < 0.1N 1−2σ,

so we can refer to Lemma 2.4 with (r, s) = (r s,d). �
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2.3. A first sieve result. In this section, we outline an application of the sieve ideas from §1.3
to the present problem and establish the following result due to G. Harman and the author [8].

Theorem 2.6 (Harman & K., 2006). Let ε> 0 be fixed. Then E4(X ) ¿ X 5/14+ε.

The sieve method employed in §1.3 is based on an inequality of the form

(27) ψ(m, X 1/2) = ρ1(m)+ρ2(m) ≥ ρ1(m),

where ρ2(m) ≥ 0. The function ρ1 in (27) represents the total contribution of terms in the
decomposition that give rise to acceptable sums of Types I/II or II: the coefficient ψ(m, z)
of Σ1 and the coefficients of Σ4 and Σ6 are terms in ρ1(m). The function ρ2 represents the
contribution of “bad” triple and quintuple sums, whose removal generated the “losses” mea-
sured by the integrals b9, . . . ,b12. The above identity was constructed by pure combinatorics
driven by two competing objectives: to minimize the total loss generated by the dismissal of
ρ2; and to ensure that the exponential sum with coefficients ρ1 satisfies a bound similar to
(26) above. Observe that when 0 <σ< 1/7, the size restrictions on Type I/II and Type II sums
in Lemma 2.2 match exactly those in §1 with 2σ and N in place of θ and X . Thus, the com-
binatorial argument from §1.3 (with N ,2σ in place of X ,θ) yields also an arithmetic function
ρ = ρ1 such that:

• We have ρ(m) =O(1) and ψ(m, N 1/2) ≥ ρ(m) for all m ∼ N .
• When 0 <σ< 1/7,

(28) max
α∈mσ

∣∣∣ ∑
m∼N

ρ(m)e(αm2)
∣∣∣¿ N 1−σ+ε.

Let ρ be the above arithmetic function. We use the notation introduced in §2.1. We have

R(n) ≥ R(n;ρ) = ∑
m2+p2

1+p2
2+p2

3=n
m,pi∼N

ρ(m),(29)

and by orthogonality,

R(n;ρ) =
∫ 1

0
S(α)3T (α)e(−αn)dα, T (α) = T (α;ρ) = ∑

m∼N
ρ(m)e(αm2).(30)

As a primary dissection of the unit interval into major and minor arcs, we use M=Mσ/2 and
m = mσ/2. We consider also an auxiliary dissection into N = Mσ and n = mσ. We define a
function ∆ on N by setting

∆(α) = (q +N 2|qα−a|)−1 when |qα−a| < N 4σ−2.

When 0 <σ< 1/6, a result of X. Ren [26] yields

S(α) ¿ N 1+ε∆(α)1/2 +N 5/6+ε (α ∈N).(31)

Note that the first term in this bound is ¿ N 1−σ+ε when α ∈m∩N. Hence, we can combine
(28) and (31) to show that

max
α∈m min

(|S(α)|, |T (α)|)¿ N 1−σ+ε.
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Then, arguing similarly to (22), we have∫
m

S(α)3T (α)Z (α)dα¿ N 1−σ+ε
(∫ 1

0
|S(α)|4 dα

)1/2(∫ 1

0

(|S(α)|2 +|T (α)|2)|Z (α)|2 dα
)1/2

(32)

¿ N 2−σ+ε(E(X )1/2N 1/2 +E(X )
)
.

Earlier, we declared the integral over the major arcs to be the “easy” one, but we need to
return to that and examine how that work is affected when we replace one of the exponential
sums S(α) by T (α). The proof of (20) has two stages. The first, where the bulk of the effort is
spent, is to show that

(33)
∫
M

(
S(α)4 −S∗(α)4)e(−αn)dα¿ N 2(log N )−A

for any fixed A > 4. Here, S∗(α) is the expected major arc approximation to S(α), defined for
α= a/q +β by

S∗(a/q +β) =φ(q)−1
( ∑

h∈Z∗
q

e(ah2/q)
) ∑

m∼N

e(βm2)

logm
.

Once we have (33), it is relatively easy to show that

(34)
∫
M

S∗(α)4e(−αn)dα≈ κn N 2(log N )−4,

which completes the proof of (20). To illustrate how this program is affected by the sieve, we
will focus on one of the terms in the explicit definition of ρ, but the same ideas can be used to
deal with all the other terms. Let ψ1(m) =ψ(m, z), z = N 1−6σ, and write S1(α) = T (α;ψ1). The
quantity R1(n) = R(n;ψ1) is then a variant of the sum Σ1 in §1.2.

In the analysis of R1(n), (33) and (34) are replaced by∫
M

(
S(α)3S1(α)−S∗(α)3S∗

1 (α)
)
e(−αn)dα¿ N 2(log N )−A,(35) ∫

M
S∗(α)3S∗

1 (α)e(−αn)dα≈ c1κn N 2(log N )−4,(36)

respectively. Here, c1 = ζ−1ω(1/ζ) with ζ= 1−6σ, and S∗
1 (α) is the expected major arc approx-

imation to S1(α), defined for α= a/q +β by

S∗
1 (a/q +β) =φ(q)−1

( ∑
h∈Z∗

q

e(ah2/q)
) ∑

m∼N

e(βm2)

log z
ω

(
logm

log z

)
,

where ω is Buchstab’s function. The constant c1 in (36) is similar to the constants ci in §1 and
satisfies

(37)
∑

m∼N

e(βm2)

log z
ω

(
logm

log z

)
≈ c1

∑
m∼N

e(βm2)

logm

for small β. (Since we are using essentially the same combinatorial construction as in §1.3,
c1 is, in fact, the constant c1 in §1.3 with 2σ in place of θ.) Between (35) and (36), (36) is
the easier by far. Indeed, it is a standard exercise to deduce (36) from (34) and (37). The
proof of (35) is another story. The methods from the proof of (33) can be adapted without too
much extra difficulty when the parameter P in the definition of M satisfies 1 ≤ P ≤ z1−ε, but
this inequality fails for our chosen P and z. To get around this obstacle, we show in the next
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section that (35) fails for ¿ X ε integers n ≡ 4 (mod 24) with n ∼ X . Assuming that result, we
can now use (30) and (32) (with ρ =ψ1) to state that when 0 <σ< 1/7, we have

R1(n) ≈ c1κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions (henceforth, we reserve the term “exception” for integers n ≡ 4
(mod 24) with n ∼ X ). This approximation is an analogue of (14). Using the same ideas, we
can use (28) to show that

(38) R(n;ρ) ≈ (1−b9(2σ)−·· ·−b12(2σ))κn N 2(log N )−4,

with ¿ X 1/2−σ+ε exceptions. Here, b9, . . . ,b12 are the double and quadruple integrals defined
in §1.3 to measure the losses incurred in the sieve from discarding the contributions of “bad”
subsums of Σ7 and Σ9. In particular, it is known from the numerical work behind the proof of
Theorem 1.4 that

b9(2/7)+·· ·+b12(2/7) < 0.11.

Consequently, on choosing σ= 1/7−ε, we deduce from (29) and (38) that

R(n) ≥ 0.89κn N 2(log N )−4

with ¿ X 5/14+ε exceptions.

Remark. The reader should take a note of the breakdown that occurs at σ= 1/7 in the present
problem: at that point, the last claim of Lemma 2.2 no longer holds, and the exponential sum
estimates in that lemma no longer match the respective estimates in §1. Even worse, as σ
crosses over 1/7, the acceptable range for the parameter M in the definition of a Type I/II
sum drops from M ≤ N 5/7+ε to M ≤ N 3/7−ε. This poses some serious challenges to the sieve
method. We will deal with those issues in §2.5, but first we explain L. Zhao’s clever idea for
proving approximations like (35) with only “a few” exceptions.

2.4. Zhao’s major-arc idea. We now assume that 0 <σ< 1/6 and the major arcs M are defined
as in §2.3. We also consider an auxiliary set of major arcs, M0 defined with P = Nδ and Q =
N 2−δ, where δ> 0 is a (small) fixed number.

The proof of (33) relies on two basic facts about the primes:

(P1) Primes are well-distributed in arithmetic progressions with small moduli. The analytic
formulation of this fact, the Siegel–Walfisz theorem, states: For any fixed A,B > 0, and
any primitive Dirichlet character χ with a modulus ≤ (log N )B , one has∑

p∼N
χ(p) = E(χ)

∑
m∼N

(logm)−1 +O
(
N (log N )−A)

,

where E(χ) is 1 when χ is the trivial character, and E(χ) = 0 otherwise.
(P2) One can estimate certain mean values of Dirichlet polynomials over primes: If H is a

set of primitive Dirichlet characters with moduli q , where q ≤Q and r | q , then

(39)
∑
χ∈H

∫ 2T

T

∣∣∣ ∑
m∼N

Λ(m)χ(m)m−1/2−i t
∣∣∣d t ¿ (

N 1/2 +H 1/2N 3/10 +H
)
(log N )c ,

where H = r−1Q2T and c > 0 is an absolute constant. (This bound was established by
J.Y. Liu [19].) In particular, the condition P ≤ N 2/5−ε imposed in §2.1 results from the
term H 1/2N 3/10 in this bound.
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To make use of these two facts, one first uses the orthogonality of Dirichlet characters to ex-
press S(a/q+β) as a linear combination over the Dirichlet characters modulo q . If α= a/q+β,
with β small and q ≤ P , we write

S(a/q +β) = ∑
h∈Z∗

q

e(ah2/q)
∑

p∼N
p≡h (mod q)

e(βp2)(40)

=φ(q)−1
∑

χ mod q

∑
h∈Z∗

q

χ̄(h)e(ah2/q)
∑

p∼N
χ(p)e(βp2).

This is justified, because when P < N /2, the primes p ∼ N fall only in residue classes h mod q
with (h, q) = 1.

To prove an approximation like (35), one needs versions of (P1) and (P2) for sums featuring
the coefficients ψ(m, z) in place of the characteristic function of the primes and von Man-
goldt’s function. Such a generalization of (P1) is straightforward to obtain. A version of the
mean-value estimate (P2) can also be obtained with the tools used by Liu to obtain (39). How-
ever, trying to extend (40) to S1(a/q +β), one encounters a very serious technical obstacle: if
p0 is a prime with z < p0 ≤ P , then there will be moduli q , z < q ≤ P , which are divisible by
p0, and for such moduli the sum S1(a/q +β) will include terms with (m, q) = p0. Such terms
caused a lot of headaches in the author’s joint work with Harman [8, 9]. On the other hand,
when z = N 1−6σ and δ< 1−6σ, the above issue does not affect the exponential sum S1(α) on
M0. Hence, it becomes straightforward to generalize the proof of (33) and to show that∫

M0

(
S(α)3S1(α)−S∗(α)3S∗

1 (α)
)
e(−αn)dα¿ N 2(log N )−A.

Let R=M\M0. A quick calculation gives∫
R

S∗(α)3S∗
1 (α)e(−αn)dα¿ N 2−ε,

so (35) will follow if we show that∣∣∣∣∫
R

S(α)3S1(α)e(−αn)dα

∣∣∣∣≤ N 2−ε.(41)

Let E0(X ) denote the set of integers n ≡ 4 (mod 24), with n ∼ X , such that (41) fails. Since
the set R is symmetric about 0 modulo one and the coefficients of the exponential sums are
real, the integral in (41) is real; let θn ∈ {±1} denote its sign. We have

|E0(X )|N 2−ε¿
∫
R

S(α)3S1(α)Z0(α)dα, Z0(α) = ∑
n∈E0(X )

θne(−αn).(42)

Since R⊂M⊂N, when 0 <σ< 1/6 and α ∈R, we deduce from (31) that

S(α)2 ¿ N 2+ε∆(α).

Variants of (22) and of [34, (3.28)] then yield∫
R

S(α)3S1(α)Z0(α)dα¿ N 2+ε
(∫

R
|Z0(α)|2∆(α)2 dα

)1/2(∫ 1

0

(|S(α)|4 +|S1(α)|4)dα
)1/2

(43)

¿ N 3+3ε/2
(∫

R
|Z0(α)|2∆(α)2 dα

)1/2

¿ N 2+2ε(|E0(X )|1/2 +|E0(X )|N−δ/2).
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Comparing (42) and (43), we see that (41) holds with ¿ X ε exceptions; hence, (35) also holds
with ¿ X ε exceptions.

2.5. A “full-scale” alternative sieve. In this section, we sketch the proof of the following re-
cent theorem due to L. Zhao and the author [17].

Theorem 2.7 (Zhao & K., 2015+). One has E4(X ) ¿ X 11/32.

When 1/7 < σ < 1/6, a simple lower bound sieve of the form (27) no longer suffices, since
it is not possible to avoid “bad” exponential sums that correspond to negative terms in the
decomposition. Instead, we combine lower and upper sieve functions. We will construct de-
compositions

ψ(m, N 1/2) = ρ1(m)−ρ2(m)+ρ3(m) ≥ ρ1(m)−ρ2(m),(44)

ψ(m, N 1/2) = ρ4(m)−ρ5(m) ≤ ρ4(m),(45)

where ρi (m) ≥ 0 for i = 2,3,5 and the bound (28) holds for ρ = ρ1,ρ4. In the case σ > 1/7,
we will obtain such bounds for Type II sums using Lemma 2.2 and for Type I/II sums using
Lemma 2.5. Combining (44) and (45), we obtain

ψ(m, N 1/2)ψ(k, N 1/2) ≥ ρ1(m)ψ(k, N 1/2)−ρ2(m)ρ4(k).

Using this inequality in place of (27), we obtain the following variant of (29)–(30):

R(n) ≥
∫ 1

0
S(α)2(T1(α)S(α)−T2(α)T4(α))e(−αn)dα,

where Ti (α) = T (α;ρi ). Since our construction will ensure that T1(α) and T4(α) satisfy (28),
the ideas from the last two sections can be applied to the above integral to show that

R(n) ≥ (C1 −C2C4 +o(1))κn N 2(log N )−4(46)

with ¿ X 1/2−σ+ε exceptions. Here, the numbers Ci , i = 1,2,4, are the constants that appear in
the analogues of (37) for the respective sums Ti . Next, we discuss the combinatorial identities
(44) and (45).

For 3/20 <σ< 1/6, we put

z = N 1−6σ, V = N 2σ, W = N 1−4σ, Y = N 1−3σ.

As before, we treat σ as a numerical parameter to be chosen later in the proof of our theorem;
its value will eventually be set to σ= 5/32+10−4.

We first describe the identity (44). By Buchstab’s identity (11),

ψ(m, N 1/2) =ψ(m, z)−
{ ∑

z≤p<V
+ ∑

V ≤p≤W
+ ∑

W <p<N 1/2

}
ψ(m/p, p)(47)

=ψ1(m)−ψ2(m)−ψ3(m)−ψ4(m), say.

Note that T (α;ψ1) and T (α;ψ3) are acceptable Type I/II and Type II sums, respectively. Hence,
we include ψ1 and ψ3 in ρ1; we include ψ4 in ρ2 and decompose ψ2 further. Another applica-
tion of Buchstab’s identity gives

ψ2(m) = ∑
z≤p1<V

{
ψ(m/p1, z)− ∑

z≤p2<p1<V
ψ(m/(p1p2), p2)

}
=ψ5(m)−ψ6(m), say.(48)
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We now write

(49) ψ6(m) =ψ7(m)+·· ·+ψ10(m),

where ψi is the part of ψ6 subject to the following extra conditions on the product p1p2:

• ψ7(m): p1p2 <V ;
• ψ8(m): V ≤ p1p2 ≤W ;
• ψ9(m): W < p1p2 ≤ Y ;
• ψ10(m): p1p2 > Y .

In our final decomposition, ψ5 and ψ8 contribute to ρ1 and ψ10 contributes to ρ3; we give
further decompositions of ψ7 and ψ9.

We apply (11) twice more to ψ7:

ψ7(m) = ∑
p1,p2

{
ψ(m/(p1p2), z)− ∑

z≤p3<p2

ψ(m/(p1p2p3), z)(50)

+ ∑
z≤p4<p3<p2

ψ(m/(p1p2p3p4), p4)
}

=ψ11(m)−ψ12(m)+ψ13(m), say.

We next apply Buchstab’s identity to ψ9 and obtain

ψ9(m) = ∑
p1,p2

{
ψ(m/(p1p2), z)− ∑

z≤p3<p2

( ∑
p1p2p3≤Y

+ ∑
p1p2p3>Y

)
ψ(m/(p1p2p3), p3)

}
(51)

=ψ14(m)−ψ15(m)−ψ16(m), say.

Note that the summation conditions in ψ15 imply p2p3 ≤ P 2/3−2σ ≤ W . Thus, a final applica-
tion of (11) yields

ψ15(m) = ∑
p1,p2,p3

{ ∑
p2p3≥V

+ ∑
p2p3<V

}
ψ(m/(p1p2p3), p3)(52)

=ψ17(m)+ ∑
p1,p2,p3
p2p3<V

{
ψ(m/(p1p2p3), z)− ∑

z≤p4<p3

ψ(m/(p1 · · ·p4), p4)
}

=ψ17(m)+ψ18(m)−ψ19(m), say.

Finally, we split ψ13, ψ16, and ψ19 into “good” and “bad” parts, which we denote ψg
j and ψb

j ,

respectively. We collect in ψ
g
j the terms in ψ j in which a subproduct of p1p2p3p4 lies within

the ranges [V ,W ] or [N /W, N /V ] (this makes T (α;ψg
j ) an acceptable Type II sum); those terms

will contribute to ρ1. The remaining terms in ψ j are placed in ψb
j and will contribute to ρ2 or

ρ3, depending on their respective signs.
Combining (47)–(52), we now have (44) with

ρ1(m) =ψ1(m)−ψ3(m)−ψ5(m)+ψ8(m)+ψ11(m)−ψ12(m)+ψg
13(m)

+ψ14(m)−ψg
16(m)−ψ17(m)−ψ18(m)+ψg

19(m),

ρ2(m) =ψ4(m)+ψb
16(m), ρ3(m) =ψ10(m)+ψb

13(m)+ψb
19(m).
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We note (again) that each term ψ j that appears in ρ1 leads to an exponential sum that can
be estimated using Lemmas 2.2 or 2.5, and that each term ψ

g
j (m) leads to a sum that can be

estimated using Lemma 2.2.
We now turn to (45). We have

ψ2(m) =
{ ∑

z≤p≤Y 1/2

+ ∑
Y 1/2<p<V

}
ψ(m/p, p) =ψ20(m)+ψ21(m), say.(53)

The term ψ21 will contribute to ρ5; we apply (11) twice to ψ20. That gives

ψ20(m) = ∑
z≤p1≤Y 1/2

{
ψ(m/p1, z)− ∑

z≤p2<p1

ψ(m/(p1p2), z)(54)

+ ∑
z≤p3<p2<p1

ψ(m/(p1p2p3), p3)
}

=ψ22(m)−ψ23(m)+ψ24(m), say.

We split ψ24 into “good” and a “bad” parts, and then further split ψb
24(m) in two:

ψb
24(m) = ∑

p1,p2,p3

{ ∑
p1p2p2

3≤Y

+ ∑
p1p2p2

3>Y

}
ψ(m/(p1p2p3), p3) =ψ25(m)+ψ26(m), say.(55)

We apply Buchstab’s identity two more times to ψ25:

ψ25(m) = ∑
p1,p2,p3

{
ψ(m/(p1p2p3), z)− ∑

z≤p4<p3

ψ(m/(p1 · · ·p4), z)(56)

+ ∑
z≤p5<p4<p3

ψ(m/(p1 · · ·p5), p5)
}

=ψ27(m)−ψ28(m)+ψ29(m), say.

Finally, we split ψ26 and ψ29 into “good” and “bad” subsums. We remark that the summation
conditions in ψ25 imply p1p3 ≤ W . (Otherwise, we would have p2p3 ≤ Pσ, whence p3 ≤ Pσ/2

and p1p3 ≤ P 1/2−σ; the latter contradicts the assumption p1p3 >W when σ< 1/6.) Therefore,
the exponential sums T (α;ψ27) and T (α;ψ28) can be estimated either by Lemma 2.2 (when
p1p3 ≥ V ) or by Lemma 2.5 (when p1p3 < V ). Combining (47) and (53)–(56), we deduce (45)
with

ρ4(m) =ψ1(m)−ψ3(m)−ψ5(m)−ψ22(m)+ψ23(m)−ψg
24(m)

−ψg
26(m)−ψ27(m)+ψ28(m)−ψg

29(m),

ρ5(m) =ψ4(m)+ψ21(m)+ψb
26(m)+ψb

29(m).

It is clear from the above decompositions that T (α;ρi ), i = 1,4, are acceptable on the minor
arcs and that all three sums T (α;ρi ), i = 1,2,4, are supported on integers not divisible by
primes p, with p ≤ z. Hence, we have (46) with ¿ X 1/2−σ+ε exceptions. The constants Ci in
(46) are linear combinations of multiple integrals similar to those that appeared in §1. For
example,

C2 = log

(
4σ

1−4σ

)
+

Ñ
D16

ω

(
1−u1 −u2 −u3

u3

)
du1du2du3

u1u2u2
3

,
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where D16 is the set in R3 defined by the conditions

1−6σ≤ u3 ≤ u2 ≤ u1 ≤ 2σ, 1−4σ≤ u1 +u2 ≤ 1−3σ≤ u1 +u2 +u3,

no subsum of u1 +u2 +u3 lies in the set [2σ,1−4σ]∪ [4σ,1−2σ].

Numerical evaluation of the various multiple integrals reveals that when σ = 5/32+10−4, we
have

C1 > 1.665, C2 < 0.769, C4 < 2.096, C1 −C2C4 > 0.05.

Hence, when σ= 5/32+10−4, the lower bound in (46) is non-trivial with ¿ X 11/32 exceptions.5
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