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Abstract. We study the representations of large integers n as sums p21 + · · ·+p2s, where p1, . . . , ps
are primes with |pi − (n/s)1/2| ≤ nθ/2, for some fixed θ < 1. When s = 5 we use a sieve method to
show that all sufficiently large integers n ≡ 5 (mod 24) can be represented in the above form for
θ > 8/9. This improves on earlier work by Liu, Lü and Zhan [11], who established a similar result
for θ > 9/10. We also obtain estimates for the number of integers n satisfying the necessary local
conditions but lacking representations of the above form with s = 3, 4. When s = 4 our estimates
improve and generalize recent results by Lü and Zhai [18], and when s = 3 they appear to be first
of their kind.

1. Introduction

The study of additive representations as sums of squares of primes goes back to the work of
Hua [8]. Define the sets

H3 = {n ∈ N : n ≡ 3 (mod 24), 5 - n},
Hs = {n ∈ N : n ≡ s (mod 24)} (s ≥ 4).

Hua proved that all sufficiently large integers n ∈ H5 can be expressed as sums of five primes and
that “almost all” integers n ∈ Hs, s = 3, 4, can be expressed as sums of s squares of primes. Let
Es(X) denote the number of positive integers n ∈ Hs, with n ≤ X, that cannot be represented as
sums of s squares of primes. As was observed by Schwarz [21], Hua’s method yields the bounds

Es(X)� X(logX)−A (s = 3, 4),

for any fixed A > 0. Since the late 1990s, a burst of activity has produced a series of successive
improvements on these two bounds, culminating in the estimates (see Harman and Kumchev [7])

Es(X)� X(5−s)/2−3/20+ε (s = 3, 4), (1.1)

for any fixed ε > 0.
In the present note, we study the additive representations of a large integer n as the sum of

three, four or five “almost equal” squares of primes. Given a large integer n ∈ Hs, s ≥ 3, we are
interested in its representations of the form{

n = p2
1 + · · ·+ p2

s,∣∣pj − (n/s)1/2
∣∣ ≤ H (j = 1, . . . , s),

(1.2)

where H = o(n1/2). The first to consider this question were Liu and Zhan [12], who showed under
the assumption of the Generalized Riemann Hypothesis (GRH) that all sufficiently large n ∈ H5

can be represented in the form (1.2) with s = 5 and H = nθ/2 for any fixed θ ∈ (0.9, 1). Shortly
thereafter, Bauer [1] proved that the same conclusion holds unconditionally for θ ∈ (1−δ, 1), where
δ > 0 is a (small) absolute constant. Bauer’s method is a variant of a method introduced by
Montgomery and Vaughan [20] to study the exceptional set in the binary Goldbach problem. Thus,
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the value of δ in Bauer’s result is at the same time quite small and rather difficult to estimate
explicitly. In 1998, Liu and Zhan [13] made an important breakthrough in the study of the major
arcs in the Waring–Goldbach problem, which allowed them, among other things, to give a simpler
proof of Bauer’s result with the explicit value δ = 0.04. Their work was followed by a series of
successive improvements on the value of δ:

Liu and Zhan [14] δ = 0.0434...
Bauer [2] δ = 0.0447...
Lü [16] δ = 0.0571...
Bauer and Wang [3] δ = 0.0642...
Lü [17] δ = 0.0714...
Liu, Lü and Zhan [11] δ = 0.1.

Furthermore, Meng [19] showed that δ = 3/29 = 0.1034... is admissible under GRH. Our first
theorem improves further on these results by adding δ = 1/9 = 0.111... to the above list.

Theorem 1. All sufficiently large integers n ∈ H5 can be represented in the form (1.2) with s = 5

and H = n4/9+ε for any fixed ε > 0.

We also obtain bounds for the number of integers n ∈ Hs, s = 3, 4, without representations as
sums of s almost equal squares of primes. For H = o(X1/2) and s = 3, 4, we define

Es(X;H) = #
{
n ∈ Hs : |n−X| ≤ HX1/2 and (1.2) has no solution

}
. (1.3)

Our interest in Es(X;H) is twofold. First, a non-trivial bound of the form

Es(X;Xθ/2)� X(1+θ)/2−∆, (1.4)

for some fixed ∆ > 0, implies that almost all integers n ∈ Hs are representable in the form (1.2)

with H = nθ/2. Thus, we are interested in bounds of the form (1.4) with θ as small as possible.
Furthermore, given a value of θ for which we can achieve a bound of the above form, we want to
maximize the value of ∆.

When s = 4, Lü and Zhai [18] obtained results in both directions outlined above. First, they
proved that (1.4) holds with s = 4, θ > 0.84 and some ∆ = ∆(θ) > 0. Moreover, Lü and Zhai
showed that, for θ > 0.9 and some η = η(θ) > 0,

E4(X;Xθ/2)� Xθ/2−η. (1.5)

We remark that this estimate implies the result of Liu, Lü and Zhan [11] on sums of five almost
equal squares of primes, because one can combine (1.5) with known results on the distribution of

primes in short intervals to deduce a version of Theorem 1 with H = nθ/2. In fact, we use the same
observation to deduce Theorem 1 from the following theorem, which sharpens and generalizes (1.5).

Theorem 2. For any fixed θ with 8/9 < θ < 1 and for any fixed ε > 0, one has

E4(X;Xθ/2)� X(16−11θ)/14+ε. (1.6)

When we embarked on this project, one of our goals was to obtain upper bounds of the form
(1.4) that are also relatively sharp in the ∆-aspect. In particular, we were interested in bounds in
which ∆ is an increasing function of θ and which approach the best known bounds for Es(X) when
θ ↑ 1. In the extreme case θ = 1 − ε, the exponent in (1.6) becomes 5/14 + 2ε, which falls just
short of (1.1) and matches the strength of the second-best bound for E4(X) obtained by Harman
and Kumchev [6]. We remark that the choice σ = (2θ − 1)/7 in Section 6, which determines the
exponent on the right side of (1.6), represents a natural barrier for the methods employed in this
work. Thus, Theorem 2 is, in some sense, best possible.
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We also obtain a small improvement on the first result of Lü and Zhai [18]. Our next theorem
extends that result in two ways: it reduces the lower bound on θ to θ > 0.82, and it gives an explicit
expression for ∆.

Theorem 3. For any fixed θ with 0.82 < θ < 1 and for any fixed ε > 0, one has

E4(X;Xθ/2)� X1−2σ+ε,

where σ = σ(θ) = min(θ − 31/40, (2θ − 1)/8).

The methods used to establish Theorems 2 and 3 can also be used to establish the following
estimate for E3(X;Xθ/2) which, to the best of our knowledge, is the first result of this type for
sums of three almost equal squares of primes.

Theorem 4. For any fixed θ with 0.85 < θ < 1 and for any fixed ε > 0, one has

E3(X;Xθ/2)� X1−σ+ε, (1.7)

where σ = σ(θ) is the function from Theorem 3. Furthermore, when 8/9 < θ < 1, one has

E3(X;Xθ/2)� X(8−2θ)/7+ε.

Unlike the classical Waring–Goldbach problem, the problem considered in this note remains of
interest even when the number of variables exceeds five. Indeed, it will take little effort for the
reader familiar with the circle method to realize that the work behind Theorem 3 can be used to
establish a version of Theorem 1 with s = 8 and H = n0.41+ε. Similarly, the work behind Theorem 4
can be used to establish a version of Theorem 1 for six squares. In fact, it is possible to establish
such results for all fixed s ≥ 6. We state those as the following theorem.

Theorem 5. Let s ≥ 6 and define

θs =

{
(1 + 0.775(s− 4))/(s− 3) if 6 ≤ s ≤ 16,

19/24 if s ≥ 17.

All sufficiently large integers n ∈ Hs can be represented in the form (1.2) with H = nθs/2+ε for any
fixed ε > 0.

There is an important difference between Theorems 3–5, on one hand, and Theorems 1 and 2
(and most other modern results on the Waring–Goldbach problem), on the other. New knowledge
of the distribution of primes in short intervals or in arithmetic progressions will have no immediate
effect on the quality of Theorems 1 and 2 (though it may lead to somewhat simpler proofs). In
contrast, the lower bounds for θ in Theorems 3 and 4 and the choice of θs in Theorem 5 are tied
directly to results from multiplicative number theory.

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real number.
Any statement in which ε occurs holds for each positive ε, and any implied constant in such a
statement is allowed to depend on ε. The letter p, with or without subscripts, is reserved for prime
numbers; c denotes an absolute constant, not necessarily the same in all occurrences. As usual in
number theory, µ(n), φ(n) and τ(n) denote, respectively, the Möbius function, the Euler totient
function and the number of divisors function. Also, if n ∈ N and z ≥ 2, we define

ψ(n, z) =

{
1 if n is divisible by no prime p < z,

0 otherwise.
(1.8)

It is also convenient to extend the function ψ(n, z) to all real n ≥ 1 by setting ψ(n, z) = 0 for
n /∈ Z. We write e(x) = exp(2πix) and (a, b) = gcd(a, b), and we use m ∼ M as an abbreviation
for the condition M ≤ m < 2M . We use χ(n) to denote Dirichlet characters and set δχ = 1 or
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0 according as χ is principal or not. The sums
∑

χ mod q

and
∑∗

χ mod q

denote summations over all the

characters modulo q and over the primitive characters modulo q, respectively.

2. Outline of the method

We shall focus on the proof of Theorem 2. Let Z denote the set of integers counted by
E4(X;Xθ/2). We set

x =
√
X/4, I =

(
x− xθ, x+ xθ

]
,

and we consider the sum
R4(n) =

∑
m2

1+···+m2
4=n

mi∈I

$(m1) · · ·$(m4),

where $ is the characteristic function of the prime numbers. We note that R4(n) = 0 for all n ∈ Z.
All prior work on the problem uses the Hardy–Littlewood circle method to analyze R4(n) (or similar

quantities) and to derive bounds for Es(X;Xθ/2). In contrast, we apply the circle method to a
related sum, which we construct using Harman’s “alternative sieve” method [5, Ch. 3]. Suppose
that we have arithmetic functions λ1, λ2 and λ3 such that, for m ∈ I,

λ3(m) ≥ $(m) ≥ λ1(m)− λ2(m), λ2(m) ≥ 0. (2.1)

Then
R4(n) ≥ R4(n;$,λ1)−R4(n;λ2, λ3), (2.2)

where
R4(n;λ, ν) =

∑
m2

1+···+m2
4=n

mi∈I

$(m1)$(m2)λ(m3)ν(m4).

It is convenient to set λ0 = $, as we can then work simultaneously with the two sums on the right
side of (2.2).

We apply the circle method to R4(n;λj , λk), 0 ≤ j, k ≤ 3. We have

R4(n;λj , λk) =

∫ 1

0
f0(α)2fj(α)fk(α)e(−αn) dα, (2.3)

where
fi(α) = f(α;λi), f(α;λ) =

∑
m∈I

λ(m)e(αm2).

Suppose that σ is a fixed real number, with 0 < σ < θ/2. We set

P = x2σ−ε, Q = x2θP−1, L = log x, (2.4)

and define
M(q, a) =

{
α ∈ R : |qα− a| ≤ Q−1

}
.

The sets of major and minor arcs in the application of the circle method are given, respectively, by

M =
⋃

1≤a≤q≤P
(a,q)=1

M(q, a) and m =
[
Q−1, 1 +Q−1

]
\M. (2.5)

The most difficult part of the evaluation of the integral in (2.3) is the estimation of the contri-
bution from the minor arcs. In fact, we can control that contribution only on average over n. We
write

F (α) = f0(α)2(f0(α)f1(α)− f2(α)f3(α)), Z(α) =
∑
n∈Z

e(−αn).
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In Section 3, we show that∫
m
F (α)Z(α) dα� xθ−σ+ε

(
|Z|1/2x3θ/2 + |Z|xθ

)
, (2.6)

whenever λ1 and λ3 satisfy the following hypothesis:

(i) min(|f0(α)|, |fi(α)|)� xθ−σ+ε whenever α ∈ m.

In Section 6, we construct sieve functions λ1, λ2 and λ3 satisfying (2.1) and such that this hypothesis
holds for λ1 and λ3.

Since the λi’s constructed in Section 6 have arithmetic properties similar to $, one expects that
one should be able to evaluate the contribution of the major arcs to right side of (2.3) by a variant
of the methods in Liu and Zhan [15, Ch. 6]. However, for technical reasons (see (5.5) below), we
need to modify slightly the sums fi(α), i ≥ 1, on the major arcs before we can apply those methods.
When α ∈M, we shall decompose fi(α) as

fi(α) = gi(α) + hi(α), (2.7)

with hi(α) satisfying

hi(α)� xθ−σ. (2.8)

We then define the generating functions

G(α) = f0(α)2(f0(α)g1(α)− g2(α)g3(α)), H(α) = F (α)−G(α).

In Section 5, we use the properties of the sieve weights λ1, λ2 and λ3 to show that if n ∈ Z, then∫
M
G(α)e(−αn) dα = Knx

3θ−1L−4
(
C +O

(
L−1

))
, (2.9)

where 1� Kn � L and C = C(θ, σ) is a certain numerical constant related to the construction of
the λi’s. Hence, on the assumption that C > 0, we have∫

M
G(α)Z(α) dα� |Z|x3θ−1L−4. (2.10)

Furthermore, using (2.8) and a variant of the argument leading to (2.6), we establish the bound∫
M
H(α)Z(α) dα� xθ−σ+ε

(
|Z|1/2x3θ/2 + |Z|xθ

)
. (2.11)

Since R4(n) = 0 when n ∈ Z, we obtain from (2.2) that∫ 1

0
F (α)Z(α) dα ≤ 0.

Combining this inequality and (2.10), we obtain

|Z|x3θ−1L−4 �
∣∣∣∣ ∫

m
F (α)Z(α) dα+

∫
M
H(α)Z(α) dα

∣∣∣∣. (2.12)

Hence, under the assumptions that C > 0 and σ > 1 − θ, it follows readily from (2.6), (2.11) and
(2.12) that

|Z| � x2−θ−2σ+ε.

To complete the proof of Theorem 2, we show that C(θ, σ) > 0 when 8/9 < θ < 1 and σ = (2θ−1)/7.
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3. Proof of Theorem 2: Minor arc estimates

In this section, we assume that the exponential sums hi(α) satisfy (2.8) and the sieve coefficients
λ1 and λ3 satisfy hypothesis (i) in Section 2, and we deduce inequalities (2.6) and (2.11).

First, we consider (2.6). Since the functions λi which we construct in Section 6 are bounded, a
comparison of the underlying Diophantine equations yields

Ii =

∫ 1

0
|fi(α)|4 dα�

∫ 1

0

∣∣∣∣ ∑
m∈I

e(αm2)

∣∣∣∣4 dα� x2θ+ε, (3.1)

where the last inequality follows from [10, Lemma 4.1]. Also, using an idea of Wooley [22] (see Liu
and Zhan [15, eq. (8.31)]), we have

I∗ =

∫ 1

0
|f0(α)Z(α)|2 dα� |Z|xθ+ε + |Z|2xε. (3.2)

Hence, assuming hypothesis (i) for λ1 and λ3, we can apply Hölder’s inequality to show that∫
m
|F (α)Z(α)| dα� xθ−σ+εI

1/2
∗
(
I

1/2
0 + (I0I1)1/4 + (I0I2)1/4 + (I2I3)1/4

)
� xθ−σ+ε

(
|Z|1/2x3θ/2+ε + |Z|xθ+ε

)
. (3.3)

The proof of (2.11) is similar. We have

H(α) = f0(α)3h1(α) + f0(α)2(h2(α)f3(α) + g2(α)h3(α)),

so we may use (2.8), (3.1), (3.2) and Hölder’s inequality in a similar fashion to (3.3) to establish
(2.11). The only difference is that in the process we also need a bound for the fourth moment of
g2(α) on the major arcs. Using (2.4), (2.8) and (3.1), we obtain∫

M
|g2(α)|4 dα�

∫ 1

0
|f2(α)|4 dα+ x4θ−4σ|M| � x2θ+ε,

which suffices to complete the proof of (2.11).

4. Exponential sum estimates

4.1. Minor arc estimates. In this section, we gather the exponential sum estimates needed to
establish that the sieve functions satisfy hypothesis (i). Let θ and σ be fixed real numbers, with
2/3 < θ < 1 and 0 < σ < (3θ − 2)/6, and define

Q0 = x3θ−1−4σ. (4.1)

We use Dirichlet’s theorem on Diophantine approximation to approximate each real α by a rational
number a/q, a, q ∈ Z, such that

1 ≤ q ≤ Q0, (a, q) = 1,

∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qQ0
. (4.2)

The first two lemmas follow from Propositions A and B in Liu and Zhan [12] on account of (4.1)
and (4.2).

Lemma 4.1. Let 2/3 < θ < 1 and 0 < σ < (2θ − 1)/6, and suppose that α has a rational
approximation a/q satisfying (4.2) with q ≥ x4σ. Suppose also that the coefficients ξu, ηv satisfy
|ξu| ≤ τ(u)c, |ηv| ≤ τ(v)c. Then ∑

u∼U

∑
uv∈I

ξuηve(αu2v2)� xθ−σ+ε,
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provided that

x1−θ+2σ ≤ U ≤ xθ−4σ.

Lemma 4.2. Let 2/3 < θ < 1 and 0 < σ < (3θ − 1)/6, and suppose that α has a rational
approximation a/q satisfying (4.2) with q ≥ x2σ. Suppose also that the coefficients ξu satisfy
|ξu| ≤ τ(u)c. Then ∑

u∼U

∑
uv∈I

ξue(αu2v2)� xθ−σ+ε,

provided that

U ≤ xθ/2−σ.

In the next lemma, we use Lemmas 4.1 and 4.2 to derive an estimate for a special kind of double
exponential sums which arise in applications of Harman’s sieve method.

Lemma 4.3. Let ψ(v, z) be defined by (1.8). Let 2/3 < θ < 1 and 0 < σ < (3θ − 2)/6, and
suppose that α has a rational approximation a/q satisfying (4.2) with q ≥ x4σ. Suppose also that
the coefficients ξu satisfy |ξu| ≤ τ(u)c. Then∑

u∼U

∑
uv∈I

ξuψ(v, z)e(αu2v2)� xθ−σ+ε, (4.3)

provided that

U ≤ xθ−4σ, z ≤ x2θ−1−6σ.

Proof. When U ≥ x1−θ+2σ, the desired result follows from Lemma 4.1. We may therefore suppose
that U ≤ x1−θ+2σ. Note that, by the hypothesis on σ, we then have U ≤ xθ/2−σ. Let

P(z) =
∏
p<z

p.

Then the left side of (4.3) is∑
u∼U

∑
d|P(z)

∑
dur∈I

µ(d)ξue(αd2u2r2) = Σ1 + Σ2 + Σ3,

where Σ1, Σ2 and Σ3 are the parts of the sum on the left subject, respectively, to the constraints

du ≤ x1−θ+2σ, x1−θ+2σ < du ≤ xθ−4σ and du > xθ−4σ.

By writing y = du, we obtain

Σ1 � L sup
Y≤x1−θ+2σ

∣∣∣∣∑
y∼Y

∑
yr∈I

ξ′ye(αy2r2)

∣∣∣∣,
with coefficients ξ′y subject to |ξ′y| ≤ τ(y)c. Hence, the desired upper bound for Σ1 follows from
Lemma 4.2. Similarly, the desired upper bound for Σ2 follows from Lemma 4.1. To estimate Σ3,
we apply the method of proof of [5, Theorem 3.1] to decompose Σ3 into a linear combination of
O(L2) sums of the type appearing in Lemma 4.1. The basic idea is to take out the prime factors of
d, one by one, until we construct a divisor k of d such that x1−θ+2σ ≤ ku ≤ xθ−4σ. The hypothesis
on z is chosen to ensure that this is possible. Finally, we apply Lemma 4.1 to estimate the bilinear
sums occurring in the decomposition. �

We also need a variant of the main result in Liu, Lü and Zhan [11].
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Lemma 4.4. Let 7/10 < θ < 1 and 0 < σ < min{(3θ−2)/6, (10θ−7)/15}, and suppose that α has
a rational approximation a/q satisfying (4.2) with q ≤ x4σ. Suppose also that ψ is a fixed Dirichlet
character modulo r, r ≤ x. Then ∑

p∈I
ψ(p)e(αp2)� rxθ−σ+ε,

provided that

q + x2θ|qα− a| ≥ x2σ.

Proof. We need to make a slight adjustment to the proof of [11, Theorem 1.1]. In place of [11,
eq. (2.8)], we have∑

p∈I
ψ(p)e(αp2)� q−1/2+ε

∑
χ mod q

∣∣∣∣ ∑
m∈I′

Λ(m)ψχ(m)e(αm2)

∣∣∣∣+ xθ−1/2L

� q−1/2+ε
∑

χ mod qr

∣∣∣∣ ∑
m∈I′

Λ(m)χ(m)e(αm2)

∣∣∣∣+ xθ−1/2L,

where I ′ is a subinterval of I. Here, we have used that as χ runs through the characters modulo q,
the product ψχ runs through a subset of the characters modulo qr. We now follow the rest of the
proof of [11, Theorem 1.1] and find that the given exponential sum is

� r1/2(qrx)ε
{
xθ−1/2Ξ1/2 + x1/2(qr)1/3Ξ1/6 + x(7+5θ)/15 + rxΞ−1/2

}
,

where Ξ = qrx2−2θ
(
1 + x2θ|α − a/q|

)
. Under the hypotheses of the lemma, all the terms in this

bound are � rxθ−σ+ε. �

Suppose now that an arithmetic function λ satisfies the following hypothesis:

(i*) When m ≤ 2x, one can express λ(m) as a linear combination of O(Lc) convolutions of the
form ∑

uv=m
u∼U

ξuηv,

where |ξu| ≤ τ(u)c, U ≤ xθ−4σ, and either ηv = ψ(v, z) with z ≤ x2θ−1−6σ, or |ηv| ≤ τ(v)c

and U ≥ x1−θ+2σ.

Let α ∈ m and let a/q be a rational approximation to α of the form (4.2) with Q0 given by (4.1).
If q ≥ x4σ, then hypothesis (i*) means that we can apply either Lemma 4.1 or Lemma 4.3 to show
that

f(α;λ)� xθ−σ+ε.

On the other hand, if q ≤ x4σ, Lemma 4.4 with a trivial character ψ yields

f0(α)� xθ−σ+ε,

unless we have q ≤ x2σ−ε and |qα−a| ≤ x2σ−2θ+ε. However, together, these two inequalities would
place α in the set of major arcs M, contradicting our assumption that α ∈ m. Therefore, if a sieve
function λi has the structure described in hypothesis (i*) above, then λi satisfies hypothesis (i) in
Section 2. We shall use this observation in Section 6 to construct the sieve functions λ1, λ2 and λ3.
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4.2. Major arc estimates. In this section, we collect estimates for averages of exponential sums
f(β;λχ) over sets of primitive characters χ and over small values of β. We are interested in
arithmetic functions λ having the structure described in the following hypothesis:

(ii) When m ≤ 2x, one can express λ(m) as a linear combination of O(Lc) triple convolutions
of the form ∑

uvw=m
u∼U,v∼V

ξuηvζw,

where |ξu| ≤ τ(u)c, |ηv| ≤ τ(v)c, max(U, V ) ≤ x11/20, and either ζw = 1 for all w, or

|ζw| ≤ τ(w)c and UV ≥ x27/35.

The triple convolutions above may appear mysterious at first sight. They are chosen in accordance
with [4, Theorem 2.1], to ensure that that result can be applied at certain places in our proofs.
The sieve functions λi constructed in Section 6 will all satisfy this hypothesis, and so does von
Mangoldt’s function Λ. The latter can be established by Heath-Brown’s identity for Λ along the
lines of the proof of [4, Theorem 1.1]. Moreover, a variant of that argument using Linnik’s identity
instead of Heath-Brown’s shows that the characteristic function of the primes $ also satisfies
hypothesis (ii).

Lemma 4.5. Let 11/20 < θ < 1 and suppose that P,Q satisfy

PQ ≤ x1+θ, Q ≥ x31/20+ε.

Suppose also that g is a positive integer and λ is an arithmetic function satisfying hypothesis (ii)
above. Then ∑

r≤P
[g, r]−1+ε

∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)
|f(β;λχ)|2 dβ

)1/2

� g−1+2εx(θ−1)/2Lc. (4.4)

Proof. Using a simple summation argument (see [7, Lemma 1]), we can deduce (4.4) from the bound∑
r∼R
d|r

∑∗

χ mod r

(∫ 1/(rQ)

−1/(rQ)
|f(β, λχ)|2 dβ

)1/2

� x(θ−1)/2Lc
(
1 + d−1RQ−1x31/20

)
, (4.5)

where 1 ≤ R ≤ P and 1 ≤ d ≤ 2R.
We write ∆ = (RQ)−1. By Gallagher’s lemma (a variant of [15, Lemma 5.4]), we have∫ ∆

−∆
|f(β, λχ)|2 dβ � ∆2

∫ ∞
−∞

∣∣∣∣ ∑
m∈I′(t)

λ(m)χ(m)

∣∣∣∣2 dt,
where I ′(t) = I ∩ [t1/2, (t + (2∆)−1)1/2]. If we assume that ∆ ≥ x−1−θ (which follows from the
hypothesis PQ ≤ x1+θ), the sum over m is non-empty for a set of values of t having measure
� x1+θ. Thus, ∫ ∆

−∆
|f(β, λχ)|2 dβ � ∆2x1+θ

∣∣∣∣ ∑
M≤m≤M+H

λ(m)χ(m)

∣∣∣∣2, (4.6)

where M ∈ I and
H � min

(
xθ, (∆x)−1

)
= (∆x)−1.

We note that without loss of generality, we may choose M and H so that ‖M‖ = ‖M +H‖ = 1
2 .

Then, by Perron’s formula [15, Lemma 1.1],∑
M≤m≤M+H

λ(m)χ(m) =
1

2πi

∫ b+iT0

b−iT0

F (s, χ)
(M +H)s −M s

s
ds+O(1),

9



where 0 < b < L−1, T0 = x10, and

F (s, χ) =
∑

m∼2x/3

λ(m)χ(m)m−s.

Let T1 = ∆x2. When 0 < b < L−1, we have

(M +H)s −M s

s
� 1

T1 + |t|
.

Thus, by letting b ↓ 0, we deduce∑
M≤m≤M+H

λ(m)χ(m)�
∫ T0

−T0
|F (it, χ)| dt

T1 + |t|
+ 1. (4.7)

Let Σ(R, d) denote the left side of (4.5). Combining (4.6) and (4.7), we get

Σ(R, d)� x(1+θ)/2∆

(
LT−1

∑
r∼R
d|r

∑∗

χ mod r

∫ T

−T
|F (it, χ)| dt+ d−1R2

)
, (4.8)

for some T with T1 ≤ T ≤ T0. Under hypothesis (ii), the above average can be estimated by [4,
Theorem 2.1]. This yields

Σ(R, d)� x(1+θ)/2∆Lc
(
xT−1

1 + d−1R2x11/20
)
,

and (4.5) follows at once. �

The next lemma can be proved similarly to [16, Lemma 3.2] with [16, Lemma 5.1] replaced by
[4, Theorem 2.1] and Heath-Brown’s identity by hypothesis (ii).

Lemma 4.6. Let 7/10 < θ < 1 and suppose that P,Q satisfy

P ≤ xθ−11/20−ε, PQ−1 ≤ x2θ−31/10−ε, PQ ≤ x1+θ.

Suppose also that g is a positive integer and λ is an arithmetic function satisfying hypothesis (ii)
above. Then ∑

r≤P
[g, r]−1+ε

∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β;λχ)| � g−1+2εxθLc. (4.9)

Furthermore, for any given A > 0, there is a B = B(A) > 0 such that∑
LB≤r≤P

r−1+ε
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β;λχ)| � xθL−A. (4.10)

The final lemma in this section extends the range of r in (4.10) below LB, though only in the
special case λ = $. We should point, however, that the restriction to $ is merely for convenience.
In principle, the result can be extended to include exponential sums with sieve weights, though
that would require a more technical proof. Since the more general case is not needed in this paper,
we select simplicity over generality here.

Lemma 4.7. Let 19/24 < θ < 1 and suppose that P,Q satisfy

P ≤ xθ−11/20−ε, PQ−1 ≤ x2θ−31/10−ε, PQ ≤ x1+θ.

Then, for any given A > 0,∑
r≤P

r−1+ε
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β;$χ)− δχv(β)| � xθL−A, (4.11)
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where

v(β) =
∑
m∈I

e(βm2)

logm
. (4.12)

Proof. By the second part of Lemma 4.6, it suffices to show that

max
|β|≤1/Q

|f(β;$χ)− δχv(β)| � xθL−A−2B (4.13)

for all characters χ with moduli q ≤ LB, where B = B(A) is the number appearing in (4.10). When
|β| ≥ x−2θ+ε, Lemma 4.4 with σ = ε/2, ε = ε2, a = 0, q = 1, and ψ = χ yields

f(β;$χ)� xθ−ε/3.

Thus, we may assume that Q ≥ x2θ−ε in (4.13). (In the case r = 1, we also need to estimate the
main term v(β) for |β| ≥ x−2θ+ε; that can be done using (5.21) below.)

We now argue similarly to the proof of [16, Lemma 3.3]. By partial summation and the arguments
in [16], we obtain

f(β;$χ)− δχv(β)� xθ
∑

|Im(ρ)|≤T

xRe(ρ)−1 + xθ−ε,

where T = x2−2θ+3ε and the summation is over the non-trivial zeros of the Dirichlet L-function
L(s, χ). As is customary, let N(χ;α, T ) denote the number of zeros of L(s, χ) in the region

|Im(s)| ≤ T, Re(s) ≥ α.
By the zero-free region for Dirichlet L-functions [15, Theorem 1.10] and Siegel’s theorem on ex-
ceptional zeros [15, Theorem 1.12], there exists a constant c0 > 0 such that N(χ;α, T ) = 0 when

α ≥ 1− η(T ), where η(T ) = c0(log T )−4/5. Therefore, by Huxley’s zero-density theorem,∑
|Im(ρ)|≤T

xRe(ρ)−1 = −
∫ 1−η(T )

0
xα−1 dN(χ;α, T )

� L

∫ 1−η(T )

0
xα−1N(χ;α, T ) dα+ x−1TL

� L
(
x−1T 12/5

)η(T )
+ x−ε � exp

(
− c1L

1/5
)
,

provided that ε is chosen sufficiently small. �

5. Proof of Theorem 2: The major arcs

In this section, we establish (2.9) and describe the numbers Kn and C appearing there. First,
we need to make some assumptions about the structure and asymptotic behavior of the functions
λ1, λ2 and λ3. We suppose that they satisfy hypothesis (ii) in Section 4 and the following three
additional hypotheses:

(iii) There is a z ≥ xσ such that λ(m) = 0 whenever m is divisible by a prime p < z.
(iv) Let A,B > 0 be fixed, let χ be a non-principal character modulo q, q ≤ LB, and let I ′ be

a subinterval of I. Then ∑
m∈I′

λ(m)χ(m)� xθL−A.

(v) Let A > 0 be fixed and let I ′ be a subinterval of I. There exists a constant κ > 0 such that∑
m∈I′

λ(m) = κ|I ′|L−1 +O
(
xθL−A

)
.
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To fully appreciate hypotheses (iv) and (v), one may consider what they say in the special case
when λ = λ0, the characteristic function of the primes. In that case, (iv) is a short-interval version
of the Siegel–Walfisz theorem, and (v), with κ0 = 1, is a short-interval version of the Prime Number
Theorem.

Under hypotheses (ii)–(v), the evaluation of the right side of (2.9) is similar to (although some-
what more technical than) the analysis of the major arcs in earlier work on the problem. Let κi
denote the constant κ appearing in hypothesis (v) for λi, and define the singular integral J(n) and
the singular series S(n) by

J(n) =

∫ 1

0
v(β)4e(−βn) dβ, S(n) =

∞∑
q=1

A(n; q),

A(n; q) = φ(q)−4
∑

1≤a≤q
(a,q)=1

S(q, a)4e(−an/q),

where v(β) is defined by (4.12) and

S(q, a) =
∑

1≤h≤q
(h,q)=1

e(ah2/q).

We establish the following result.

Proposition 5.1. Let θ and σ be fixed real numbers with

19/24 < θ < 1 and 0 < σ ≤ θ − 31/40, (5.1)

and let the major arcs M be given by (2.4) and (2.5). Suppose further that the arithmetic functions
λj and λk, 0 ≤ j, k ≤ 3, satisfy hypotheses (ii)–(v) and the exponential sums gj(α) and gk(α) are
defined by (5.3) below. Then∫

M
f0(α)2gj(α)gk(α)e(−αn) dα = S(n)I(n)

(
κjκk +O

(
L−1

))
.

Using standard major arc techniques (see Liu and Zhan [15, Lemma 8.3] and a variant of [15,

Lemma 6.4]), we find that when n ∈ H4 and |n−X| ≤ X(θ+1)/2,

x3θ−1L−4 � S(n)J(n)� x3θ−1L−3. (5.2)

Thus, we can use Proposition 5.1 to deduce (2.9) with

Kn = x1−3θL4S(n)J(n) and C = κ1 − κ2κ3.

We now proceed to prove the proposition.

Proof of Proposition 5.1. We commence our analysis of the major arcs by defining the expo-
nential sums gi(α) appearing in the statement (and in (2.9) via G(α)). Define the function ω on
I ×M by

ω(m,α) =

{
0 if α ∈M(q, a) and (m, q) ≥ xσ,
1 otherwise.

For α ∈M, we set

gi(α) =
∑
m∈I

λi(m)ω(m,α)e(αm2), (5.3)

and then define hi(α) by (2.7). We note that it is convenient to include i = 0 in this definition, even
though in that case we have g0(α) = f0(α). Let α be on a major arc M(q, a). When λi satisfies
hypothesis (iii), the sum gi(α) is supported on integers m with (m, q) = 1. Furthermore, since an
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integer q ≤ x2σ−ε can have at most one prime divisor p ≥ z, the sum hi(α) is supported on integers
divisible by p (if p exists) and satisfies

hi(α)�
∑
m∈I
p|m

|λi(m)| � xθ−σ.

This verifies (2.8). We remark that although the prime p in this bound depends on the major arc
M(q, a), the bound itself is uniform.

When 0 ≤ i ≤ 3, we define the function f∗i (α) on M by setting

f∗i (α) = κiφ(q)−1S(q, a)v(α− a/q) if α ∈M(q, a).

This function is the major arc approximation to fi(α) suggested by hypotheses (iv) and (v). We
now proceed to show that we can replace the exponential sums gi(α) in (2.9) by the respective
f∗i (α). We shall show that∫

M

(
f0(α)2gj(α)gk(α)− f∗0 (α)2f∗j (α)f∗k (α)

)
e(−αn) dα� x3θ−1L−A (5.4)

for any fixed A > 0.
Let α ∈ M(q, a). Then, similarly to [6, eq. (4.1)] (it is here that we make use of the weights

ω(m,α)), we have

gi(α) = φ(q)−1
∑

χ mod q

S(χ, a)f(α− a/q;λiχ), (5.5)

where

S(χ, a) =

q∑
h=1

χ̄(h)e(ah2/q).

Hence,

f0(α) = f∗0 (α) + ∆0(α), gi(α) = f∗i (α) + ∆i(α), (5.6)

with

∆i(α) = φ(q)−1
∑

χ mod q

S(χ, a)Wi(α− a/q, χ),

Wi(β, χ) = f(β;λiχ− κiρχ).

Here, ρχ(m) = (logm)−1 or 0 according as the character χ is principal or not. Using (5.6), we can
express the integral in (5.4) as the linear combination of eleven integrals of the form∫

M
f∗0 (α)2−a∆0(α)af∗j (α)1−b∆j(α)bf∗k (α)1−c∆k(α)ce(−αn) dα, (5.7)

where a ∈ {0, 1, 2}, b, c ∈ {0, 1}, and a+ b+ c > 0. The estimation of all those integrals follows the
same pattern, so we shall focus on the most troublesome among them—namely,∫

M
∆0(α)2∆j(α)∆k(α)e(−αn) dα. (5.8)

We can rewrite (5.8) as the multiple sum∑
q≤P

∑
χ1 mod q

· · ·
∑

χ4 mod q

B(q;χ1, . . . , χ4)J(q;χ1, . . . , χ4), (5.9)

where

B(q;χ1, . . . , χ4) = φ(q)−4
∑

1≤a≤q
(a,q)=1

S(χ1, a) · · ·S(χ4, a)e(−an/q)
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and

J(q;χ1, . . . , χ4) =

∫ 1/(qQ)

−1/(qQ)
W0(β, χ1)W0(β, χ2)Wj(β, χ3)Wk(β, χ4)e(−βn) dβ.

We first reduce (5.9) to a sum over primitive characters. In general, if χ modulo q, q ≤ P , is
induced by a primitive character χ∗ modulo r, we have

W0(β, χ) = W0(β, χ∗) (5.10)

and, by hypothesis (iii),

Wi(β, χ) = Wi(β, χ
∗) +O

(
xθz−1

)
(5.11)

for i ≥ 1. The error term in (5.11) accounts for the terms in f(β;λiχ) with m satisfying

m ∈ I, (m, q) > 1, (m, r) = 1, λj(m) 6= 0.

In particular, that error term is superfluous when r > Pz−1, as the set of such m is then empty.
Thus, we can strengthen (5.11) to

Wi(β, χ) = Wi(β, χ
∗) +O(Ψ(r)), (5.12)

where

Ψ(r) =

{
xθz−1 if r ≤ Pz−1,

0 if r > Pz−1.

Given a character χ modulo r, we define

Vi(χ) = max
|β|≤1/(rQ)

|Wi(β, χ)|,

Wi(χ) =

(∫ 1/(rQ)

−1/(rQ)
|Wi(β, χ)|2 dβ

)1/2

.

Let χ∗i modulo ri, ri | q, be the primitive character inducing χi and set q0 = [r1, . . . , r4]. By (5.10)
and (5.12),

J(q;χ1, . . . , χ4)� V0(χ∗1)V0(χ∗2)Wj(χ
∗
3)Wk(χ

∗
4)

+ Ψ(r3)V0(χ∗1)W0(χ∗2)Wk(χ
∗
4)

+ Ψ(r4)V0(χ∗1)W0(χ∗2)Wj(χ
∗
3)

+ Ψ(r3)Ψ(r4)W0(χ∗1)W0(χ∗2). (5.13)

Let J∗i (χ∗1, . . . , χ
∗
4), 1 ≤ i ≤ 4, denote the ith term on the right side of (5.13). The sum (5.9) does

not exceed ∑
1≤i≤4

∑∗

r1,χ1

· · ·
∑∗

r4,χ4

J∗i (χ1, . . . , χ4)B0(χ1, . . . , χ4), (5.14)

with

B0(χ1, . . . , χ4) =
∑
q≤P
q0|q

|B(q;χ1, . . . , χ4)|.

By [15, Lemma 6.3],

B0(χ1, . . . , χ4)� q−1+ε
0 Lc.

Hence, the sum (5.14) is

� Lc
∑

1≤i≤4

∑∗

r1,χ1

· · ·
∑∗

r4,χ4

q−1+ε
0 J∗i (χ1, . . . , χ4). (5.15)
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Before we proceed to estimate the last sum, we stop to remark that inequalities (5.1) ensure that
Lemmas 4.5–4.7 are applicable with P and Q given by (2.4). Indeed, altogether the three lemmas
require that 19/24 < θ < 1 and that P and Q satisfy the following inequalities:

Q ≥ x31/20+ε, P ≤ min
(
xθ−11/20−ε, x2θ−31/10−εQ, x1+θQ−1

)
.

We first note that when Q ≥ x31/20+ε, we have x1+θQ−1 ≤ xθ−11/20−ε; hence, the condition
P ≤ xθ−11/20−ε is superfluous. Further, when P and Q are chosen according to (2.4), the condition
PQ ≤ x1+θ follows from the assumption that θ < 1. The remaining two constraints,

Q ≥ x31/20+ε and P ≤ x2θ−31/10−εQ,

are satisfied if θ − σ ≥ 31/40.
Next we estimate (5.15) by a standard iterative procedure. We write Σi for the ith term in (5.15)

and focus on Σ1. We have ∑∗

r4,χ4

[g, r4]−1+εWk(χ4)� Σ(g;λk) + g−1+εIk,

where Σ(g;λ) is the sum appearing on the left side of (4.4) and

I2
k =

∫ 1/Q

−1/Q
|v(β)|2 dβ �

∑
m1,m2∈I

L−2

Q+ |m2
1 −m2

2|

� xθ−1 + xθQ−1 � xθ−1.

Using this bound for Ik and Lemma 4.5, we conclude that∑∗

r4,χ4

[g, r4]−1+εWk(χ4)� g−1+2εx(θ−1)/2Lc.

By this inequality and the analogous bound for the sum over r3, χ3, we see that

Σ1 � xθ−1Lc
∑∗

r1,χ1

V0(χ1)
∑∗

r2,χ2

[r1, r2]−1+3εV0(χ2). (5.16)

We now use Lemma 4.6 to estimate the inner sum in (5.16) and obtain

Σ1 � x2θ−1Lc
∑∗

r1,χ1

r−1+4ε
1 V0(χ1). (5.17)

Finally, we apply Lemma 4.7 to the last sum and conclude that Σ1 � x3θ−1L−A for any fixed
A > 0.

The estimation of the sums Σi, with i ≥ 2, is similar and, in fact, simpler than that of Σ1. We
demonstrate the necessary changes in the case of Σ2. We follow the above argument until we reach
(5.17) which is now replaced by

Σ2 � x2θ−1Lc
∑∗

r3,χ3

r−1+4ε
3 Ψ(r3)� x3θ−1z−2P 1+4εLc.

This bound is � x3θ−1−ε provided that P ≤ z2x−4ε, for example. Similar arguments show that Σ3

and Σ4 are also � x3θ−1−ε. Therefore, the integral (5.8) is O(x3θ−1L−A) for any fixed A > 0.
We can argue similarly to estimate other integrals of the form (5.7) which include at least one

factor ∆0(α) (i.e., where a > 0). When no such factor is present, we need to adjust the above
argument slightly to make use of hypotheses (iv) and (v) about the sieve functions λi. Let us
consider one such integral—say, ∫

M
f∗0 (α)2∆j(α)∆k(α)e(−αn) dα. (5.18)
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This integral equals ∑
q≤P

∑
χ3 mod q

∑
χ4 mod q

B(q;χ0, χ0, χ3, χ4)J̃(q;χ3, χ4), (5.19)

where χ0 denotes the principal character modulo q (hence, S(χ0, a) = S(q, a)) and

J̃(q;χ3, χ4) =

∫ 1/(qQ)

−1/(qQ)
v(β)2Wj(β, χ3)Wk(β, χ4)e(−βn) dβ.

Passing to primitive characters, we obtain a variant of (5.15) for the sum (5.19). The terms
corresponding to Σ2,Σ3 and Σ4 in (5.15) can be estimated as before, so we concentrate on the
remaining sum, ∑∗

r3,χ3

∑∗

r4,χ4

q̃−1+ε
0

∫ 1/(q̃0Q)

−1/(q̃0Q)
|v(β)2Wj(β, χ3)Wk(β, χ4)| dβ. (5.20)

where q̃0 = [r3, r4]. Using [15, Lemma 1.19], we get

v(β)� xθL−1

1 + x1+θ‖β‖
. (5.21)

Thus, (5.20) is bounded above by

x2θ
∑∗

r3,χ3

∑∗

r4,χ4

q̃−1+ε
0

∫ 1/(q̃0Q)

−1/(q̃0Q)
|Wj(β, χ3)Wk(β, χ4)| dβ

(1 + x1+θ|β|)2
. (5.22)

We now split the last sum in two. First, we consider the terms in (5.22) with max(r3, r4) ≥ LB1 ,
where B1 = B1(A) > 0 is to be chosen shortly. Without loss of generality, we may assume that
r3 ≥ r4. In this case, we note that the integral over β in (5.22) is � x−1−θVj(χ3)Vk(χ4). We
apply Lemma 4.6 first to the sum over r4, χ4 and then to the one over r3, χ3. We conclude that
the contribution to (5.22) from terms with max(r3, r4) ≥ LB1 is O(x3θ−1L−A) for any fixed A > 0,
provided that B1 is sufficiently large. To be more precise, it suffices to choose B1 = B(A + c),
where c > 0 is an absolute constant and B(A) is the function of A appearing in the second part of
Lemma 4.6.

We now turn to the terms in (5.22) with max(r3, r4) ≤ LB1 . The contribution to (5.22) from
such moduli does not exceed

x2θL3B1

∫ 1/Q

−1/Q
|Wj(β, χ3)Wk(β, χ4)| dβ

(1 + x1+θ|β|)2
, (5.23)

for some characters χ3 and χ4 with moduli ≤ LB1 . Let B2 = 3B1 + A and Q0 = x1+θL−B2 . The
contribution to (5.23) from β with |β| ≥ Q−1

0 can be estimated trivially as

� x4θL3B1

∫ ∞
1/Q0

dβ

(1 + x1+θ|β|)2
� x3θ−1L−A.

Finally, we estimate the contribution to (5.23) from β with |β| ≤ Q−1
0 . By partial summation,

Wj(β, χ)�
(
1 + x1+θ|β|

)
sup
I′

∣∣∣∣ ∑
m∈I′

(λj(m)− κjρχ(m))χ(m)

∣∣∣∣,
where the supremum is over all the subintervals I ′ of I. When the character χ has a modulus
r ≤ LB1 , the above sum can be estimated by hypothesis (iv) or (v) with A replaced by 3B1 +A+1.
Thus, the contribution to (5.23) from |β| ≤ Q−1

0 is

� x4θL−A−1

∫ 1/Q0

−1/Q0

dβ

1 + x1+θ|β|
� x3θ−1L−A.
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This concludes the estimation of (5.18). Thus, we have now established (5.4) for any fixed A > 0.
Finally, we evaluate∫

M
f∗0 (α)2f∗j (α)f∗k (α)e(−αn) dα = κjκk

∑
q≤P

A(n; q)J(n; 1/(qQ)), (5.24)

where

J(n; ∆) =

∫ ∆

−∆
v(β)4e(−βn) dβ.

Using (5.21) and the bound

A(n; q)� (n, q)1/2q−3/2+ε,

we can first replace J(n; 1/(qQ)) by J(n) = J(n; 1
2) and then extend the summation over q to ∞.

Since PQ ≤ x1+θ, this yields∑
q≤P

A(n; q)J(n; 1/(qQ)) = S(n)J(n) +O
(
x3θ−1P−1/2+ε

)
. (5.25)

The proposition follows from (5.4), (5.24) and (5.25). �

6. Proof of Theorem 2: The sieve

In this section, we complete the proof of Theorem 2. Let 8/9 < θ < 1 and set σ = (2θ − 1)/7.
We note that we then have

1− θ < σ < min((3θ − 2)/6, θ − 31/40).

We construct sieve weights λ1, λ2 and λ3 that satisfy (2.1) and the various hypotheses required by
the analysis in Sections 2, 3 and 5. Since the construction is driven by our need to have λ1 and λ3

satisfy hypothesis (i∗) in Section 4, it is convenient to set

U = x1−θ+2σ, V = xθ−4σ, z = x2θ−1−6σ.

When θ and σ are as above, these quantities satisfy

x1/9 < xσ = z < z2 < U < z3 < V = Uz < x4/9.

Our construction uses repeatedly Buchstab’s identity from sieve theory, which can be stated as

ψ(m, z1) = ψ(m, z2)−
∑

z2≤p<z1

ψ(m/p, p) (2 ≤ z2 < z1), (6.1)

in view of our definition of ψ(m, z) (recall (1.8) and the convention on non-integer m).

We start from the simple observation that when m ∈ I, we have $(m) = ψ(m,x
1/2
1 ), x1 = x+xθ.

Thus, Buchstab’s identity yields

$(m) = ψ(m, z)−
{ ∑
z≤p<U

+
∑

U≤p≤V
+

∑
V <p<x

1/2
1

}
ψ(m/p, p)

= γ1(m)− γ2(m)− γ3(m)− γ4(m), say. (6.2)

We remark that γ1 and γ3 satisfy hypothesis (i∗). We decompose γ2 further using Buchstab’s
identity again. We have

γ2(m) =
∑

z≤p<U
ψ(m/p, z)−

∑
z≤p2<p1<U

{ ∑
p1p2<U

+
∑

U≤p1p2≤V
+

∑
p1p2>V

}
ψ(m/(p1p2), p2)

= γ5(m)− γ6(m)− γ7(m)− γ8(m), say. (6.3)

17



Here, γ5 and γ7 satisfy hypothesis (i∗). We decompose γ6 further as

γ6(m) =
∑

z≤p2<p1<p1p2<U
ψ(m/(p1p2), z)

−
∑

z≤p2<p1<p1p2<U

{ ∑
z≤p3<p2
p1p2p3≤V

+
∑

z≤p3<p2
p1p2p3>V

}
ψ(m/(p1p2p3), p3)

= γ9(m)− γ10(m)− γ11(m), say. (6.4)

Note that the condition p1p2p3 ≥ U is implicit in γ10 because z3 > U . Finally, we combine
(6.2)–(6.4) and deduce that

$(m) = λ1(m)− λ2(m) + γ8(m) ≥ λ1(m)− λ2(m), (6.5)

where

λ1(m) = γ1(m)− γ3(m)− γ5(m) + γ7(m) + γ9(m)− γ10(m),

λ2(m) = γ4(m) + γ11(m) ≥ 0.

We remark that λ1 is the sum of those γi’s which satisfy hypothesis (i∗), while −λ2 collects the
negative among the remaining terms in the decomposition of $.

Next, we construct λ3. Similarly to (6.2)–(6.4), using three Buchstab decompositions, we have

$(m) = γ1(m)− γ3(m)− γ4(m)−
∑

V 1/2<p<U

ψ(m/p, p)−
∑

z≤p≤V 1/2

ψ(m/p, z)

+
∑

z≤p2<p1≤V 1/2

ψ(m/p1p2, z)−
∑

z≤p3<p2<p1≤V 1/2

ψ(m/p1p2p3, p3)

= γ1(m)− γ3(m)− γ4(m)− γ∗5(m)− γ∗6(m) + γ∗7(m)− γ∗8(m), say.

We note that γ1, γ3, γ
∗
6 and γ∗7 satisfy hypothesis (i∗). Let γ∗9(m) denote the portion of γ∗8(m)

where either p1p2 ≥ U or p1p2p3 ≤ V . Since p1p2 ≤ V and p1p2p3 > z3 > U , γ∗9 too satisfies
hypothesis (i∗). We now set

λ3(m) = γ1(m)− γ3(m)− γ∗6(m) + γ∗7(m)− γ∗9(m). (6.6)

Then λ3(m) ≥ $(m) and it also satisfies hypothesis (i∗).
We have now constructed sieve weights λ1, λ2 and λ3 which are bounded and satisfy (2.1).

Moreover, λ1 and λ3 satisfy hypothesis (i∗), and hence, by the discussion near the end of Section 4.1,
also hypothesis (i). Next we verify that the functions λ1, λ2 and λ3 satisfy the hypotheses (ii)–(v)
required in the proof of Propostion 5.1.

Hypothesis (ii). The argument in Kumchev [9, Lemma 5.5] establishes (essentially) that every
convolution of the form

λ(m) =
∑
rs=m
r∼R

ξrψ(s, w), (6.7)

where |ξr| ≤ τ(r)c, 1 ≤ R ≤ x11/20, and w ≤
√

2x/R, satisfies hypothesis (ii). Furthermore, by
Kumchev [9, Remark 5.1], the same argument applies to convolutions where w is an (explicit) prime
divisor of r—as in γ7 above, for example. We can use this observation to verify hypothesis (ii) for
γi’s and γ∗i ’s, except for γ4. Finally, since γ4 is the characteristic function of products m = p1p2,
with V < p1 ≤ p2, we can rewrite it as

γ4(m) =
∑

V <p<x
1/2
1

ψ(m/p,wp), wp =
√
x1/p, (6.8)
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after which we can again use the above observation to verify hypothesis (ii).
Hypothesis (iii). By construction, the functions λi are supported on integers free of prime divisors
p < z = xσ. Hence, this hypothesis holds.
Hypotheses (iv) and (v). Together, these two hypotheses state that λ satisfies an analogue of the
Siegel–Walfisz theorem for short intervals of lengths � xθ. We derive these hypotheses from the
classical Siegel–Walfisz theorem (see Harman [5, Lemma 2.7] or Liu and Zhan [15, Theorem 1.13])
and the following estimate:

(iv*) Given any fixed A,B > 0, any Dirichlet character χ modulo q ≤ LB, and any subinterval
I ′ of I, one has∑

m∈I′
λ(m)χ(m) =

|I ′|
2y0

∑
|m−x|≤y0

λ(m)χ(m) +O
(
xθL−A

)
, (6.9)

where y0 = x exp
(
− 3(log x)1/3

)
.

Comparing this statement with the conclusions of Lemmas 7.2 and 10.13 in Harman [5], one
sees that one may verify condition (iv*) using results from the study of primes in short intervals
in Harman [5]. Indeed, [5, Lemma 10.13] and a slight modification of [5, Lemma 7.5] (to allow

for the presence of characters) establish (iv*) for intervals I ′ of length y ≥ x3/4+ε and for any

arithmetic function λ of the form (6.7) with |ξr| ≤ τ(r)c, 1 ≤ R ≤ x7/12, and w ≤ 2x1/3. As with
hypothesis (ii), we can use this observation to verify (iv*) for γ1, γ5, γ7, γ9, γ10, γ11, γ

∗
6 , γ
∗
7 , and γ∗9 .

We remark that in dealing with γ11 we use the inequality p1p2p3 ≤ U3/2 < x7/12, which holds on
the assumption that σ ≤ (2θ − 1)/7 and θ > 4/5. Furthermore, the condition p ≤ 2x1/3 is implicit
in γ3, so (iv*) holds for that sum too. Finally, to show that γ4 satisfies (iv*), we make use of (6.8)

and note that wp ≤ 2x1/3 because V > x1/3.
We have now verified that (iv*) holds for λ1, λ2 and λ3. Applying the Siegel–Walfisz theorem to

the right side of (6.9), we obtain hypothesis (iv). Similarly, we obtain hypothesis (v) by combining
(6.9) and the following lemma, which follows from the Prime Number Theorem by the inductive
argument in Harman [5, §A.2].

Lemma 6.1. Let 2 ≤ z < y ≤ zc, let ψ(n, z) be defined by (1.8), and let ω(u) be the continuous
solution of the differential delay equation{

(uω(u))′ = ω(u− 1) if u > 2,

ω(u) = u−1 if 1 < u ≤ 2.

Then ∑
m≤y

ψ(m, z) =
1

log z

∑
z<m≤y

ω

(
logm

log z

)
+O

(
y exp

(
− (log y)1/2

))
.

For example, we have∑
m∈I′

γ3(m) =
|I ′|
2y0

∑
U≤p≤V

1

log p

∑
|mp−x|≤y0

ω

(
logm

log p

)
+O

(
xθL−A

)
.

Using that

ω

(
logm

log p

)
− ω

(
log(x/p)

log p

)
� y0x

−1
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when |mp− x| ≤ y0, we deduce∑
m∈I′

γ3(m) = |I ′|
∑

U≤p≤V

1

p log p
ω

(
log(x/p)

log p

)
+O

(
xθL−A

)
= |I ′|L−1

∫ θ−4σ

1−θ+2σ
ω

(
1− u
u

)
du

u2
+O

(
xθL−A

)
,

where the second step follows from the Prime Number Theorem by partial summation. The same
technique can be used to evaluate the contributions to hypothesis (v) from the other functions γi
and γ∗i that appear in the definitions of λ1, λ2 and λ3.

Having verified that the arithmetic functions λ1, λ2 and λ3 satisfy hypotheses (i)–(v), we can now
apply the arguments in Sections 3–5 to establish inequalities (2.6) and (2.9). Thus, to complete
the proof of the theorem, it remains to show that the constant C = C(θ) = κ1 − κ2κ3 in (2.9) is
positive when 8/9 < θ < 1 and σ = (2θ− 1)/7. Let `j , 1 ≤ j ≤ 11, denote the constant (depending
on θ) in the asymptotic formula∑

|m−x|≤y0

γj(m) = 2`jy0L
−1 +O

(
x exp

(
− L1/2

))
,

and let `∗j be defined similarly in terms of γ∗j . By (6.5), (6.6) and the Prime Number Theorem, we
have

κ1 − κ2 = 1− `8, κ3 = 1 + `4 + `∗5 + `∗10,

where γ∗10(m) = γ∗8(m) − γ∗9(m). Note that the conditions p2 ≥ z and p1p2 < U in γ∗10 make the

condition p1 ≤ V 1/2 superfluous; after that condition is dropped, we have γ∗10 = γ11. Hence,

C = 1− `8 − κ2(κ2 + `∗5),

with

κ2 = log

(
3 + θ

4− θ

)
+

∫∫∫
D11

ω

(
1− u− v − w

w

)
dudvdw

uvw2
,

`8 =

∫∫
D8

ω

(
1− u− v

v

)
dudv

uv2
, `∗5 =

∫ 1−θ+2σ

θ/2−2σ
ω

(
1− u
u

)
du

u2
,

where D8 is the two-dimensional region defined by

σ ≤ v ≤ u ≤ 1− θ + 2σ, u+ v ≥ θ − 4σ,

and D11 is the three-dimensional region defined by

σ ≤ w ≤ v ≤ u < u+ v ≤ 1− θ + 2σ, u+ v + w ≥ θ − 4σ.

To prove the positivity of C(θ), it suffices to estimate the κ2, `8 and `∗5 from above. To that end,
we note that the Buchstab function ω is positive and satisfies (see Harman [5, eq. (1.4.16)])

ω(u) ≤


1/u if 1 ≤ u ≤ 2,

(1 + log(u− 1))/u if 2 < u ≤ 3,

(1 + log 2)/3 if u > 3.

(6.10)

(In fact, this inequality is an equality when 1 ≤ u ≤ 3.) Using (6.10) and numerical integration to
estimate C(θ), we find that

C(θ) ≥ C̃(θ),

where C̃(θ) is an increasing function of θ with C̃(8/9) > 0.17 (see Figure 1). This completes the
proof of the theorem.
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Figure 1. Graph and select values of C̃(θ), 8/9 ≤ θ ≤ 1.

7. The proofs of Theorems 1, 3, 4, and 5

7.1. Proof of Theorem 1. Let n be a large integer with n ≡ 5 (mod 24) and let θ = 8/9 + ε. We

set X = 4n/5 and H = Xθ/2. Then the set

M =
{
n− p2 |

∣∣p− (n/5)1/2
∣∣ < 0.5H

}
contains � Xθ/2(logX)−1 integers mp ∈ H4 satisfying

|mp −X| ≤
∣∣p2 − (n/5)

∣∣ < 0.5H(1 + o(1))X1/2 < HX1/2.

Since θ/2 > (16 − 11θ)/14 + ε, it follows from Theorem 2 that there is an mp ∈ M that can be
represented as

mp = p2
1 + · · ·+ p2

4,
∣∣pj − (X/4)1/2

∣∣ ≤ H.
Hence, n can be represented{

n = p2 + p2
1 + · · ·+ p2

4,∣∣p− (n/5)1/2
∣∣ < 0.5H,

∣∣pj − (n/5)1/2
∣∣ < H.

This establishes Theorem 1.

7.2. Proof of Theorem 3. This proof shares many features with the proofs of Theorems 4 and 5,
so we set the initial stages in more generality than is needed for Theorem 3 itself. For s ≥ 3 and a
large X, we set

x =
√
X/s, Is =

(
x− xθ, x+ xθ

]
,

and we consider the sum
Rs(n) =

∑
p21+···+p2s=n

pi∈Is

1.

Similarly to (2.3), we have

Rs(n) =

(∫
M

+

∫
m

)
f0(α)se(−αn) dα, (7.1)

where f0(α) is the exponential sum from Section 2 (with the summation range I replaced by Is
when s 6= 4) and the sets M and m are defined in (2.4) and (2.5). In particular, we introduce (via
(2.4)) a parameter σ, which will be specified shortly.)
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When s = 4, Proposition 5.1 with j = k = 0 yields∫
M
f0(α)4e(−αn) dα = S(n)I(n)

(
1 +O

(
L−1

))
, (7.2)

provided that 0 < σ ≤ θ − 31/40. Furthermore, using Lemma 4.4 and [12, Theorem 2] (instead of
Lemmas 4.1–4.3 above), we can show as in Section 4.1 that

sup
α∈m
|f0(α)| � xθ−σ+ε, (7.3)

provided that 0 < σ ≤ min((3θ − 2)/6, (2θ − 1)/8, (10θ − 7)/15). Let Y = X(1+θ)/2 and

σ = min(θ − 31/40, (2θ − 1)/8).

Using Bessel’s inequality, (3.1) and (7.3), we obtain∑
|n−X|≤Y

∣∣∣∣ ∫
m
f0(α)4e(−αn) dα

∣∣∣∣2 ≤ ∫
m
|f0(α)|8 dα� x6θ−4σ+ε. (7.4)

In particular, we have ∫
m
f0(α)4e(−αn) dα� x3θ−1−ε (7.5)

for all but O
(
X1−2σ+ε

)
values of n with |n−X| ≤ Y . Combining (7.1), (7.2) and (7.5), we conclude

that

R4(n) = S(n)I(n)
(
1 +O

(
L−1

))
(7.6)

for all but O
(
X1−2σ+ε

)
values of n ∈ H4 with |n−X| ≤ Y . Theorem 3 follows from (7.6) and (5.2).

7.3. Proof of Theorem 5. We start from (7.1) with s ≥ 6, θ = θs+ε, σ = θ−31/40, and X = n.
With these choices, it is not difficult to generalize the argument of Proposition 5.1 to show that∫

M
f0(α)se(−αn) dα = Ss(n)Is(n)

(
1 +O

(
L−1

))
. (7.7)

Here, Ss(n) and Is(n) are s-dimensional variants of the singular series and the singular integral
from Section 5 which satisfy the bounds

x(s−1)θ−1L−s � Ss(n)Is(n)� x(s−1)θ−1L−s (7.8)

whenever n ∈ Hs. On the other hand, by (3.1) and (7.3),∫
m
|f0(α)|s dα� x(s−2)θ−(s−4)σ+ε. (7.9)

Combining (7.1) and (7.7)–(7.9), we obtain

Rs(n)� x(s−1)θ−1L−s,

provided that

(s− 4)σ > 1− θ. (7.10)

Since our choice of σ and θ satisfies this inequality, this completes the proof of the theorem.
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7.4. Sketch of the proof of Theorem 4. The proof of the first part of Theorem 4 follows the
same script as that of Theorem 3, so we only outline the necessary modifications. First, in place
of (7.4), we have ∑

|n−X|≤Y

∣∣∣∣ ∫
m
f0(α)3e(−αn) dα

∣∣∣∣2 ≤ ∫
m
|f0(α)|6 dα� x4θ−2σ+ε.

This suffices to establish an appropriate version of (7.5) for all but O
(
X1−σ+ε

)
values of n with

|n−X| ≤ Y .
We also need to be more careful when we approach the required version of (7.2). A slight variant

of the proof of Proposition 5.1 yields (see the treatment of the major arcs in [7], especially, the way
[7, Lemma 1] is applied in the proof of Lemma 4 of that paper)∫

M
f0(α)3e(−αn) dα = S3(n, P )I3(n)

(
1 +O

(
L−1

))
. (7.11)

It is important that (7.11) holds under the same restrictions on θ and σ as in Section 5, and it
is to maintain those restrictions that we need the more subtle arguments from [7]. Here, I3(n)
is a three-dimensional singular integral similar to I(n) above, and S3(n, P ) is a partial sum of
the singular series S3(n) for sums of three squares of primes. Unlike the case s ≥ 4, this partial
singular series poses some technical difficulties, but those have been resolved in prior work on the
Waring–Goldbach problem for three squares (see Liu and Zhan [15, Lemma 8.8] and Harman and
Kumchev [7, Lemma 7]). In particular, by [7, Lemma 7], we have

S3(n, P )I3(n)� x2θ−1L−6

for all but O
(
X1−σ+ε

)
values of n ∈ H3 with |n − X| ≤ Y . This suffices to complete the proof

of (1.7).
To establish the second part of Theorem 4, we have to make similar adjustments to the proof of

Theorem 2. Leaving the sieve part of the argument unchanged, we then obtain a version of (1.7)
with σ = (2θ − 1)/7 and complete the proof of the theorem.

8. Final remarks

We conclude this paper with some remarks on the possibilities for further improvements on some
of our theorems.

(1) The most attractive (but also most challenging) direction for further progress involves the
restriction θ > 8/9 in Theorem 2. In our work, that restriction is forced upon us by the
assumption near the end of Section 2 that σ > 1 − θ. In our arguments, we require that
σ < (3θ − 2)/6 in several places in Section 4.1 and that σ ≤ (2θ − 1)/7 to ensure that
hypothesis (iii) in Section 5 holds. Either of those upper bounds on σ in combination with
the requirement σ > 1 − θ restricts θ to the range in Theorem 2. However, as explained
below, the constraint σ ≤ (2θ − 1)/7 can be eliminated, though at a considerable cost
in terms of added complexity to the already involved argument in Section 5. Since some
bounds for “long” quadratic Weyl sums over primes do not yet have analogues for sums
over short intervals, it is possible that the restriction σ < (3θ− 2)/6 in Lemmas 4.3 and 4.4
can also be relaxed. It seems that if one succeeds to relax that restriction, one should be
able to reach values of θ below 8/9.

(2) A possible improvement on Theorems 2 and 4, one which does not require new exponential
sum bounds, concerns the exponents (16− 11θ)/14 and (8− 2θ)/7 in those results. Those
exponents are determined by the choice σ = (2θ − 1)/7 in Section 6, which is made in
accordance with the restriction z ≥ xσ in hypothesis (iii) above. Since that restriction is
imposed more for convenience than out of necessity, it is possible to dispense with it and
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to increase the value of σ in the proof of Theorem 2, at least when θ is close to 1. That
should result in sharper bounds and may even close the small gap between our results with
θ = 1−ε and (1.1). We chose not to pursue this possibility here, because the omission of the
assumption z ≥ xσ from hypothesis (iii) unleashes a tidal wave of technical complications
on the major arcs, with very little potential return. For a glimpse of those complications,
the reader can compare the treatments of the major arcs in the papers of Harman and
Kumchev [6, 7].

(3) It is also possible to achieve small improvements on the estimates in Theorems 3 and 4
when 13/15 < θ ≤ 8/9. In this range, those theorems claim their respective bounds with
σ = (2θ− 1)/8, a value obtained by applying an exponential sum estimate of Liu and Zhan
[12, Theorem 2]. It is possible to modify the sieve argument in Section 6 so that it can be
applied when θ ≤ 8/9 and 0 < σ < (3θ− 2)/6. (When θ ≤ 8/9, the latter condition implies
σ < (2θ − 1)/7, so this should not lead to major arc troubles.) One should then be able
to leverage the modified sieve construction into a larger choice of σ, and hence, stronger
upper bounds. We did not pursue this path, because we wanted to keep the combinatorial
argument in Section 6 relatively simple. However, taken on its own, the work involved in
such an improvement should not be prohibitive, and we hope to see this minor flaw of our
theorems corrected in the future.
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suggestions and comments on the content of the paper. Last but not least, we would like to thank
Professor Trevor Wooley for suggesting the question answered in Theorem 5.

References

[1] C. Bauer, A note on sums of five almost equal prime squares, Arch. Math. (Basel) 69 (1997), 20–30.
[2] C. Bauer, Sums of five almost equal prime squares, Acta Math. Sin. (Engl. Ser.) 21 (2005), 833–840.
[3] C. Bauer and Y. H. Wang, Hua’s theorem for five almost equal prime squares, Arch. Math. (Basel) 86 (2006),

546–560.
[4] S. K. K. Choi and A. V. Kumchev, Mean values of Dirichlet polynomials and applications to linear equations

with prime variables, Acta Arith. 123 (2006), 125–142.
[5] G. Harman, Prime-Detecting Sieves, Princeton University Press, Princeton, 2007.
[6] G. Harman and A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge Philos. Soc. 140 (2006),

1–13.
[7] G. Harman and A. V. Kumchev, On sums of squares of primes II, J. Number Theory 130 (2010), 1969–2002.
[8] L. K. Hua, Some results in the additive prime number theory, Q. J. Math. (Oxford) 9 (1938), 68–80.
[9] A. V. Kumchev, On Weyl sums over primes and almost primes, Michigan Math. J. 54 (2006), 243–268.

[10] H. Z. Li and J. Wu, Sums of almost equal prime squares, Funct. Approx. Comment. Math. 38 (2008), 49–65.
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