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1. Introduction

In this note we pursue bounds for exponential sums of the form

(1.1) fk(α;x, y) =
∑

x<n≤x+y

Λ(n)e
(
αnk

)
,

where k ≥ 2 is an integer, 2 ≤ y ≤ x, Λ(n) is von Mangoldt’s function, and e(z) = e2πiz.
When y = xθ with θ < 1, such exponential sums play a central role in applications of the
Hardy–Littlewood circle method to additive problems with almost equal prime unknowns
(see [6, 7, 9]). When α is closely approximated by a rational number with a small denominator
(i.e., when α is on a “major arc”), Liu, Lü and Zhan [5] bounded fk(α;x, xθ) using methods
from multiplicative number theory. Their result, which generalizes earlier work by Ren [8],
can be stated as follows.

Theorem 1. Let k ≥ 1, 7/10 < θ ≤ 1 and 0 < ρ ≤ min{(8θ − 5)/(6k + 6), (10θ − 7)/15}.
Suppose that α is real and that there exist integers a and q satisfying

(1.2) 1 ≤ q ≤ P, (a, q) = 1, |qα− a| ≤ x−k+2(1−θ)P,

with P = x2kρ. Then, for any fixed ε > 0,

fk
(
α;x, xθ

)
� xθ−ρ+ε + xθ+εΞ(α)−1/2,

where Ξ(α) = q + xk−2(1−θ)|qα− a|.
For a given P , let M(P ) denote the set of real α that have rational approximations of the

form (1.2), and let m(P ) denote the complement of M(P ). In the terminology of the circle
method, M(P ) is a set of major arcs and m(P ) is the respective set of minor arcs. The
main goal of this note is to bound fk(α;x, xθ), k ≥ 3, on sets of minor arcs by extending a
theorem of the author [4, Theorem 1], which gives the best known bound for fk(α;x, x). We
establish the following theorem.

Theorem 2. Let k ≥ 3 and θ be a real number with (2k + 2)/(2k + 3) < θ ≤ 1. Suppose
that 0 < ρ ≤ ρk(θ), where

ρk(θ) =

{
min

(
1
14

(2θ − 1), 1
6
(9θ − 8)

)
if k = 3,

min
(
σk
6

(3θ − 1), 1
6
((2k + 3)θ − 2k − 2)

)
if k ≥ 4,

with σk defined by σ−1k = min(2k−1, 2k(k − 2)). Then, for any fixed ε > 0,

(1.3) sup
α∈m(P )

∣∣fk (α;x, xθ
)∣∣� xθ−ρ+ε + xθ+εP−1/2.
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When θ = 1 and k ≤ 7, this theorem recovers the respective cases of [4, Theorem 3]. On
the other hand, when k ≥ 8, the bound (1.3) is technically new even in the case θ = 1, as
we use the occasion to put on the record an almost automatic improvement of the theorems
in [4] that results from a recent breakthrough by Wooley [11, 12].

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real num-
ber. Any statement in which ε occurs holds for each positive ε, and any implied constant
in such a statement is allowed to depend on ε. The letter p, with or without subscripts, is
reserved for prime numbers. As usual in number theory, µ(n), τ(n) and ‖x‖ denote, respec-
tively, the Möbius function, the number of divisors function and the distance from x to the
nearest integer. We write (a, b) = gcd(a, b), and we use m ∼ M as an abbreviation for the
condition M < m ≤ 2M .

2. Auxiliary results

When k ≥ 3, we define the multiplicative function wk(q) by

wk
(
pku+v

)
=

{
kp−u−1/2, if u ≥ 0, v = 1,

p−u−1, if u ≥ 0, v = 2, . . . , k.

By the argument of [10, Theorem 4.2], we have

(2.1)
∑

1≤x≤q

e
(
axk/q

)
� qwk(q)� q1−1/k

whenever k ≥ 3 and (a, q) = 1. We also need several estimates for sums involving the
function wk(q). We list those in the following lemma.

Lemma 2.1. Let wk(q) be the multiplicative function defined above. Then the following
inequalities hold for any fixed ε > 0:∑

q∼Q

wk(q)
j �

{
Q−1+ε if k = 3, j = 4,

Q−1+1/k if k ≥ 4, j = k;
(2.2)

∑
n∼N

wk

(
q

(q, nj)

)
� qεwk(q)N (1 ≤ j ≤ k);(2.3)

∑
n∼N

(n,h)=1

wk

(
q

(q, R(n, h))

)
� qεwk(q)N + qε,(2.4)

where R(n, h) =
(
(n+ h)k − nk

)
/h.

Proof. See Lemmas 2.3 and 2.4 and inequality (3.11) in Kawada and Wooley [3]. �

Lemma 2.2. Let k ≥ 3 be an integer and let 0 < ρ ≤ σk, where σ−1k = min(2k−1, 2k(k− 2)).
Suppose that y ≤ x, xk ≤ yk+1−2ρ, and I is a subinterval of (x, x+ y]. Then either

(2.5)
∑
n∈I

e
(
αnk

)
� y1−ρ+ε,

or there exist integers a and q such that

(2.6) 1 ≤ q ≤ ykρ, (a, q) = 1, |qα− a| ≤ x1−kykρ−1,
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and

(2.7)
∑
n∈I

e
(
αnk

)
� wk(q)y

1 + yxk−1|α− a/q|
+ xk/2+εy(1−k)/2.

Proof. By Dirichlet’s theorem on Diophantine approximation, there exist integers a and q
with

(2.8) 1 ≤ q ≤ yk−1, (a, q) = 1, |qα− a| ≤ y1−k.

When q > y, we rewrite the sum on the left of (2.5) as∑
1≤n≤z

e
(
αnk + αk−1n

k−1 + · · ·+ α0

)
,

where z ≤ y and αj =
(
k
j

)
αuk−j, with u a fixed integer. Hence, (2.5) follows from Weyl’s

bound ∑
1≤n≤z

e
(
αnk + αk−1n

k−1 + · · ·+ α0

)
� y1−σk+ε.

Under (2.8), this follows from [10, Lemma 2.4] when σk = 21−k and from a recent bound of
Wooley [12, Theorem 11.1] otherwise. When q ≤ y, we deduce (2.7) from [10, Theorem 4.1],
(2.1) and a variant of [10, Lemma 6.2]. Thus, at least one of (2.5) and (2.7) always holds.
The lemma follows on noting that when conditions (2.6) fail, inequality (2.5) follows from
(2.7) and the hypothesis xk ≤ yk+1−2ρ. �

The following lemma is a slight variation of [1, Lemma 6]. The proof is the same.

Lemma 2.3. Let q and N be positive integers exceeding 1 and let 0 < δ < 1
2
. Suppose that

q - a and denote by S the number of integers n such that

N < n ≤ 2N, (n, q) = 1,
∥∥ank/q∥∥ < δ.

Then
S � δqε(q +N).

3. Multilinear Weyl sums

We write
δ = xθ−1, L = log x, I =

(
x, x+ xθ

]
.

We also set

(3.1) Q =
(
δxk−2ρ

)k/(2k−1)
.

Recall that, by Dirichlet’s theorem on Diophantine approximations, every real number α has
a rational approximation a/q, where a and q are integers subject to

(3.2) 1 ≤ q ≤ Q, (a, q) = 1, |α− a/q| < (qQ)−1.

Lemma 3.1. Let k ≥ 3 and 0 < ρ < σk/(2 + 2σk). Suppose that α is real and that there
exist integers a and q such that (3.2) holds with Q given by (3.1). Let |ξm| ≤ 1, |ηn| ≤ 1,
and define

S(α) =
∑
m∼M

∑
mn∈I

ξmηne
(
α(mn)k

)
.
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Then

S(α)� xθ−ρ+ε +
wk(q)

1/2xθ+ε

(1 + δ2xk|α− a/q|)1/2
,

provided that

(3.3) δ−1 max
(
x2ρ/σk , δ−kx4ρ,

(
δ2k−2xk−1+4kρ

)1/(2k−1))�M � xθ−2ρ.

Proof. Set H = δM and N = xM−1 and define ν by Hν = x2ρL−1. By (3.3), we have ν < σk.
For n1, n2 ≤ 2N , let

M(n1, n2) =
{
m ∈ (M, 2M ] : mn1,mn2 ∈ I

}
.

By Cauchy’s inequality and an interchange of the order of summation,

|S(α)|2 � xθM +MT1(α),(3.4)

where

T1(α) =
∑
n1<n2

∣∣∣∣∣∣
∑

m∈M(n1,n2)

e
(
α
(
nk2 − nk1

)
mk
)∣∣∣∣∣∣ .

Let N denote the set of pairs (n1, n2) with n1 < n2 andM(n1, n2) 6= ∅ for which there exist
integers b and r such that

(3.5) 1 ≤ r ≤ Hkν , (b, r) = 1,
∣∣r (nk2 − nk1)α− b∣∣ ≤ Hkν(δMk)−1.

We remark that there are O(δN2) pairs (n1, n2) with M(n1, n2) 6= ∅. Since ν < σk and
Mk ≤ Hk+1−2ν , we can apply Lemma 2.2 with ρ = ν, x = x/n1 � M and y = 2H to the
inner summation in T1(α). We get

(3.6) T1(α)� x2θ−2ρ+εM−1 + T2(α),

where

T2(α) =
∑

(n1,n2)∈N

wk(r)H

1 + δMk
∣∣(nk2 − nk1)α− b/r∣∣ .

We now change the summation variables in T2(α) to

d = (n1, n2), n = n1/d, h = (n2 − n1)/d.

We obtain

(3.7) T2(α)�
∑
dh≤δN

∑
n

wk(r)H

1 + δMk |hdkR(n, h)α− b/r|
,

where R(n, h) =
(
(n+ h)k − nk

)
/h and the inner summation is over n with (n, h) = 1 and

(nd, (n + h)d) ∈ N . For each pair (d, h) appearing in the summation on the right side of
(3.7), Dirichlet’s theorem on Diophantine approximation yields integers b1 and r1 with

(3.8) 1 ≤ r1 ≤ x−2kρ(δMk), (b1, r1) = 1,
∣∣r1hdkα− b1∣∣ ≤ x2kρ(δMk)−1.

As R(n, h) ≤ 3kNk−1, combining (3.3), (3.5) and (3.8), we get

|b1rR(n, h)− br1| ≤ r1H
kν(δMk)−1 + rR(n, h)x2kρ(δMk)−1

≤ L−k + 3kδ−1xk−1+4kρM1−2kL−k < 1.
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Hence,

(3.9)
b

r
=
b1R(n, h)

r1
, r =

r1
(r1, R(n, h))

.

Combining (3.7) and (3.9), we obtain

T2(α)�
∑
dh≤δN

H

1 + δMkNk−1
d |hdkα− b1/r1|

∑
n∼Nd
(n,h)=1

wk

(
r1

(r1, R(n, h))

)
,

where Nd = Nd−1. Using (2.4), we deduce that

(3.10) T2(α)� δxθ+ε + T3(α),

where

T3(α) =
∑
dh≤δN

rε1wk(r1)HNd

1 + δMkNk−1
d |hdkα− b1/r1|

.

We now write H for the set of pairs (d, h) with dh ≤ δN for which there exist integers b1
and r1 subject to

(3.11) 1 ≤ r1 ≤ x2kρ, (b1, r1) = 1,
∣∣r1hdkα− b1∣∣ ≤ x−k+1+2kρH−1.

We have

(3.12) T3(α)� x2θ−2ρ+εM−1 + T4(α),

where

T4(α) =
∑

(d,h)∈H

rε1wk(r1)HNd

1 + δMkNk−1
d |hdkα− b1/r1|

.

For each d ≤ δN , Dirichlet’s theorem on Diophantine approximation yields integers b2 and
r2 with

(3.13) 1 ≤ r2 ≤ 1
2
xk−1−2kρH, (b2, r2) = 1,

∣∣r2dkα− b2∣∣ ≤ 2x−k+1+2kρH−1.

Combining (3.11) and (3.13), we obtain

|b2r1h− b1r2| ≤ (r2 + 2r1h)x−k+1+2kρH−1

≤ 1
2

+ 2x−k+2+4kρM−2 < 1,

whence
b1
r1

=
hb2
r2
, r1 =

r2
(r2, h)

.

We write Zd = δMkNk−1
d

∣∣dkα− b2/r2∣∣ and we use (2.3) to get

T4(α) ≤
∑
dh≤δN

rε2HNd

1 + Zdh
wk

(
r2

(r2, h)

)
�
∑
d≤δN

wk(r2)x
2θ+εM−1

d2(1 + δZdNd)
.

Hence,

(3.14) T4(α)� x2θ−2ρ+εM−1 + T5(α),

where

T5(α) =
∑
d∈D

wk(r2)x
2θ+εM−1

d2 (1 + δ2(x/d)k |dkα− b2/r2|)
5



and D is the set of integers d ≤ x2ρ for which there exist integers b2 and r2 with

(3.15) 1 ≤ r2 ≤ x2kρ, (b2, r2) = 1,
∣∣r2dkα− b2∣∣ ≤ δ−2x−k+2kρ.

Combining (3.1), (3.2) and (3.15), we deduce that∣∣r2dka− b2q∣∣ ≤ r2d
kQ−1 + qδ−2x−k+2kρ

≤ x4kρQ−1 + δ−2x−k+2kρQ < 1,

whence
b2
r2

=
dka

q
, r2 =

q

(q, dk)
.

Thus, recalling (2.3), we get

(3.16) T5(α)� x2θ+εM−1

1 + δ2xk |α− a/q|
∑
d≤x2ρ

wk
(
q/(q, dk)

)
d−2 � wk(q)x

2θ+εM−1

1 + δ2xk |α− a/q|
.

The lemma follows from (3.3), (3.4), (3.6), (3.10), (3.12), (3.14) and (3.16). �

Lemma 3.2. Let k ≥ 3 and 0 < ρ < σk. Suppose that α is real and that there exist integers
a and q such that (3.2) holds with Q given by (3.1). Let |ξm1,m2| ≤ 1, and define

S(α) =
∑

m1∼M1

∑
m2∼M2

∑
m1m2n∈I

ξm1,m2e
(
α(m1m2n)k

)
.

Then

S(α)� xθ−ρ+ε +
wk(q)x

θ+ε

1 + δxk|α− a/q|
,

provided that

(3.17) M2k−1
1 � δxk−(2k+1)ρ, M1M2 � min(δx1−ρ/σk , δk+1x1−2ρ), M1M

2
2 � δ1/kx1−2ρ.

Proof. Set N = x(M1M2)
−1 and H = δN and define ν by Hν = xρL−1. Note that, by (3.17),

we have ν < σk. We denote by M the set of pairs (m1,m2), with m1 ∼ M1 and m2 ∼ M2,
for which there exist integers b1 and r1 with

(3.18) 1 ≤ r1 ≤ Hkν , (b1, r1) = 1,
∣∣r1(m1m2)

kα− b1
∣∣ ≤ Hkν(δNk)−1.

We apply Lemma 2.2 to the summation over n and get

(3.19) S(α)� xθ−ρ+ε + T1(α),

where

T1(α) =
∑

(m1,m2)∈M

wk(r1)H

1 + δNk |(m1m2)kα− b1/r1|
.

For each m1 ∼ M1, we apply Dirichlet’s theorem on Diophantine approximation to find
integers b and r with

(3.20) 1 ≤ r ≤ x−kρ(δNk), (b, r) = 1,
∣∣rmk

1α− b
∣∣ ≤ xkρ(δNk)−1.

By (3.17), (3.18) and (3.20),∣∣b1r − bmk
2r1
∣∣ ≤ rHkν(δNk)−1 + r1m

k
2x

kρ(δNk)−1

≤ L−k + 2kδ−1x−k+2kρ(M1M
2
2 )kL−k < 1,

6



whence
b1
r1

=
mk

2b

r
, r1 =

r

(r,mk
2)
.

Thus, by (2.3),

T1(α)�
∑

m1∼M1

H

1 + δ(M2N)k
∣∣mk

1α− b/r
∣∣ ∑
m2∼M2

wk

(
r

(r,mk
2)

)
(3.21)

�
∑

m1∼M1

rεwk(r)HM2

1 + δ(M2N)k
∣∣mk

1α− b/r
∣∣ .

Let M1 be the set of integers m ∼M1 for which there exist integers b and r with

(3.22) 1 ≤ r ≤ xkρL−1, (b, r) = 1,
∣∣rmkα− b

∣∣ ≤ δ−1x−k+kρMk
1L
−1.

From (3.21),

(3.23) T1(α)� xθ−ρ+ε + T2(α),

where

T2(α) =
∑
m∈M1

rεwk(r)HM2

1 + δ(M2N)k |mkα− b/r|
.

We now consider two cases depending on the size of q in (3.2).

Case 1: q ≤ δxk−kρM−k
1 . In this case, we estimate T2(α) as in the proof of Lemma 3.1.

Combining (3.1), (3.2), (3.17) and (3.22), we obtain∣∣rmka− bq
∣∣ ≤ qδ−1x−k+kρMk

1L
−1 + rmkQ−1

≤ L−1 + 2kxkρMk
1Q
−1L−1 < 1.

Therefore,
b

r
=
mka

q
, r =

q

(q,mk)
,

and by (2.3),

(3.24) T2(α)� qεHM2

1 + δxk|α− a/q|
∑
m∼M1

wk

(
q

(q,mk)

)
� wk(q)x

θ+ε

1 + δxk|α− a/q|
.

Case 2: q > δxk−kρM−k
1 . We remark that in this case, the choice (3.1) and the second

hypothesis in (3.17) imply that M1 ≥ xρ. By a standard splitting argument,

(3.25) T2(α)�
∑
d|q

∑
m∈Md(R,Z)

wk(r)HM2x
ε

1 + δ(M2N)k(RZ)−1
,

where

(3.26) 1 ≤ R ≤ xkρL−1, δxk−kρM−k
1 L ≤ Z ≤ δ(x/M1)

kR−1,

and Md(R,Z) is the subset of M1 containing integers m subject to

(m, q) = d, r ∼ R,
∣∣rmkα− b

∣∣ < Z−1.
7



We now estimate the inner sum on the right side of (3.25). We have

(3.27)
∑

m∈Md(R,Z)

wk(r)�
∑
r∼R

wk(r)S0(r),

where S0(r) is the number of integers m ∼ M1 with (m, q) = d for which there exists an
integer b such that

(3.28) (b, r) = 1 and
∣∣rmkα− b

∣∣ < Z−1.

Since for each m ∼M1 there is at most one pair (b, r) satisfying (3.28) and r ∼ R, we have

(3.29)
∑
r∼R

S0(r) ≤
∑
m∼M1
(m,q)=d

1�M1d
−1 + 1.

Hence, ∑
r∼R

(q,rdk)=q

wk(r)S0(r)� R−1/k
(
M1d

−1 + 1
)
�M1q

−1/k + 1,(3.30)

on noting that the sum on the left side is empty unless Rdk � q.
When (q, rdk) < q, we make use of Lemma 2.3. By (3.2), (3.26) and (3.28),

(3.31) S0(r) ≤ S(r),

where S(r) is the number of integers m subject to

m ∼M1d
−1, (m, q1) = 1,

∥∥ardk−1mk/q1
∥∥ < ∆,

with q1 = qd−1 and ∆ = Z−1 + 2k+1RMk
1 (qQ)−1. Since (3.17) implies M1 ≤ δxk−kρM−k

1 < q,
we obtain

(3.32) S(r)� ∆qεd−1(M1 + q)� ∆q1+ε.

Combining (3.31) and (3.32), we get

(3.33) S0(r)� ∆q1+ε.

We now apply Hölder’s inequality, (2.2), (3.29), and (3.33) and obtain

∑
r∼R

(q,rd3)<q

w3(r)S0(r)�
(
∆q1+ε

)1/4(∑
r∼R

w3(r)
4

)1/4(∑
r∼R

S0(r)

)3/4

(3.34)

� ∆1/4q1/4+εR−1/4M
3/4
1 .

Similarly, when k ≥ 4, we have

∑
r∼R

(q,rdk)<q

wk(r)S0(r)�
(
∆q1+ε

)1/k(∑
r∼R

wk(r)
k

)1/k(∑
r∼R

S0(r)

)1−1/k

(3.35)

� ∆1/kq1/k+εR(1−k)/k2M
(k−1)/k
1 .
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Combining (3.27), (3.30), (3.34) and (3.35), we deduce

(3.36)
∑

m∈Md(R,Z)

w3(r)� ∆1/4q1/4+εR−1/4M
3/4
1 +M1q

−1/3 + 1

and

(3.37)
∑

m∈Md(R,Z)

wk(r)� ∆1/kq1/k+εR(1−k)/k2M
(k−1)/k
1 +M1q

−1/k + 1

for k ≥ 4.
Substituting (3.36) into (3.25), we get

T2(α)� xθ+εM
−1/4
1

1 + δ(M2N)3(RZ)−1

(
Q

RZ
+
M3

1

Q

)1/4

+ xθ+εq−1/3 + xθ+εM−1
1

� (δ3xM2
1Q)1/4+ε + xθ+ε

(
M2

1Q
−1)1/4 + xρ+εM1 + xθ−ρ+ε.

The hypotheses of the lemma ensure that

M1 ≤ min
(
δ1/2x3/2−2ρQ−1/2, Q1/2x−2ρ, xθ−2ρ

)
,

and so when k = 3,

(3.38) T2(α)� xθ−ρ+ε.

When k ≥ 4, by (3.25) and (3.37),

T2(α)� xθ+εM
−1/k
1 R1/k2

1 + δ(M2N)k(RZ)−1

(
Q

RZ
+
Mk

1

Q

)1/k

+ xθ+εq−1/k + xθ+εM−1
1

�
(
xρQ(δM1)

k−1)1/k+ε + xθ+ε
(
xρMk−1

1 Q−1
)1/k

+ xρ+εM1 + xθ−ρ+ε,

and using (3.1) and (3.17), we find that (3.38) holds in this case as well.
The desired estimate follows from (3.19), (3.23), (3.24) and (3.38). �

4. Proof of Theorem 2

In this section we deduce Theorem 2 from Lemmas 3.1 and 3.2 and Heath-Brown’s identity
for Λ(n). We apply Heath-Brown’s identity in the following form [2, Lemma 1]: if n ≤ X
and J is a positive integer, then

(4.1) Λ(n) =
J∑
j=1

(
J

j

)
(−1)j

∑
n=n1···n2j

n1,...,nj≤X1/J

µ(n1) · · ·µ(nj)(log n2j).

Let α ∈ m(P ). By Dirichlet’s theorem on Diophantine approximation, there exist integers
a and q such that (3.2) holds with Q given by (3.1). Let β be defined by

xβ = min
(
δ2x1−2ρ(σ

−1
k +1), δk+2x1−6ρ,

(
δ2kxk−(8k−2)ρ

)1/(2k−1))
,

and suppose that ρ and δ are chosen so that

(4.2) δ−1xβ+2ρ ≥ 2x1/3, xβ ≥ δ−1x2ρ.
9



We apply (4.1) with X = x + xθ and J ≥ 3 chosen so that x1/J ≤ xβ. After a standard
splitting argument, we have

(4.3)
∑
n∈I

Λ(n)e
(
αnk

)
�
∑
N

∣∣∣∣∣∑
n∈I

c(n;N)e
(
αnk

)∣∣∣∣∣ ,
where N runs over O(L2J−1) vectors N = (N1, . . . , N2j), j ≤ J , subject to

N1, . . . , Nj � x1/J , x� N1 · · ·N2j � x,

and
c(n;N) =

∑
n=n1···n2j

ni∼Ni

µ(n1) · · ·µ(nj)(log n2j).

In fact, since the coefficient log n2j can be removed by partial summation, we may assume
that

c(n;N) = L
∑

n=n1···n2j

Ni<ni≤N ′i

µ(n1) · · ·µ(nj),

where Ni < N ′i ≤ 2Ni (in reality, N ′i = 2Ni except for i = 2j). We also assume (as we may)
that the summation variables nj+1, . . . , n2j are labeled so that Nj+1 ≤ · · · ≤ N2j. Next, we
show that each of the sums occurring on the right side of (4.3) satisfies the bound

(4.4)
∑
n∈I

c(n;N)e
(
αnk

)
� xθ−ρ+ε +

wk(q)
1/2xθ+ε

(1 + δ2xk|α− a/q|)1/2
.

The analysis involves several cases depending on the sizes of N1, . . . , N2j.

Case 1: N1 · · ·Nj � δ−1x2ρ. Since none of the Ni’s exceeds xβ, there must be a set of indices
S ⊂ {1, . . . , j} such that

(4.5) δ−1x2ρ ≤
∏
i∈S

Ni ≤ δ−1xβ+2ρ.

Hence, we can rewrite c(n;N) in the form

(4.6) c(n;N) =
∑
mr=n
m�M

ξmηr,

where |ξm| � mε, |ηr| � rε and M =
∏

i/∈S Ni. By (4.5), M satisfies (3.3), so (4.4) follows
from Lemma 3.1.

Case 2: N1 · · ·Nj < δ−1x2ρ, j ≤ 2. When j = 1, (4.4) follows from Lemma 3.2 with M1 = N1,
M2 = 1 and N = N2. When j = 2, we have

N3 ≤ (x/N1N2)
1/2 ≤ x1/2, N1N2N3 ≤ (xN1N2)

1/2 ≤ δ−1/2x1/2+ρ,

(N1N2)
2N3 ≤ x1/2(N1N2)

3/2 ≤ δ−3/2x1/2+3ρ.

Hence, we can deduce (4.4) from Lemma 3.2 with M1 = N3, M2 = N1N2 and N = N4,
provided that

xk−1/2 ≤ δxk−(2k+1)ρ, δ−3/2x1/2+3ρ ≤ δ1/kx1−2ρ,(4.7)

δ−1/2x1/2+ρ ≤ δmin
(
x1−ρ/σk , δkx1−2ρ

)
.(4.8)
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Case 3: N1 · · ·N2j−2 < δ−1x2ρ, j ≥ 3. Then we are in a similar situation to Case 2 with
j = 2, with the product N1 · · ·N2j−2 playing the role of N1N2 in Case 2. Thus, we can again
use Lemma 3.2 to obtain (4.4).

Case 4: N1 · · ·Nj < δ−1x2ρ ≤ N1 · · ·N2j−2, j ≥ 3. In this case, we have

Nj+1, . . . , N2j−2 ≤ 2x1/3 ≤ δ−1xβ+2ρ.

If N2j−2 ≥ δ−1x2ρ, we can write c(n;N) in the form (4.6) where M =
∏

i 6=2j−2Ni. We can

then appeal to Lemma 3.1 to show that (4.4) holds. On the other hand, if N2j−2 < δ−1x2ρ,
then Nj+1, . . . , N2j−2 ≤ xβ (by (4.2)). Thus, we can use the product N1 · · ·N2j−2 in a similar
fashion to the product N1 · · ·Nj in Case 1 to obtain a set of indices S ⊂ {1, 2, . . . , 2j − 2}
such that (4.5) holds. Hence, we can again represent c(n;N) in the form (4.6) and then
appeal to Lemma 3.1 to show that (4.4) holds one last time.

By the above analysis,

(4.9)
∑
n∈I

Λ(n)e
(
αnk

)
� xθ−ρ+ε +

wk(q)
1/2xθ+ε

(1 + δ2xk|α− a/q|)1/2
,

provided that conditions (4.2), (4.7) and (4.8) hold. Altogether, those conditions are equiv-
alent to the inequality

xρ � min
(
(δ3x2)σk/6, (δ2x)1/(4k+2), (δ3x)σk/(2+2σk), δ(2k+3)/6x1/6,(4.10)

(δ4k−1xk)1/(12k−4), (δ3x)σk/(2+4σk), δ(k+3)/8x1/8,

δ(k+1)/4x1/6, δ(3k+2)/(10k)x1/10, δ1/(4k)x(k+1)/(12k)
)
.

When δ ≥ x−3/11 and k ≥ 3, we have

δ(2k+3)/6x1/6 ≤ δ(k+1)/4x1/6, (δ2x)1/(4k+2) ≤ δ1/(4k)x(k+1)/(12k),

(δ4k−1xk)1/(12k−4) ≤ (δ3k+2xk)1/(12k−4) ≤ (δ3k+2xk)1/(10k).

so the last three terms in the above minimum are superfluous. Clearly, so is the third.
Furthermore,

min
(
(δ2x)1/(4k+2), δ(2k+3)/6x1/6

)
≤
(
(δ2x)1/(4k+2)

)a (
δ(2k+3)/6x1/6

)1−a
= δ(k+3)/8xµ,

min
(
(δ2x)1/(4k+2), δ(2k+3)/6x1/6

)
≤
(
(δ2x)1/(4k+2)

)b (
δ(2k+3)/6x1/6

)1−b
= (δ4k−1xν)1/(12k−4),

where

a =
6k2 + 21k − 15

16k2 + 32k − 12
, b =

24k2 − 30k + 9

(3k − 1)(8k2 + 16k − 6)
, µ ≤ 13

114
, ν ≤ 52k

57
.

When k = 3 and δ ≥ x−1/9, we have

δ1/7x1/14 ≤ δ1/4x1/12 ≤ δ1/8x1/12.

Hence, in this case, (4.10) is equivalent to

ρ ≤ min

(
2θ − 1

14
,
9θ − 8

6

)
.
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On the other hand, when k ≥ 4, we have

(δ3x2)σk/6 ≤ (δ2x)1/(4k+2) when δ ≥ x−2/7;

(δ3x2)σk/6 ≤ (δ3x)σk/(2+4σk) when δ ≥ x−2/21.

Hence, in this case, (4.10) is equivalent to

ρ ≤ min

(
σk(3θ − 1)

6
,
(2k + 3)θ − 2k − 2

6

)
.

Therefore, (4.10) is a direct consequence of the hypotheses of the theorem and the proof of
(4.9) is complete.

If either q ≥ x2kρ or |qα− a| ≥ δ−2xk−2kρ, we can use (2.1) to show that the second term
on the right side of (4.9) is smaller than the first. Thus,

(4.11) sup
α∈m(x2kρ)

∣∣fk (α;x, xθ
)∣∣� xθ−ρ+ε.

This establishes the theorem when P ≥ x2kρ. When P < x2kρ, we combine (4.11) with the
inequality

sup
α∈m(P )∩M(x2kρ)

∣∣fk (α;x, xθ
)∣∣� xθ−ρ+ε + xθ+εP−1/2,

which follows from Theorem 1, provided that ρ ≤ (8θ− 5)/(6k+ 6). To complete the proof,
we note that the last condition on ρ is implied by the hypotheses of the theorem. �
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