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1. Introduction

This note is motivated by a question that a colleague of the author’s often challenges calculus
students with: Does the series

∞∑
n=1

(−1)n| sinn|
n

(1)

converge? This series combines features of several series commonly studied in calculus:

∞∑
n=1

(−1)n

n
,

∞∑
n=1

| sinn|
n

and
∞∑
n=1

sin(nx)

n

come to mind. However, unlike these familiar examples, the series (1) seems to live on the fringes,
just beyond the reach of standard convergence tests like the alternating series test or the tests of
Abel and Dirichlet. It is therefore tempting for an infinite series aficionado to study (1) in hope to
find some clever resolution of the question of its convergence. Yet, the author’s colleague reports
that although he has posed the above question to many calculus students, he has never received
an answer. It turns out that there is a good reason for that: the question is quite delicate and
is intimately connected to deep facts about Diophantine approximation—facts which the typical
second-semester calculus student is unlikely to know.

The series (1) is obtained by perturbation of the moduli of the alternating harmonic series, which
is the simplest conditionally convergent alternating series one can imagine. In this note, we study
the convergence sets of similar perturbations of a wide class of alternating series. In particular,
the convergence of (1) follows from our results and classical work by Mahler [5] on the rational
approximations to π.

Let F denote the class of continuous, decreasing functions f : [1,∞)→ R such that

lim
x→∞

f(x) = 0,

∫ ∞
1

f(x) dx =∞.

When f ∈ F, the alternating series
∑

n(−1)nf(n) is conditionally convergent. Our goal is to
describe the convergence set of the related series

∞∑
n=1

(−1)nf(n)| sin(nπα)|, (2)

where α is a real number.
It is natural to start one’s investigation of (2) with the case when α is rational, since in that

case the sequence {(−1)n| sin(nπα)|}∞n=1 is periodic, and one may hope to see a pattern. Indeed,
this turns out to be the case, and one quickly discovers the following result.

Theorem 1. Suppose that f ∈ F and that α = p/q, with p ∈ Z, q ∈ Z+, and gcd(p, q) = 1. Then
the series (2) converges if and only if q is odd.
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Given Theorem 1, one may expect that when α is irrational, the convergence of (2) should
depend on the nature and quality of the rational approximations to α. The next result sheds some
light on the dependence.

Theorem 2. Suppose that f ∈ F and α 6∈ Q, and let {qn}∞n=1 be the sequence of denominators of
convergents to the continued fraction of α. If the series

∞∑
n=1

qn even

1

q2n

∫ qn+1

1
f(x) dx (3)

converges, then so does the series (2).

By combining Theorem 2 with various facts about Diophantine approximation, we obtain the
following corollaries.

Corollary 3. There is a set D ⊂ R, with Lebesgue measure zero, such that the series (2) converges
for all real α /∈ D and all f ∈ F.

Corollary 4. Suppose that f ∈ F and α is an algebraic irrationality. Then the series (2) converges.

Corollary 5. The series (1) converges.

Corollary 3 follows from Theorem 2 and Khinchin’s theorem [2] on metric Diophantine approx-
imation. In particular, the set D can be chosen to be the set of real α such that the inequality

qn+1 ≤ q
3/2
n fails for infinitely many n. Similarly, Corollary 4 follows from Theorem 2 and Roth’s

celebrated result [8] on Diophantine approximations to algebraic irrationalities. Finally, to derive
Corollary 5 directly from Theorem 2, we need to establish the convergence of (3) in the special
case when α = 1/π and f(x) = x−1. To that end, it suffices to know that the sequence {qn}∞n=1

of denominators of convergents to the continued fraction of π satisfies an inequality of the form
qn+1 � qCn for some absolute constant C. The first such results were obtained by Mahler in the
early 1950s. In particular, he showed in [5] that C = 41 is acceptable. More recent improvements
on Mahler’s work by Hata [1] and Salikhov [9] allow us to take C even smaller (C = 7.02 and
C = 6.61, respectively), but that has no effect on Corollary 5. The interested reader can easily
obtain further corollaries along the lines of Corollaries 4 and 5 by appealing to other results in
transcendental number theory. For example, one can use irrationality measures of numbers of the
form ln a or (ln a)/(ln b), with a and b real algebraic, to obtain other explicit examples of convergent
series similar to (1).

Theorem 2 provides a sufficient condition for convergence of alternating series of the form (2).
It is natural to ask how far is this condition from being also necessary. A closer look at the special
case f(x) = x−θ, 0 < θ ≤ 1, reveals that sometimes the convergence of (3) is, in fact, equivalent to
the convergence of (2). We have the following result.

Theorem 6. Suppose that α 6∈ Q, and let {qn}∞n=1 be the sequence of denominators of convergents
to the continued fraction of α. When 0 < θ ≤ 1, the series

∞∑
n=1

(−1)n| sin(nπα)|
nθ

(4)

converges if and only if the series
∞∑
n=1

qn even

1

q2n

∫ qn+1

1
x−θ dx (5)

does.
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In particular, it follows from Theorem 6 that the divergence set of (2) can be uncountable. Let
a, b be integers, with gcd(a, b) = 1 and b 6= 0, and {dk}∞k=1 be an infinite sequence of 1’s and 3’s,
and consider the series

λ =
a

b
+
∞∑
k=1

dk10−k!.

When a = 0 and dk = 1 for all k, this is the Liouville constant, the first example of a transcendental
number constructed by Liouville [4]. It is not difficult to show that when λ is of the above form,
the respective series (5) diverges for 0 < θ < 1. Furthermore, this classical example can be easily
modified to construct numbers for which the series (5) converges even when θ = 1. Since the set L
of such λ’s is uncountable and dense in R, we obtain the following corollary.

Corollary 7. There is an uncountable set L ⊂ R, dense in R, such that the series (4) diverges for
all α ∈ L and all θ ∈ (0, 1].

As is stated in the opening paragraph, the present work is motivated by a calculus question.
Thus, the author decided to keep the mathematical prerequisites of the paper relatively low. The
statements of the theorems should be accessible to a good undergraduate student familiar with
calculus and elementary number theory, and the statements of the corollaries require only slightly
higher mathematical sophistication. Some high-powered mathematics is involved in the proofs of
the results on Diophantine approximation used to derive the corollaries from the main theorems, but
the proofs of the theorems themselves do not require advanced techniques. It is, perhaps, possible
to go further by using more sophisticated harmonic analysis, but the author deliberately avoided
going down that road. For example, one may be tempted to generalize the proof of Theorem 6 as
to turn Theorem 2 into a necessary and sufficient condition similar to Theorem 6. However, such
an attempt leads to an analysis of the asymptotic behavior as ξ ↓ 0 of the Fourier transform f̂(ξ)
of a function f ∈ F. While the author is quite interested to see what the proper such version of
Theorem 2 looks like, he decided that this paper is not the place for it.

Acknowledgment. The author would like to thank Geoffrey Goodson, Alexei Kolesnikov, Pencho
Petrushev, and Houshang Sohrab for several conversations, suggestions and comments during the
writing of this paper.

2. Preliminaries

We start by introducing some notation. Throughout the remainder of the paper, we write
e(z) = e2πiz and ‖x‖ for the distance from the real number x to the nearest integer. We also use
Landau’s big-O notation and Vinogradov’s�-notation: if B > 0, we write A = O(B) or A� B, if
there exists a constant c > 0 such that |A| ≤ cB. We remark that in our proofs, the real numbers
α, θ and the function f ∈ F are considered fixed, and so implied constants are allowed to depend
on those; dependence on other parameters will be stated explicitly when it occurs.

We need to recall some basic facts about continued fractions. For definitions, proofs and fur-
ther details, see Khinchin’s book [3]. Let α be an irrational real number. Then α has a unique
representation as an (infinite) continued fraction

α = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + · · ·

.
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Let pn/qn, where gcd(pn, qn) = 1, denote the nth convergent to the continued fraction of α,

pn
qn

= a0 +
1

a1 +
1

· · ·+
1

an−1

.

Then, by a variant of Khinchin [3, Theorem 1], the sequences {pn}∞n=1 and {qn}∞n=1 can be defined
recursively by the conditions

p0 = 1, q0 = 0, p1 = a0, q1 = 1,

pn+1 = anpn + pn−1, qn+1 = anqn + qn−1 (n ≥ 1).

It then follows (see Khinchin [3, Theorems 9 and 13]) that

1

2qnqn+1
<

∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qnqn+1
. (6)

Furthermore, the denominators qn grow exponentially and satisfy

qn ≥ 2n/2−1 (n ≥ 1). (7)

Next, we state some estimates that will be needed in the sequel. Our first lemma is well-known
to number theorists; see Montgomery [6, pp. 39–40], for example.

Lemma 1. Suppose that N is a positive integer and α ∈ R \ Z. Then∣∣∣∣∣
N−1∑
n=0

e(αn)

∣∣∣∣∣ ≤ min

(
N,

1

2‖α‖

)
. (8)

Lemma 2. Suppose that 1 ≤ ν < µ ≤ ∞ and θ > 0. Then∫ µ

ν
t−θ cos t dt� ν−θ. (9)

Proof. Partial integration gives∫ µ

ν
t−θ cos t dt = t−θ sin t

∣∣µ
ν

+ θ

∫ µ

ν

sin t

tθ+1
dt,

and (9) follows. �

Lemma 3. Suppose that 0 < θ < 1 and 0 < ν < 1 < µ. Then∫ µ

ν
t−θ cos t dt = Aθ +O

(
µ−θ + ν1−θ

)
, (10)

where

Aθ =

∫ ∞
0

t−θ cos t dt = Γ(1− θ) sin(πθ/2) >
θ

1− θ
. (11)

Proof. Inequality (10) follows from Lemma 2 and the bound∣∣∣∣ ∫ ν

0
t−θ cos t dt

∣∣∣∣ ≤ ∫ ν

0
t−θ dt� ν1−θ.

The closed-form expression for Aθ is a standard Fourier cosine-transform formula. Its most natural
proof (which uses the theory of contour integration) can be found in the solution of Problem III.151
in Pólya and Szegö [7, p. 331]. To justify the final inequality in (11), we use that sin(πθ/2) > θ (by
the concavity of the sine function) and

(1− θ)Γ(1− θ) = Γ(2− θ) ≥ Γ(1) = 1. �
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3. Proof of Theorem 1

We derive the theorem from Cauchy’s criterion. Consider the sum

S(α;M,N) =
N+M∑
n=N+1

(−1)nf(n)| sin(nπα)|, (12)

where M,N are positive integers. Splitting S(p/q;M,N) according to the residue class of n modulo
q, we have

S(p/q;M,N) =

q∑
h=1

N+M∑
n=N+1

n≡h (mod q)

(−1)nf(n)| sin(πpn/q)|

=

q∑
h=1

| sin(πph/q)|
N+M∑
n=N+1

n≡h (mod q)

(−1)nf(n). (13)

We now consider separately the cases of odd and even q.

Case 1: q odd. Then the sum over n in (13) is alternating, and hence, bounded by its first term,
which is at most f(N). Thus,

|S(p/q;M,N)| ≤ qf(N).

This establishes the convergence case of the theorem.

Case 2: q even. Then p is odd and we have (−1)n = (−1)h = (−1)ph in the sum over n in (13).
Hence,

S(p/q;M,N) =

q∑
h=1

(−1)ph| sin(πph/q)|
N+M∑
n=N+1

n≡h (mod q)

f(n).

We apply Euler’s summation formula to the sum over n and deduce that

S(p/q;M,N) =
If
q

q∑
h=1

(−1)ph| sin(πph/q)|+O (qf(N)) , (14)

where

If = If (M,N) =

∫ N+M

N
f(x) dx.

Since gcd(p, q) = 1, the sets {p, 2p, . . . , qp} and {1, 2, . . . , q} are equal modulo q. Thus,

q∑
h=1

(−1)ph| sin(πph/q)| =
q∑

h=1

(−1)h sin(πh/q) =

q∑
h=1

sin(πh(1 + 1/q)).

We evaluate the last sum using the well-known formula
q∑

h=1

sin(hx) =
sin((q + 1)x/2) sin(qx/2)

sin(x/2)
,

and (after some simplification) we obtain

q∑
h=1

(−1)ph| sin(πph/q)| = − tan (π/2q) . (15)

5



Substituting (15) into the right side of (14), we conclude that

S(p/q;M,N) = CqIf (M,N) +O (qf(N)) ,

where Cq = −q−1 tan(π/2q) < 0. Since
∫∞
N f(x) dx diverges, this completes the proof of the

divergence case.

4. Proof of Theorem 2

To prove Theorem 2, we again estimate the sum S(α;M,N) defined by (12). It is convenient to
assume that N is even—as we may, since

S(α;M,N) = S(α;M,N + 1) +O (f(N)) .

We start by expanding the function | sin(nπα)| in a Fourier series. It is known and easily verified
that the Fourier expansion

| sin(x/2)| = 2

π
− 4

π

∞∑
k=1

cos(kx)

4k2 − 1

is valid for |x| ≤ π, and consequently by periodicity for all real x. It follows that

S(α;M,N) =
2

π

∞∑
k=−∞

−1

4k2 − 1

N+M∑
n=N+1

(−1)nf(n)e(αkn).

The contribution from k = 0 is

2

π

N+M∑
n=N+1

(−1)nf(n)� f(N).

Thus, combining the terms with k = ±m, m ≥ 1, we obtain

S(α;M,N) =
4

π
Re

{ ∞∑
k=1

−1

4k2 − 1

N+M∑
n=N+1

(−1)nf(n)e(αkn)

}
+O (f(N)) . (16)

We estimate trivially the contribution to the right side of (16) from terms with k > M , and we get

S(α;M,N) =
4

π
Re

{ M∑
k=1

−e(αkN)

4k2 − 1

M∑
n=1

(−1)ng(n)e(αkn)

}
+O (f(N)) , (17)

where g(x) = f(N + x). By partial summation,

M∑
n=1

(−1)ng(n)e(βn) = g(M)U(β;M)−
M−1∑
m=1

∆g(m)U(β;m), (18)

where ∆g(m) = g(m+ 1)− g(m) and

U(β;m) =
m∑
n=1

(−1)ne(βn) =
m∑
n=1

e((β + 1/2)n).

Substituting (18) into the right side of (17), we obtain

S(α;M,N) =
4

π
Re

{
g(M)V (α;M)−

M−1∑
m=1

∆g(m)V (α;m)

}
+O(f(N)), (19)
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where

V (α;m) =

M∑
k=1

−e(αkN)

4k2 − 1
U(kα;m).

In order to estimate the right side of (19), we break the sum V (α;m) into blocks depending on the
denominators of the rational approximations to α. Let {pn/qn}∞n=0 be the sequence of convergents
to the continued fraction of α. We decompose V (α;m) into blocks Vj(α;m) defined by

Vj(α;m) =
∑

k∈Kj(M)

−e(αkN)

4k2 − 1
U(kα;m), (20)

where Kj(M) is the set of positive integers k ≤ M such that qj < 4k ≤ qj+1. We obtain different
estimates for Vj(α;m), depending on the size and parity of qj .

4.1. Estimation of Vj(α;m) for small j. When j is bounded above by an absolute constant, we
appeal to (8) and get

|Vj(α;m)| ≤
∑

qj<4k≤qj+1

‖kα+ 1/2‖−1

8k2 − 2
= Kj(α), say. (21)

4.2. Estimation of Vj(α;m) for odd qj. Suppose that qj is odd and sufficiently large, and write
p = pj , q = qj , r = qj+1, and β = α− p/q. From (6), when 4k ≤ r,

k|β| < k

qr
≤ 1

4q
.

Since q is odd, we have 2q - (2pk + q) and

δp,q(k) =

∥∥∥∥2pk + q

2q

∥∥∥∥ ≥ 1

2q
.

Hence, ∥∥∥∥kα+
1

2

∥∥∥∥ ≥ δp,q(k)− k|β| ≥ δp,q(k)− 1

4q
≥ δp,q(k)

2
.

Using (21), we obtain

|Vj(α;m)| ≤
∑

q<4k≤r

δp,q(k)−1

4k2 − 1
=

∑
1≤h≤2q

2-h

∑
q<4k≤r

2pk+q≡h (mod 2q)

δp,q(k)−1

4k2 − 1

=
∑

1≤h≤2q
2-h

∥∥∥∥ h2q
∥∥∥∥−1 ∑

q<4k≤r
2pk≡h (mod q)

1

4k2 − 1
. (22)

Upon noting that the sum over k on the right side of (22) is O(q−2), we deduce from (22) that

|Vj(α;m)| � q−2
q∑

h=1

∥∥∥∥2h− 1

2q

∥∥∥∥−1

� q−1
(q+1)/2∑
h=1

1

2h− 1
� q−1j ln qj . (23)
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4.3. Estimation of Vj(α;m) for even qj. Suppose that qj is even, and let p, q, r, and β be as
in §4.2. Except when 2k ≡ q (mod 2q), we can argue similarly to §4.2. Hence, when q is even, we
get

Vj(α;m) = V ′j (α;m) +O
(
q−1 ln q

)
, (24)

where

V ′j (α;m) =
∑

k∈Kj(M)
2k≡q (mod 2q)

−e(αkN)

4k2 − 1
U(kα;m). (25)

When 2k ≡ q (mod 2q), we get

U(kα;m) =

m∑
n=1

e(βkn),

so (8) gives

|U(kα;m)| ≤ min
(
m, (2k|β|)−1

)
� min (m, r) .

Therefore, by (25), ∣∣V ′j (α;m)
∣∣� ∑

q<2l≤r
l≡q (mod 2q)

min(m, r)

l2 − 1
� q−2 min(m, r). (26)

Combining (24) and (26), we conclude that

|Vj(α;m)| � q−2j min(m, qj+1) + q−1j ln qj . (27)

Moreover, we note that the first term on the right side of (27) is superfluous when 2qj > qj+1, since
in that case the sum V ′j (α;m) is empty.

4.4. Completion of the proof. Let j0 ≥ 2 be an integer to be chosen later, and set

K =

j0−1∑
j=0

Kj(α) =
∑

4k≤qj0

‖kα+ 1/2‖−1

8k2 − 2
.

We use (21) to estimate the contribution to V (α;m) from subsums Vj(α;m) with j < j0, and we
use (23) and (27) to estimate the contribution from sums Vj(α;m) with j ≥ j0. Let Iα(M) denote
the set of indices j ≥ j0 such that qj is even and satisfies the inequalities qj ≤ M and 2qj ≤ qj+1.
We obtain

|V (α;m)| ≤ K + c1
∑
j≥j0

ln qj
qj

+ c1
∑

j∈Iα(M)

q−2j min(m, qj+1),

where c1 > 0 is an absolute constant. Recalling (7), we deduce

|V (α;m)| ≤ K + c2 + 2c1
∑

j∈Iα(M)

q−2j min(m, rj), (28)

where c2 > 0 is another absolute constant and rj = dqj+1/2e. Using (28) to bound the right side
of (19), we get

|S(α;M,N)| ≤ 3c1
∑

j∈Iα(M)

q−2j Σj +Oj0(f(N)), (29)

where the O-implied constant depends on j0 and

Σj = g(M) min(M, rj)−
M−1∑
m=1

∆g(m) min(m, rj).
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Using partial summation and the monotonicity of f , we find that

Σj ≤
∑

1≤n≤rj

g(n) ≤
∫ rj

0
g(x) dx ≤

∫ qj+1

1
f(x) dx.

Hence, (29) yields

|S(α;M,N)| ≤
∑

j∈Iα(M)

3c1
q2j

∫ qj+1

1
f(x) dx+Oj0(f(N)). (30)

Finally, let us fix an ε > 0. Since the series (3) converges, we can find an index j0 = j0(ε) such
that

∞∑
j=j0
qj even

1

q2j

∫ qj+1

1
f(x) dx <

ε

6c1
.

We choose j0 above to be such an integer and fix it. Then∑
j∈Iα(M)

1

q2j

∫ qj+1

1
f(x) dx ≤

∞∑
j=j0
qj even

1

q2j

∫ qj+1

1
f(x) dx <

ε

6c1
,

and (30) yields

|S(α;M,N)| < ε

2
+Oε(f(N)),

where the O-implied constant depends on ε. Therefore, we can find an integer N0 = N0(ε, α, f)
such that when N ≥ N0, one has

|S(α;M,N)| < ε.

This establishes the convergence of the series (2).

5. Proof of Theorem 6

We assume that the series (5) diverges and consider the sum S(α;M,N) one last time. We
will use (19) to show that S(α;M,N) can approach ∞ as M,N → ∞. We retain the notation
introduced in the proof of Theorem 2 and proceed with the estimation of S(α;M,N).

Let j0 ≥ 2 be a fixed integer chosen so that qj0 is sufficiently large, and let N be a large even
integer. We restrict the choice of N to integers of the form qj− b, with j > j0 and b ∈ {1, 2}. Using
(19), (21), (23), (24), and (27), we obtain the following version of (29):

S(α;M,N) =
∑

j∈Iα(M)

Sj(α;M,N) +O
(
N−θ

)
, (31)

where Iα(M) is the set of indices defined in §4.4,

Sj(α;M,N) =
4

π
Re

{
g(M)V ′j (α;M)−

M−1∑
m=1

∆g(m)V ′j (α;m)

}
,

and V ′j (α;m) is the sum defined by (25). Furthermore, by (26) and the choice of N , for indices j
with qj ≤ N , we have ∣∣V ′′j (α;M,N)

∣∣� q−2j qj+1 � q−2j N,

whence
|Sj(α;M,N)| � q−2j N.

Thus, from (31),

S(α;M,N) =
∑

j∈I′α(M,N)

Sj(α;M,N) +O(N), (32)
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where I ′α(M,N) is the set of indices j ∈ Iα(M) such that qj > N .
We now proceed to obtain an approximation for V ′j (α;m), which we will then use to estimate

the right side of (32). Let p, q, r and β be as in §4.3. When 2k ≡ q (mod 2q), we have

U(kα;m) =
m∑
n=1

e(βkn) =
e(kmβ)− 1

1− e(kβ)
+O(1).

Using the Taylor expansion e(z) = 1 + 2πiz +O(|z|2), we deduce that when k ≤ r,

U(kα;m) =
e(kmβ)− 1

−2πikβ
+O(1).

We substitute this approximation in (25) and obtain

V ′j (α;m) =
∑

k∈Lj(M)

e(kNβ/2)

k2 − 1

e(kmβ/2)− 1

πikβ
+O

(
q−2
)

=
∑

k∈Lj(M)

1

k2 − 1

∫ N+m

N
e(ktβ/2) dt+O

(
q−2
)
,

where Lj(M) denotes the set of even integers k such that 1
2k ∈ Kj(M) and k ≡ q (mod 2q). Hence,

Sj(α;M,N) =
4

π

∑
k∈Lj(M)

Re Ξk(α;M,N)

k2 − 1
,

where

Ξk(α;M,N) = g(M)

∫ N+M

N
e(ktβ/2) dt−

M−1∑
m=1

∆g(m)

∫ N+m

N
e(ktβ/2) dt.

Recall that here g(x) = (N + x)−θ. Using partial summation, we find that

Ξk(α;M,N) =

∫ N+M

N
g(dte −N)e(ktβ/2) dt

=

∫ N+M

N
t−θe(ktβ/2) dt+O

(
N−θ

)
.

Hence,

Sj(α;M,N) =
4

π

∑
k∈Lj(M)

1

k2 − 1

∫ N+M

N
t−θ cos(πktβ) dt+O

(
q−2N−θ

)
=

4

π

∑
k∈Lj(M)

(πk|β|)θ−1

k2 − 1

∫ νk+µk

νk

t−θ cos t dt+O
(
q−2N−θ

)
, (33)

where νk = πk|β|N and µk = πk|β|M . Summing over j, we deduce from (32) and (33) that

S(α;M,N) =
4

π

∑
j∈I′α(M,N)

∑
k∈Lj(M)

(πk|βj |)θ−1

k2 − 1

∫ νk+µk

νk

t−θ cos t dt+O (N) , (34)

where |βj | = q−1j ‖qjα‖.
In order to estimate the right side of (34), we will impose some restrictions on the choice of M .

Let Qα be the set of even members of {qn}∞n=1 such that∫ qn+1

1
x−θ dx > q1−θ/2n .
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We remark that the contribution to the series (5) from terms with qn /∈ Qα is dominated by the

convergent series
∑

q q
−1−θ/2. Thus, the divergence of (5) implies the divergence of the series∑

qn∈Qα

1

q2n

∫ qn+1

1
x−θ dx. (35)

In particular, the set Qα is infinite. We restrict M to the sequence of numbers of the form
⌈
q1+θ/3

⌉
,

with q ∈ Qα.
Let J = J(M,N) denote the largest index in the set I ′α(M,N). Using our restriction on the

choice of M and the bound ∣∣∣∣∫ νk+µk

νk

t−θ cos t dt

∣∣∣∣�
{
µ1−θk if θ < 1,

lnM if θ = 1,

we find that the term with j = J in (34) is

�
∑

q≤2k≤M/2
k≡q (mod 2q)

q1−θ/2

k2 − 1
� q−1,

where q = qJ and the implied constant depends on θ. Hence,

S(α;M,N) =
4

π

∑
j∈I′′α(M,N)

∑
k∈Lj(M)

(πk|βj |)θ−1

k2 − 1

∫ νk+µk

νk

t−θ cos t dt+O (N) , (36)

where
I ′′α(M,N) = I ′α(M,N) \ {J}.

Since the integrals on the right side of (36) behave somewhat differently when θ = 1 and when
0 < θ < 1, we now consider these two cases separately.

5.1. The case θ = 1. When j ∈ I ′′α(M,N) and k ∈ Lj(M), we have µk = πk|βj |M > 1. Hence,
by Lemma 2, ∫ νk+µk

νk

t−1 cos t dt =

∫ 1

νk

t−1 cos t dt+O(1)

=

∫ 1

νk

t−1
(
1 +O

(
t2
))
dt+O(1)

= − ln νk +O(1) = ln qj+1 +O(ln(kN)).

From this inequality and (36), we obtain

S(α;M,N) =
4

π

∑
j∈I′′α(M,N)

∑
k∈Lj(M)

ln qj+1

k2 − 1
+O (N)

≥ 4

π

∑
j∈I′′α(M,N)

ln qj+1

q2j − 1
+O(N)

≥
∑

qn∈Q′
α(M,N)

1

q2n

∫ qn+1

1

dt

t
+O(N), (37)

where Q′α(M,N) is the set of those qn ∈ Q′α for which qn > N and qn+1 ≤ M . In view of the
divergence of the series (35), this establishes that

lim sup
M→∞

S(α;M,N) =∞.
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5.2. The case 0 < θ < 1. When j ∈ I ′′α(M,N) and k ∈ Lj(M), by Lemma 3,∫ νk+µk

νk

t−θ cos t dt = Aθ +O
(
ν1−θk + µ−θk

)
,

where Aθ is the Fourier integral (11). From this inequality and (36), we obtain

S(α;M,N) =
4Aθ
π

∑
j∈I′′α(M,N)

∑
k∈Lj(M)

(πk|βj |)θ−1

k2 − 1
+O (N + ∆)

≥ 4Aθ
π2−θ

∑
j∈I′′α(M,N)

q1−θj+1

q2j − 1
+O (N + ∆) ,

where

∆ = M−θ
∑

j∈I′′α(M,N)

∑
k∈Lj(M)

(k|βj |)−1

k2 − 1
.

By (6) and the restriction on M ,

∆�M−θ
∑

j∈I′′α(M,N)

qj+1

q2j − 1
�M−γ

∑
j∈I′′α(M,N)

q1−θj+1

q2j − 1
,

where γ = 1
4θ

2 > 0. Thus, for sufficiently large values of M , we obtain

S(α;M,N) ≥ 2Aθ
π2−θ

∑
j∈I′′α(M,N)

q1−θj+1

q2j − 1
+O (N) ,

≥ A′θ
∑

qn∈Q′
α(M,N)

1

q2n

∫ qn+1

1
t−θ dt+O (N) , (38)

where A′θ = 2πθ−2(1− θ)Aθ > 0 and Q′α(M,N) is defined as in §5.1. Therefore, once again, using
(38) and the divergence of the series (35), we conclude that

lim sup
M→∞

S(α;M,N) =∞.

This completes the proof of the theorem.
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