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ON SUMS OF RAMANUJAN SUMS

T.H. CHAN AND A.V. KUMCHEV

Abstract. Let cq(n) denote the Ramanujan sum modulo q, and let x
and y be large reals, with x = o(y). We obtain asymptotic formulas for
the sums

∑

n≤y

(

∑

q≤x

cq(n)
)k

(k = 1, 2).

1. Introduction

In this note, we study the moments of the average of the Ramanujan

sum. To be precise, we want to evaluate the sums

Ck(x, y) =
∑

n≤y

(

∑

q≤x

cq(n)
)k

,

where k is a positive integer, x and y are large real numbers, and

(1.1) cq(n) =
∑

1≤a≤q
(a,q)=1

e(−an/q) =
∑

d|(q,n)

dµ(q/d)

is the Ramanujan sum. Our interest in this question stems from an old

attempt [1] to apply Fourier techniques to Diophantine approximations of

reals by sums of rational numbers. At the time, we were surprised that

information on the asymptotic behavior of Ck(x, y) appeared to be missing

from the literature. Of course, it is easy to evaluate Ck(x, y) in some cases.

For example, elementary arguments based on the second formula in (1.1)

yield the asymptotic formulas

C1(x, y) = y +O(x2)

and

(1.2) C2(x, y) =
yx2

2ζ(2)
+O(x4 + xy log x),

for any fixed ǫ > 0. However, these bounds (as well as other simple things

we have tried) are only of interest when yx−2 → ∞ as x → ∞. In our

application to Diophantine approximations, on the other hand, we were

interested in C2(x, y) when x1+ǫ ≤ y ≤ x2+ǫ for some fixed ǫ > 0. Some
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numerical experimentation suggested that in that range the order of C2(x, y)

is still yx2, though the coefficient 1
2ζ(2)

seemed somewhat off when y is close

to x2. In the present note, we prove, among other things, that those empirical

observations are true. Our first result is an asymptotic formula for C1(x, y).

Theorem 1.1. Let x be a large real number and y ≥ x. Then

C1(x, y) = y −
x2

4ζ(2)
+O

(

xy1/3 log x+ x3y−1
)

.

The proof of Theorem 1.1 uses exponential sum estimates and can be

easily modified to yield different estimates for the remainder. The remainder

claimed in the statement of the theorem is the result of applying one of the

simplest exponential sum bounds—the exponential pair (1/2, 1/2) from van

der Corput’s method [2]. More sophisticated exponential pairs will result in

replacing the error term xy1/3 by different ones, which will be sharper for

certain choices of the relative sizes of x and y. The interested reader will

have no trouble obtaining such improvements by appropriate modifications

of (2.5) below. Since our main focus is on maximizing the “support” of the

result, we prefer the simple version above.

Theorem 1.1 demonstrates that when x = o(y), the Ramanujan sum

cq(n) is o(1) on average over q ≤ x and n ≤ y. Our next theorem shows

that this is no longer the case when the average C1(x, y) is replaced by the

mean square sum C2(x, y).

Theorem 1.2. Let x be a large real number, y ≥ x, and B > 0 be fixed.

(i) If y ≥ x2(log x)B, then (1.2) holds.

(ii) If x ≤ y ≤ x2(log x)B, then

C2(x, y) =
yx2

2ζ(2)
(1 + 2κ(u)) +O

(

yx2(log x)10
(

x−1/2 + (y/x)−1/2
))

,

where u = log(yx−2), and κ(u) is defined by (4.19) below and satisfies

the inequalities

κ(u) > −0.4, κ(u) ≪ exp(−|u|3/5−ǫ)

for any fixed ǫ > 0. In particular, κ(u) = o(1) as |u| → ∞.

The lower bound for κ(u) is far from sharp and has been chosen so as to

simplify the arguments in §5. In fact, by increasing the amount of numeric

calculations in §5 by an order of magnitude or two, it can be shown that

κ(u) > −0.3. We chose not to pursue such a sharper bound here for the sake

of clarity. However, for the benefit of the reader, we should mention that the

more elaborate numerical computations that we carried suggest that κ(u)
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is decreasing when u < u0 and increasing when u > u0, where u0 ≈ 1.63;

its minimum value is approximately κ(1.63) ≈ −0.2943. It also seems that

κ(u) is always negative.

It is natural to ask whether similar asymptotic formulas hold for Ck(x, y)

when k ≥ 3. It appears that the analytic method in §4 below should yield

some result, at least when k = 3. However, since the technical details will

most likely be quite ungainly, we leave such considerations to future work.

2. The first moment

By (1.2), we have

C1(x, y) =
∑

n≤y

∑

q≤x

∑

d|q
d|n

dµ(q/d) =
∑

n≤y

∑

dk≤x
d|n

dµ(k).

Interchanging order of summation, we obtain

C1(x, y) =
∑

dk≤x

dµ(k)
∑

n≤y
d|n

1 =
∑

dk≤x

dµ(k)
[y

d

]

(2.1)

= y
∑

dk≤x

µ(k)−
1

2

∑

dk≤x

dµ(k)−
∑

dk≤x

dµ(k)ψ(y/d)

= C1,1(x, y)− C1,2(x, y)− C1,3(x, y), say.

Here, for a real t, [t] is the integral part of t and ψ(t) = t − [t] − 1
2
is the

saw-tooth function. It is easy to see that

(2.2) C1,1(x, y) = y
∑

dk≤x

µ(k) = y
∑

m≤x

∑

k|m

µ(k) = y.

Further,

C1,2(x, y) =
1

2

∑

dk≤x

dµ(k) =
1

2

∑

k≤x

µ(k)
∑

d≤x/k

d(2.3)

=
1

2

∑

k≤x

µ(k)

(

x2

2k2
+O

(

x

k

))

=
x2

4

∑

k≤x

µ(k)

k2
+O(x log x) =

x2

4ζ(2)
+O(x log x).

It remains to estimate C1,3(x, y). By partial summation,

(2.4) C1,3(x, y) ≪
∑

k≤x

∞
∑

j=0

Nj sup
I

∣

∣

∣

∑

d∈I

ψ(y/d)
∣

∣

∣
,

where Nj = Nj,k = (x/k)2−j and the supremum is over all subintervals

I of (Nj , 2Nj]. We remark that the sum over j is, in fact, finite and has
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O(logx) terms. We now use the following lemma, which is a special case of

[2, Lemma 4.3] (see [2] or [4] for the definition of exponential pairs).

Lemma 2.1. Suppose that (κ, λ) is an exponential pair and that I is a

subinterval of (N, 2N ]. Then
∑

n∈I

ψ(y/n) ≪ yκ/(κ+1)N (λ−κ)/(κ+1) +N2y−1.

We apply Lemma 2.1 with the exponential pair (κ, λ) = (1/2, 1/2) to

the sum over d on the right side of (2.4). This yields

C1,3(x, y) ≪
∑

k≤x

∞
∑

j=0

(Njy
1/3 +N3

j y
−1) ≪

∑

k≤x

((x/k)y1/3 + (x/k)3y−1)

(2.5)

≪ (xy1/3 log x+ x3y−1).

Theorem 1.1 now follows easily from (2.1)–(2.5).

3. The second moment: An elementary approach

In this section, we prove (1.2). Similarly to §2, we obtain

C2(x, y) =
∑

n≤y

(

∑

dk≤x
d|n

dµ(k)
)2

=
∑

d1k1≤x

∑

d2k2≤x

d1d2µ(k1)µ(k2)

[

y

[d1, d2]

]

,

where [d1, d2] denotes the least common multiple of d1 and d2. Hence,

(3.1) C2(x, y) = y
∑

d1k1≤x

∑

d2k2≤x

(d1, d2)µ(k1)µ(k2) +O(E),

where

(3.2) E = y
∑

d1k1≤x

∑

d2k2≤x

d1d2 ≪ x4.

Furthermore,

∑

d1k1≤x

∑

d2k2≤x

(d1, d2)µ(k1)µ(k2) =
∑

d≤x

d
∑

dl1k1≤x

∑

dl2k2≤x

(l1,l2)=1

µ(k1)µ(k2)

(3.3)

=
∑

d≤x

d
∑

dl1k1≤x

∑

dl2k2≤x

µ(k1)µ(k2)
∑

l|(l1,l2)

µ(l)

=
∑

dl≤x

dµ(l)
(

∑

mk≤x/(dl)

µ(k)
)2

=
∑

dl≤x

dµ(l) =
x2

2ζ(2)
+O(x log x),
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on using variants of (2.2) and (2.3). The asymptotic formula (1.2) follows

from (3.1)–(3.3).

4. The second moment: An analytic approach

In this section, we assume that x and y are as in part (ii) of Theorem 1.2.

Recall the identity

(4.1)

∞
∑

q=1

cq(n)

qs
=
σ1−s(n)

ζ(s)
(Re(s) > 1),

where ζ(s) denotes the Riemann zeta-function and σz(n) =
∑

d|n d
z. We

note that without loss of generality, we may assume that x, y ∈ Z + 1/2.

Then, using (1.2) and the truncated Perron formula [3, Corollary 5.3], we

get

(4.2)
∑

q≤x

cq(n) =
1

2πi

∫ α+iT

α−iT

σ1−s(n)

ζ(s)

xs

s
ds+ E1(x, n).

Here, T is a real parameter at our disposal, α > 1 + (log x)−1 is a real

number, and the remainder E1(x, n) satisfies

E1(x, n) ≪
xα

T

∞
∑

q=1

|cq(n)|

qα
+

∑

x/2<q<2x

|cq(n)|min

(

1,
x

T |x− q|

)

.

If we assume further that α < 1 + 3(log x)−1, we can show that

(4.3) E1(x, n) ≪ (x2/T )σ0(n)L,

where L = log(Txy). Applying (4.2) and (4.3) with α = αj = 1+j(log x)−1,

j = 1, 2, we obtain

(4.4)
(

∑

q≤x

cq(n)
)2

=
1

(2πi)2

∫ α1+iT

α1−iT

∫ α2+iT

α2−iT

F (s1, s2, n) ds2ds1 + E2(x, n),

where

F (s1, s2, n) =
σ1−s1(n)σ1−s2(n)

ζ(s1)ζ(s2)

xs1+s2

s1s2
and

E2(x, n) ≪ (x4/T )σ0(n)
2L3

(

x−1 + T−1
)

≪ (x3/T )σ0(n)
2L3,

since we will later choose T ≥ x. Summing (4.4) over n, we deduce

(4.5)

C2(x, y) =
1

(2πi)2

∫ α1+iT

α1−iT

∫ α2+iT

α2−iT

G(s1, s2; y)

ζ(s1)ζ(s2)

xs1+s2

s1s2
ds2ds1 +O

(

yx3L6

T

)

,

where

G(s1, s2; y) =
∑

n≤y

σ1−s1(n)σ1−s2(n).
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We now recall Ramanujan’s identity

(4.6)

∞
∑

n=1

σa(n)σb(n)

ns
=
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
,

valid for Re(s) > max{1, 1 + Re(a), 1 + Re(b), 1 + Re(a + b)}. From (4.6),

by another application of Perron’s formula, we get

(4.7) G(s1, s2; y) =
1

2πi

∫ α+3iT

α−3iT

H(s1, s2, w)
yw

w
dw +O

(

yL4

T

)

,

where α = 1 + 3(log y)−1, y ∈ Z+ 1/2, and

H(s1, s2, w) =
ζ(w)ζ(w+ s1 − 1)ζ(w + s2 − 1)ζ(w + s1 + s2 − 2)

ζ(2w + s1 + s2 − 2)
.

Let Γ(α, β, T ) denote the contour consisting of the line segments [α−iT, β−

iT ], [β − iT, β + iT ] and [β + iT, α + iT ]. We now move the integration in

(4.7) to Γ(α, 1/2, 3T ); let us denote the respective integrals I1, I2 and I3.

When Re(sj) = αj , the integrals I1 and I3 over the two horizontal line

segments are bounded above by

(4.8) I1, I3 ≪ ζ(α1 + α2 − 1)L4

∫ α

1/2

T 1−2σyσdσ ≪ L5
(

y1/2 + yT−1
)

.

Here, we have used the standard convexity bound (see [4, eqn. (5.1.4)] for

a slightly weaker version)

(4.9) |ζ(σ + it)| ≪ (|t|+ 2)(1−σ)/2 log(|t|+ 2) (1/2 ≤ σ ≤ 1).

Furthermore, by Hölder’s inequality,

(4.10) I2 ≪ y1/2ζ(α1+α2− 1)
∏

0≤j,k≤1

M4(1/2+ j(α1− 1)+ k(α2− 1), 5T ),

where for 1/2 ≤ σ ≤ 1,

M4
4 (σ, T ) =

∫ T

−T

|ζ(σ + it)|4
dt

1 + |t|
.

Appealing to the fourth-moment estimates for ζ(s) [4, §7.5 & §7.6], we

deduce from (4.10) that

(4.11) I2 ≪ y1/2L6.

Combining (4.7), (4.8) and (4.11), we obtain

(4.12) G(s1, s2; y) =

4
∑

j=1

Rj(s1, s2; y) +O(L6(y1/2 + yT−1)),
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where Rj(s1, s2; y) are the four residues of the integrand in (4.7):

R1(s1, s2; y) =
yζ(s1)ζ(s2)ζ(s1 + s2 − 1)

ζ(s1 + s2)
,

R2(s1, s2; y) =
y2−s1ζ(2− s1)ζ(1− s1 + s2)ζ(s2)

(2− s1)ζ(2− s1 + s2)
,

R3(s1, s2; y) =
y2−s2ζ(2− s2)ζ(1 + s1 − s2)ζ(s1)

(2− s2)ζ(2 + s1 − s2)
,

R4(s1, s2; y) =
y3−s1−s2ζ(3− s1 − s2)ζ(2− s2)ζ(2− s1)

(3− s1 − s2)ζ(4− s1 − s2)
.

Substituting (4.12) into the right side of (4.5), we get

(4.13) C2(x, y) =
4

∑

j=1

C2,j(x, y) +O(yx2L10(y−1/2 + xT−1)),

where

C2,j(x, y) =
1

(2πi)2

∫ α1+iT

α1−iT

∫ α2+iT

α2−iT

Rj(s1, s2; y)

ζ(s1)ζ(s2)

xs1+s2

s1s2
ds2ds1.

We proceed to evaluate the integrals C2,j(x, y), starting with C2,1(x, y).

We first move the integration over s2 to the contour Γ(α2, 1/2, T ); let us

denote the integrals over the three line segments J1,1, J1,2 and J1,3. The

contributions from the integrals over the two horizontal line segments are

bounded using (4.9):

J1,1, J1,3 ≪
xyL

T

∫ T

−T

dt

1 + |t|

∫ α2

1/2

T (1−σ)/2xσdσ ≪ xyL2(xT−1 + 1).

Furthermore, using estimates for the mean square of ζ(s) in the critical strip,

we find that the contribution from the integral over the line Re(s2) = 1/2

is

J1,2 ≪ yx3/2
∫ T

−T

∫ T

−T

|ζ(α1 − 1/2 + i(t1 + t2))|

(|t1|+ 1)(|t2|+ 1)
dt1dt2

≪ yx3/2
∫ 2T

−2T

|ζ(α1 − 1/2 + iu)|

∫ T

−T

dtdu

(|t|+ 1)(|t− u|+ 1)

≪ yx3/2L

∫ 2T

−2T

|ζ(α1 − 1/2 + iu)|
du

|u|+ 1
≪ yx3/2L3.

Hence, accounting for the residue at s2 = 2− s1, we have

C2,1(x, y) =
yx2

ζ(2)

1

2πi

∫ α1+iT

α1−iT

ds1
s1(2− s1)

+O(yx2L3(x−1/2 + T−1)),(4.14)

=
yx2

2ζ(2)
+O(yx2L3(x−1/2 + T−1)).
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To estimate C2,4(x, y), we move the integration over s2 to the contour

Γ(α2, β, T ), where β = 5/2 − α1; let us denote the respective integrals

J4,1, J4,2 and J4,3. Similarly to the estimation of J1,j , we have

J4,1, J4,3 ≪ yx2L5(T−1 + (x/yT )1/2), J4,2 ≪ y1/2x5/2L5.

Since the integrand is holomorphic in the region between the two contours,

we deduce that

C2,4(x, y) ≪ yx2L5((x/y)1/2 + T−1).(4.15)

Similarly, by moving the integration to Γ(α2, 3/2, T ), we find that

C2,3(x, y) ≪ yx2L5((x/y)1/2 + T−1),(4.16)

and

C2,2(x, y) =
yx2

ζ(2)
K(x, y) +O(yx2L5((x/y)1/2 + T−1)),(4.17)

where

K(x, y) =
1

2πi

∫ α1+iT

α1−iT

ζ(2− s)

ζ(s)

(yx−2)1−s

s2(2− s)
ds.

The first term on the right side of (4.17) arises from the pole of R2(s1, s2; y)

at s2 = s1. Thus, by (4.13)–(4.17),

(4.18)

C2(x, y) =
yx2

ζ(2)

(

1/2 +K(x, y)
)

+O(yx2L10(x−1/2 + (x/y)1/2 + xT−1)).

It remains to evaluate the integral K(x, y).

Recall that yx−2 ≤ LB. We move the integration to the contour Γ(α1, 1, T )

and denote the integrals along the edges K1(x, y), K2(x, y) and K3(x, y).

Then, by the bounds for ζ(s) in [4, §6.19], we have

K1(x, y), K3(x, y) ≪ T−2 and K2(x, y) = κ(u) +O(T−2),

where u = log(yx−2) and κ(u) is the Fourier integral

(4.19) κ(u) =
1

2π

∫ ∞

−∞

f(it)e−itu dt, f(s) =
ζ(1− s)

ζ(1 + s)

1

(1 + s)2(1− s)
.

We choose T = x2 and get the asymptotic formula

(4.20) C2(x, y) =
yx2

ζ(2)
(1/2 + κ(u)) +O(yx2L10((x/y)1/2 + x−1/2)).

Thus, to complete the proof of part (ii) of the theorem, we need only estab-

lish the desired properties of κ(u). We examine κ(u) in the next section.
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5. Estimation of κ(u)

Suppose first that |u| → ∞. For a fixed ǫ > 0 and a real t, we define

δ(t) = Cǫ(log(|t|+ 2))−2/3−ǫ.

By the standard bounds for ζ(s) near the edge of the critical strip [4, p. 135],

|f(σ + it)| ≪
δ(t)−2

(1 + |t|)3
when |σ| ≤ δ(t).

Applying Cauchy’s integral formula for the circle γt, |s − it| = δ(t), we

deduce that

|f (k)(it)| =

∣

∣

∣

∣

k!

2πi

∫

γt

f(s)

(s− it)k+1
ds

∣

∣

∣

∣

≪
k!δ(t)−k−2

(1 + |t|)3
(k ≥ 1).

Hence, a k-fold integration by parts gives

κ(u) ≪
1

|u|k

∣

∣

∣

∣

∫ ∞

−∞

f (k)(it)e−itu dt

∣

∣

∣

∣

≪
k!C−k−2

ǫ

|u|k

∫ ∞

2

(log t)(2/3+ǫ)(k+2)t−3 dt.

Using the inequality
∫ ∞

2

(log t)αt−3 dt ≤

∫ ∞

0

zαe−2z dz =
Γ(α + 1)

2α+1
,

we deduce that

κ(u) ≪
k!mk!

2mk(Cǫ|u|)k
≪

k(5/3+ǫ)k

(Cǫ|u|)k
,

where mk = ⌈(2/3 + ǫ)(k + 2)⌉. Finally, we set k = ⌊C ′
ǫ|u|

1/(5/3+ǫ)⌋, and we

get

κ(u) ≪ exp(−|u|3/5−ǫ).

Next, we focus on the case when |u| is bounded. The integral κ(u) is

differentiable, and

|κ′(u)| ≤
1

2π

∫ ∞

−∞

|t| dt

(1 + t2)3/2
≤

1

2
.

Hence,

(5.1) |κ(u)− κ(v)| ≤
|u− v|

2
.

Since the integrand is bounded above by |t|−3, we have

(5.2) κ(u) =
1

2π

∫ 60

−60

f(it)e−itu dt+ ϑu10
−4,

where |ϑu| ≤ 1/2. Let κ0(u) denote the integral on the right side of (5.2).

By partial integration,

|κ0(u)| ≤
1

2π|u|

(

|f(60i)|+ |f(−60i)|+

∫ 60

−60

|f ′(it)| dt
)

≤
4.2

2π|u|
≤ 0.67|u|−1.
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Combining the latter inequality and (5.2), we deduce that |κ(u)| ≤ 0.395

when |u| ≥ 1.7. It remains to estimate κ(u) when |u| ≤ 1.7.

In view of (5.1) and (5.2), it suffices to tabulate κ0(u) for a set of suitably

chosen values u1, u2, . . . , with |uj| ≤ 1.7. To this end, a quick calculation

using Mathematica yields the following table:

uj κ0(uj) Covered range

−1 −0.0277 −1.7 ≤ u ≤ −0.3
0.3 −0.0984 −0.3 ≤ u ≤ 0.9
1.1 −0.2586 0.9 ≤ u ≤ 1.3
1.5 −0.2925 1.3 ≤ u ≤ 1.7

Each row of this table lists a value of κ0(uj) and a range of the variable u,

where we can infer the bound κ(u) ≥ −0.4 from (5.1), (5.2) and the listed

value of κ0(uj). For example, when 0.9 ≤ u ≤ 1.3, we have

κ(u) ≥ κ(1.1)− 0.5|u− 1.1| > κ0(1.1)− 0.1001 > −0.36.

Clearly, this completes the proof of part (ii) of Theorem 1.2.
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