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Abstract. In this paper we consider the asymptotic formula for the number of the solutions of the equation

p1 + p2 + p3 = N

where N is an odd integer and the unknowns pi are prime numbers of the form pi = [n1/γi ]. We use the

two-dimensional van der Corput’s method to prove it under less restrictive conditions than before. In the most
interesting case γ1 = γ2 = γ3 = γ our theorem implies that every sufficiently large odd integer N may be written

as the sum of three Piatetski–Shapiro primes of type γ for 50/53 < γ < 1.

1. Introduction.

In 1937 I. M. Vinogradov [15] solved the Goldbach ternary problem. He proved that for a sufficiently
large odd integer N , ∑

p1+p2+p3=N

1 =
1

2
(1 + o(1))S(N)

N2

log3N
, (1)

where S(N) is the singular series

S(N) =
∏
p|N

(
1− 1

(p− 1)2

) ∏
p 6 |N

(
1 +

1

(p− 1)3

)
. (2)

In 1986 E. Wirsing [16] considered the question of the existence of thin sets of primes S such that every
sufficiently large odd integer is the sum of three elements of S (the set of prime numbers S is called to be
thin if

∑
p≤x,p∈S

1 = o(π(x)) ). Wirsing proved that there exists such a set of primes S with the property that

∑
p≤x,p∈S

1� (x log x)1/3 .

The set of the Piatetski-Shapiro primes of type γ < 1

Pγ = {p | p = [n1/γ ] for some n ∈ N}

is a well-known thin set of prime numbers. The counting function πγ(x) of Pγ was studied by a number of
authors [1, 4–6, 8–14]. The best results are given by [14] and [10] where it is proved that

πγ(x) ∼ xγ

log x

for 5302/6121 < γ < 1, and

πγ(x)� xγ

log x
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for 38/45 < γ < 1.
In 1992 A. Balog and J. P. Friedlander [2] considered the ternary Goldbach problem with variables

restricted to Piatetski-Shapiro primes. They proved that if γ1, γ2, γ3 are fixed real numbers such that γi ≤ 1
and γi is close to 1, and N is a sufficiently large odd integer, then the asymptotic formula (3) below is valid.

There are two interesting special cases of this theorem. If γ1 = γ2 = γ3 = γ in (3) we obtain an asymptotic
formula for the number of representations of a large odd integer as the sum of three Piatetski-Shapiro primes
of type γ. If γ1 = γ2 = 1 in (3), we obtain an asymptotic formula for the number of representations of a
large odd integer as the sum of two primes and a Piatetski-Shapiro prime.

The theorem of Balog and Friedlander implies that in the first case the asymptotic formula is valid for
20/21 < γ ≤ 1, and in the second—for 8/9 < γ ≤ 1. J. Rivat [14] extended the range 20/21 < γ ≤ 1
to 188/199 < γ ≤ 1, and C.-H. Jia [7] used a sieve method to show that there exists a positive constant
ρ0 = ρ0(γ) such that

T1(N) =
∑

p1+p2+p3=N
pi∈Pγ

1 ≥ ρ0
S(N)N3γ−1

log3N

for 15/16 < γ ≤ 1.
In this paper we use better estimates of an exponential sum to prove:

Theorem 1. Let γ1, γ2, γ3 be fixed real numbers such that 0 < γi ≤ 1 and

73(1− γ3) < 9

73(1− γ2) + 43(1− γ3) < 9

73(1− γ1) + 43(1− γ2) + 43(1− γ3) < 9 .

Denote by T (N) the number of the representations of the integer N as the sum of three primes p1, p2, p3
such that pi ∈ Pγi .Then the asymptotic formula

T (N) = (1 + o(1))
Γ(γ1 + 1)Γ(γ2 + 1)Γ(γ3 + 1)

Γ(γ1 + γ2 + γ3)
· S(N)Nγ1+γ2+γ3−1

log3N
(3)

holds. Here S(N) is defined by (2).

In the special cases mentioned above this theorem gives:

Corollary 1. For any fixed 50/53 < γ ≤ 1 every sufficiently large odd integer may be written as the sum of
three Piatetski-Shapiro prime numbers of type γ.

Corollary 2. For any fixed 64/73 < γ ≤ 1 every sufficiently large odd integer may be written as the sum of
two primes and a Piatetski-Shapiro prime number of type γ.

In both cases we may obtain an asymptotic formula for the number of solutions. Thus Theorem 1 improves
the known results of this type contained in [2] and [14]. Note also that 64/73 = 0.8767 . . . is not much
greater than 5302/6121 = 0.8661 . . . .

2. Notation

In this paper p, p1, . . . are primes; ε is an arbitrary small positive number, not necessary the same in
the different appearences. The constants c1, c2, . . . in Section 4 depend at most on γ. We use [x], {x} and
‖x‖ to denote the integral part of x, the fractional part of x and the distance from x to the nearest integer
correspondingly. Λ(n) is von Mangoldt’s function; e(x) = exp(2πix); ψ(x) = x− [x]− 1

2 .
f(x)� g(x) means that f(x) = O(g(x));
f(x) � g(x) means that f(x)� g(x)� f(x);

f(x1, . . . , xn)∆̃g(x1, . . . , xn) means that

∂j1+···+jn

∂xj11 · · ·x
jn
n

f(x1, . . . , xn) =
∂j1+···+jn

∂xj11 · · ·x
jn
n

g(x1, . . . , xn)(1 +O(∆))
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for all n-tuples (j1, . . . , jn) for which it makes sence.
x ∼ X means that x runs through a subinterval of (X, 2X], which endpoints are not necessary the same in

the different equations and may depend on the outer summation variables; thus we may write, for example,∑∑
m∼M,n∼N
mn∼x

a(m,n) =
∑∑

m∼M,n∼N
a(m,n) .

We also define
Fi = Fi(α) =

∑
p≤N

e(αp)([−pγi ]− [−(p+ 1)γi ]) ,

Gi = Gi(α) =
∑
p≤N

γip
γi−1e(αp) ,

R(N) =
∑

p1+p2+p3=N

γ1γ2γ3 p
γ1−1
1 pγ2−12 pγ3−13 .

3. Preliminaries

The idea of the proof of Theorem 1 is to reduce it to the following weighted version of the Vinogradov
estimate (1):

R(N) = (1 + o(1))
Γ(γ1 + 1)Γ(γ2 + 1)Γ(γ3 + 1)

Γ(γ1 + γ2 + γ3)
· S(N)Nγ1+γ2+γ3−1

log3N
. (4)

The reduction depends on the asymptotic formula for an exponential sum (Theorem 2 below) and indeed
was done by Balog and Friedlander in Section 2 of [2]. They showed that

T (N) = R(N) +O(Nγ1+γ2+γ3−1−ε) , (5)

provided that for 1 ≤ i ≤ 3 the estimate

sup
α∈(0,1)

|Fi −Gi| � Nγi−δi−ε

holds with δ1 = 1
2 (1− γ2) + 1

2 (1− γ3), δ2 = 1
2 (1− γ3), and δ3 = 0, correspondingly. Thus Theorem 1 follows

from (4), (5) and the following improved version of Theorem 4 of [2].

Theorem 2. Assume that 0 < γ < 1, 0 ≤ δ ≤ 1− γ and

73(1− γ) + 86δ < 9 .

Then, uniformly in α ∈ (0, 1), we have∑
p≤N

e(αp)([−pγ ]− [−(p+ 1)γ ]) =
∑
p≤N

γ pγ−1e(αp) +O(Nγ−δ−ε) , (6)

where the implied constant depends at most on γ, δ and ε.

Throughout the rest of this section we reduce the proof of Theorem 2 to the estimation of a double
exponential sum. Denoting the sum in the left-hand side of (6) by F (α), and that in the right-hand side by
G(α) we get

F (α) = G(α) +
∑
p≤N

e(αp)
(
ψ(−(p+ 1)γ)− ψ(−pγ)

)
+O(logN) .

It is easy to derive (6) from this equality and the estimate∑
p≤x

e(αp)(log p)
(
ψ(−(p+ 1)γ)− ψ(−pγ)

)
� xγ−δ−ε , (7)
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provided that the last is proved for each 1 ≤ x ≤ N . Since∑
p≤x

e(αp)(log p)
(
ψ(−(p+ 1)γ)− ψ(−pγ)

)
=
∑
n≤x

Λ(n)e(αn)
(
ψ(−(n+ 1)γ)− ψ(−nγ)

)
+O(x1/2) ,

using the simplest splitting up argument, we obtain that to prove (7) it is sufficient to obtain∑
n∼x

Λ(n)e(αn)
(
ψ(−(n+ 1)γ)− ψ(−nγ)

)
� xγ−δ−ε (8)

for any 1 ≤ x ≤ N .
From here on x is a fixed sufficiently large number subjected to x ≤ N . We recall the well-known

expansions

ψ(t) = −
∑

0<|h|≤H0

e(ht)

2πih
+O

(
min

(
1,

1

H0‖t‖

))
,

min

(
1,

1

H0‖t‖

)
=

∞∑
k=−∞

bke(kt) ,

where

|bk| � min

(
logH0

H0
,

1

|k|
,
H0

|k|2

)
.

We put H0 = x1−γ+δ+ε and apply the first expansion for the left-hand side of (8). Similarly to [4, p.246]
and [2, p.51] we treat the error terms via the second and the estimate of van der Corput [3, Theorem 2.2].
The obtained estimate is admissible if 2(1− γ) + 3δ < 1, so it remains to prove that for each H ≤ H0

∑
h∼H

1

h

∣∣∣∣∣∑
n∼x

Λ(n)e(αn)
(
e(hnγ)− e(h(n+ 1)γ)

)∣∣∣∣∣� xγ−δ−ε .

Working similarly to [4, p.247] we find that for H ≤ x1−γ to establish the last inequality it is sufficient to
prove ∑

h∼H

∣∣∣∣∣∑
n∼x

Λ(n)e(αn+ hnγ)

∣∣∣∣∣� x1−δ−ε .

Otherwise we treat the sums involving e(hnγ) and e(h(n+ 1)γ) separately. Thus in all the cases, it suffices
to prove the following

Proposition. Assume that 0 < γ < 1, 0 ≤ δ ≤ 1− γ and

73(1− γ) + 86δ < 9 .

Assume further that H ≤ x1−γ+δ+ε and u is either 0, or 1. Then

min

(
1,
x1−γ

H

) ∑
h∼H

∣∣∣∣∣∑
n∼x

Λ(n)e(αn+ h(n+ u)γ)

∣∣∣∣∣� x1−δ−ε . (9)

We prove this proposition in Section 5, and therefore complete the proofs of both Theorem 1 and Theorem
2. The proof depends on the estimation of some triple exponential sums, which we estimate in the next
section.
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4. Exponential sums estimates

In this section we consider sums of the form

Φ(H)
∑
h∼H

∣∣∣∣∣∣∣
∑∑

m∼M,n∼N
mn∼x

a(m) b(n) e(αmn+ h(mn+ u)γ)

∣∣∣∣∣∣∣
where

Φ(H) = min

(
1,
x1−γ

H

)
.

If the coefficients a(m) and b(n) satisfy the conditions

|a(m)| ≤ 1 , b(n) = 1 or b(n) = log n (10)

we denote the sum by SI , and if they satisfy the conditions

|a(m)| ≤ 1 , |b(n)| ≤ 1 (11)

we denote it by SII .
For SII we use the estimate obtained in [2, Proposition 2]:

Lemma 1. Let N satisfy the conditions

x1−γ+2δ+ε ≤ N ≤ x5γ−4−6δ−ε .

Then
SII � x1−δ−ε .

For SI we give a new estimate contained in the following lemma which we prove using van der Corput’s
method as it is described in [3].

Lemma 2. Let γ, δ be subjected to
16(1− γ) + 19δ < 2 , (12)

and N satisfy the condition
N ≥ max(x36(1−γ)+42δ−4+ε, x2(1−γ)+4δ+ε) . (13)

Then
SI � x1−δ−ε .

Proof of Lemma 2. Since for γ, δ, N such that

6(1− γ) + (19/3)δ < 1 and N ≥ x4(1−γ)+5δ ,

the lemma is proved in [2, Proposition 3], it is sufficient to consider the case

N ≤ x4(1−γ)+5δ . (14)

In the rest of the proof we suppose that the inequality (14) holds. We also note that the condition mn ∼ x
implies MN � x.

We begin with the remark that since

αmn+ h(mn+ u)γ = αmn+ h(mn)γ + γuh(mn)γ−1 +O(HXγ−2)

= f1(m,n) +O(Hxγ−2) ,
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one has

SI � Φ(H)
∑
h∼H

∣∣∣∣∣ ∑
m∼M

∑
n∼N

a(m) e(f1(m,n))

∣∣∣∣∣+ x1−δ−ε

provided that 1 − γ + 3δ < 1. Now we apply the Cauchy–Schwarz inequality and Weyl–van der Corput
lemma [3, Lemma 2.5] to the sum over n and get

SI � Φ(H)

 Hx

Q1/2
+
∑
h∼H

 x

Q

∑
q≤Q

∑
m∼M

∑
n∼N

e(f2(m,n))

1/2
+ x1−δ−ε, (15)

where f2(m,n) = f1(m,n+ q)− f1(m,n) and Q ≤ N is a parameter at our disposal. We choose

Q = [x2(1−γ)+2δ+ε] + 1 , (16)

which makes the first term in (15) admissible. Applying partial summation to the sums over n and m
successively we find that if N ≥ x2(1−γ)+3δ+ε (which is not restrictive in view of (13)), then

∑∑
m∼M,n∼N

e(f2(m,n))�

∣∣∣∣∣∣
∑∑

m∼M,n∼N
e(αqm+ hmγ((n+ q)γ − nγ))

∣∣∣∣∣∣ . (17)

We write k = [αq] and θ = {αq} (note that k and θ do not depend on m and n, and 0 ≤ θ < 1) and we
derive from (17) that ∑∑

m∼M,n∼N
e(f2(m,n))�

∣∣∣∣∣∣
∑∑

m∼M,n∼N
e(f3(m,n))

∣∣∣∣∣∣
where f3(m,n) = θm+ hmγ((n+ q)γ − nγ). Hence

SI � Φ(H)
∑
h∼H

 x

Q

∑
q≤Q

∣∣∣∣∣ ∑
m∼M

∑
n∼N

e(f3(m,n))

∣∣∣∣∣
1/2

+ x1−δ−ε . (18)

Now we apply the Poisson summation formula [3, Lemma 3.6] over m. We remove the arising smooth weights
via partial summation and get ∑

m∼M

∑
n∼N

e(f3(m,n))

�MF−1/2

∣∣∣∣∣∑
n∼N

∑
m

e(f4(m,n))

∣∣∣∣∣+ xF−1/2 +N log x

where f4(m,n) = c1h
1/(1−γ)((n + q)γ − nγ)1/(1−γ)(m − θ)γ/(γ−1), F = qxγHN−1 and m runs through an

interval [M1,M
′
1] which endpoints are monomials of n such that M1,M

′
1 � FM−1. We substitute this

estimate in (18) and use (12), (14) to get

SI � Φ(H)
∑
h∼H

xM
Q

∑
q≤Q

F−1/2

∣∣∣∣∣∑
n∼N

∑
m

e(f4(m,n))

∣∣∣∣∣
1/2

+ x1−δ−ε . (19)

Note that if FM−1 � xε, i.e. the summation over m in the last sum is too short, then the trivial estimate
of the sums over m and n in (19) is sufficient to obtain the desired result. Thus we consider further the case
FM−1 � xε. We will estimate the sum over m,n in two different ways.
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Our first tool is van der Corput’s estimate as it is stated in [3, Theorem 2.9]. We change the order of
summation and apply it with q = 1 to the sum over n (this is equivalent to the use of the exponent pair
( 1
6 ,

2
3 )). Summing up the obtained estimate we find that

SI � x1−δ−ε

for
x20(1−γ)+24δ−2+ε ≤ N ≤ x4(1−γ)+5δ .

Thus, we may suppose further that
N ≤ x20(1−γ)+24δ−2+ε . (20)

Note that when (12) holds this bound is always smaller than (14).
We can also estimate the sum in the left-hand side of (19) differently. First we apply the Weyl–van der

Corput inequality over n, introducing in this way a new parameter Q1 ≤ N . We get∣∣∣∣∣∑
m

∑
n∼N

e(f4(m,n))

∣∣∣∣∣
� NF

MQ
1/2
1

+

 NF

MQ1

∑
q1≤Q1

∣∣∣∣∣∑
m

∑
n∼N

e(f5(m,n))

∣∣∣∣∣
1/2

(21)

where f5(m,n) = f4(m,n+ q1)−f4(m,n)∆̃1c2q1(qh)1/(1−γ)(m− θ)γ/(1−γ)n−2 � q1FN−1, ∆1 = (q+ q1)/N .
We choose

Q1 = [x6(1−γ)+7δ−1+εN ] + 1 (22)

which makes the contribution of the first term sufficiently small.
Then we use the Poisson summation formula over n. Let [N1(m), N2(m)] be the interval through which

runs n in (21) and let [N3(m), N4(m)] be the interval through which runs ∂
∂yf5(m, y) when n runs through

[N1(m), N2(m)] (then N3(m), N4(m) � q1FN−2). Denoting by yn the unique solution of the equation

∂

∂y
f5(m, yn) = n (n ∈ [N3(m), N4(m)])

we obtain from [3, Lemma 3.6] and partial summation that∣∣∣∣∣∣
∑
m

∑
N1(m)<n≤N2(m)

e(f5(m,n))

∣∣∣∣∣∣
�

∣∣∣∣∣∣
∑
m

∑
N3(m)≤n≤N4(m)

∣∣∣∣ ∂2∂y2 f5(m, yn)

∣∣∣∣−1/2· e(f6(m,n))

∣∣∣∣∣∣
+
F

M

(
N3/2

(q1F )1/2
+ log x

)
� N3/2

(q1F )1/2

∣∣∣∣∣∑
m

∑
n

e(f6(m,n))

∣∣∣∣∣+
F

M

(
N3/2

(q1F )1/2
+ log x

)
(23)

where
f6(m,n) = f5(m, yn)− nyn .

If q1FN
−2 � xε then the first term in the right-hand side of (23) may be omitted at the cost of a xε factor

and the lemma follows from (12), (13), (16), (19)–(23). We consider further the case q1FN
−2 � xε. Then

the argument of the proof of Lemma 3.9 of [3] shows that

f6(m,n)∆̃1c3q
1/3
1 (hq)1/3(1−γ)(m− θ)γ/3(1−γ)n2/3 � q1F/N . (24)
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Let us denote the sum over m,n in (23) by T . We apply to it Weyl-van der Corput over m and obtain

T � q1F
2

xNQ
1/2
2

+

 q1F
2

xNQ2

∑
q2≤Q2

∣∣∣∣∣∣
∑
(m,n)

e(f7(m,n))

∣∣∣∣∣∣
1/2

(25)

where Q2 ≤ FM−1 is a parameter, (m,n) runs through a subdomain of the domain of summation in (23)
and

f7(m,n) = f6(m+ q2, n)− f6(m,n) . (26)

We choose
Q2 = [x20(1−γ)+24δ−2+εN−1] + 1 , (27)

and make the contribution of the first term in the right-hand side of (25) admissible. From (24) and (26) we
derive that

f7(m,n) ∆̃2 c4q2q
1/3
1 (hq)1/3(1−γ)(m− θ)γ/3(1−γ)−1n2/3 � q1q2

M

N

where ∆2 = ∆1 + q2MF−1. Now we estimate the sum over m,n via [3, Lemma 6.11] with (x, y) = (m,n)
and we get

x−ε
∑
(m,n)

e(f7(m,n))� q1q2
M

N
+

q
1/2
1 F 2

q
1/2
2 x3/2

.

Combining the last inequality with (12), (13), (16), (19)–(23), (25) and (27), we complete the proof of
the lemma.

5. Proof of the Proposition

The inner sum in the left-hand side of (13) is an exponential sum over primes. It is well-known that the
sum ∑

n∼x
Λ(n)F (n)

may be decomposed into double sums of two types—Type I and Type II sums. Both Type I and Type II
sums are sums of the form ∑∑

m∼M,n∼N
mn∼x

a(m) b(n)F (mn) .

We call the sum Type I if the coefficients a(m) and b(n) satisfy the conditions (10), and Type II if they
satisfy the conditions (11).

We make the decomposition using an identity due Heath-Brown [4, Lemma 3]

Lemma 3. Let 3 < U < V < Z < x and suppose that Z − 1/2 ∈ N, x ≥ 64Z2U , Z ≥ 4U2, V 3 ≥ 32x.
Assume further that F (n) is a complex valued function such that |F (n)| ≤ 1. Then the sum∑

n∼x
Λ(n)F (n)

may be decomposed into O(log10 x) sums, each either of Type I with N > Z, or of Type II with U < N < V .

We apply Lemma 3 with F (n) = e(αn+ h(n+ u)γ), U = 2−10x1−γ+2δ+ε, V = 4x1/3 and

Z = max([x36(1−γ)+42δ−4+ε], [5x1/3], [x2(1−γ)+4δ+ε]) + 1/2 .

Then the Proposition follows from Lemmas 1 and 2.
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