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Abstract. A classical additive basis question is Waring’s problem. It has

been extended to integer polynomial and non-integer power sequences. In this
paper, we will consider a wider class of functions, namely functions from a

Hardy field, and show that they are asymptotic bases.

1. Introduction

Let k be a positive integer. Waring’s problem asks whether the sequence 1k, 2k, . . .
of kth powers is an asymptotic basis. In other words, whether there are positive
integers s and N0 such that every integer N greater than N0 can be written in the
form

nk1 + nk2 + · · ·+ nks = N, (1.1)

with n1, n2, . . . , ns ∈ N. After Hilbert’s affirmative solution to this problem, several
generalizations and extensions were formulated, and important methods—such as
the circle and sieve methods, were developed to tackle those problems.

One variant of Waring’s problem replaces the sequence of kth powers by the
range of an integer polynomial. In other words, we want to represent an integer N
in the form

f(n1) + f(n2) + · · ·+ f(ns) = N,

where f(x) ∈ Z[x]. As a natural generalization of the classical Waring problem,
this question has been studied extensively via the circle method (see Ford [6] for
the history of the problem and the best results to date). In particular, it is known
that the sequence f(n), n = 1, 2, . . . , is an asymptotic basis whenever there is no
integer d ≥ 2 such that d | (f(n)− f(1)) for all n ∈ N.

Another generalization of Waring’s problem is whether non-integer powers form
a basis? It was Segal [10] who proved that for any fixed positive real number c, the
sequence [1c], [2c], . . . of integer parts of cth powers is an asymptotic basis. This
question has been studied further by Deshouillers [4] and by Arkhipov and Zhitkov
[1], among others. Whereas those authors focused on the order of the basis (i.e.,
the number of unknowns in an equation analogous to (1.1) that ensure solvability),
in this work we ask the general question if the sequence [nc] can be replaced by
other sequences. What other sequences do we have in mind? Well, for one, take
a polynomial p(x) with an irrational coefficient of a non-constant term. Is then
[p(n)], n = 1, 2, . . . a basis? How about more general sequences such as[

n2

log n

]
, or

[
πn3 +

n
√
2

log log n

]
. (1.2)
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In other words, we are interested in sequences of the form [f(1)], [f(2)], . . . when f
is a smooth positive function such that f(x)→∞ as x→∞. An obvious necessary
condition is that f grows no faster than a polynomial:

f(x)� (|x|+ 1)k for some k ∈ N. (1.3)

For the rest of this note, unless we say otherwise, all functions are assumed to
satisfy this growth condition.

As we mentioned, the case of rational polynomials has been extensively studied,
so in this introduction we consider functions f(x) which are far away from rational
polynomials in the sense that

|f(x)− g(x)| → ∞ for every g(x) ∈ Q[x]. (1.4)

Our aim is a general theorem which will include Segal’s theorem as a special
case, but it also includes the case of irrational polynomials and is easily and read-
ily applicable to somewhat wild sequences such as those in (1.2). Besides the
growth condition (1.3), we need some regularity condition on f . Instead of trying
to describe various growth conditions on the derivatives of the function f , we seek
conditions which are easily applicable to a wide class of functions, including those
appearing in (1.2). As an illustration of the type of functions we want to consider,
take the so called logarithmico exponential functions of Hardy. These are functions
we obtain by writing down a “formula” using the symbols log, exp,+, ·, x, c where x
is a real variable and c is a real constant. This class of functions certainly includes
any power function since xc = exp(c log x). It similarly includes any polynomials.
Now our theorem will imply that if f(x) is a logarithmico exponential function that
satisfies (1.3) and (1.4) then the sequence [f(1)], [f(2)], . . . forms a basis. We can
see immediately that the sequences in (1.2) form a basis. A small technical remark
is that the function f may be defined only for large enough x (for example, consider
x2 log log log x). In that case, we agree that we consider, instead, f(x + k) with a
suitably large, fixed k.

While the logarithmico exponential functions already represent a large class of
functions, sequences involving the logarithmic integral lix or Γ-functions are still
not covered; we want to admit functions such as

(lix)2 or (log Γ(x))
√
2, (1.5)

and even products, quotients, sums or differences of these functions.
The functions we want to consider are those from a Hardy field. For a more

extensive introduction to Hardy fields and for further references about the facts
we claim below, see Boshernitzan [2]. To define Hardy fields, we consider first the
ring of continuous functions with pointwise addition and multiplication as the ring
operations. Since functions such as log x, log log x, and log log log x are defined
only on some neighborhood of ∞, we want to consider germs of functions, that is,
equivalence classes of functions, where we consider two functions equivalent if they
are equal in a neighborhood of ∞. Let B the ring of all these germs of continuous
functions. A Hardy field is a subring of B which is a field, and which is also closed
with respect to differentiation. It is known that E, the intersection of all maximal
Hardy fields, contains all logarithmico exponential functions and is closed under
antidifferentiation; hence, lix ∈ E. Another known fact is that there is a Hardy
field containing the Γ-function, and that the intersection of all maximal translation
invariant Hardy fields contains log Γ(x).
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We remark that by virtue of their very definition, functions in a Hardy field
are defined only on a neighborhood of ∞. On the other hand, given a particular
function in a Hardy field, we want to think of it as being defined on [1,∞). To fix
this, we replace f(x) by f(x+ k) for some sufficiently large constant k. With this
caveat, our main result is the following theorem.

Theorem A. Suppose that f is a function from a Hardy field that satisfies the
growth condition (1.3) and the condition

lim
x→∞

∣∣f(x)− g(x)
∣∣ =∞ for all g(x) ∈ Q[x]. (1.4)

Then the sequence [f(n)], n = 1, 2, . . . , is an asymptotic basis.

The utility of the formulation of our theorem in terms of Hardy fields is that it
is easily applicable. Indeed, by the preceding remarks, the sequences in (1.2) all

form a basis as well as sequences such as [(lin)2] or
[
(log Γ(n))

√
2
]
.

2. Preliminaries

Notation. Most of our notation is standard. We write e(x) = e2πix. For a real
number θ, [θ], {θ} and ‖θ‖ denote, respectively, the integer part of θ, the fractional
part of θ and the distance from θ to the nearest integer. Also, we use Vinogradov’s
notation A� B and Landau’s big-oh notation A = O(B) to indicate that |A| ≤ KB
for some constant K > 0.

2.1. Hardy fields. Let U denote the union of all Hardy fields. Suppose that f ∈ U
satisfies condition (1.3) and that f(x) → ∞ as x → ∞. We say that a function
f ∈ U is non-polynomial if for every k ∈ N, we have f(x) = o(xk) or xk = o(f(x))
as x → ∞. Each function f ∈ U that satisfies the growth condition (1.3) falls in
one of the following three classes (see [3]):

i) f(x) = p(x), where p(x) ∈ R[x];
ii) f(x) = r(x), where r is non-polynomial;

iii) f(x) = p(x) + r(x), where p(x) ∈ R[x] and r is non-polynomial, with
r(x) = o(p(x)) as x→∞.

Our proof of Theorem A will be given in two parts each utilizing different methods.
The first method handles the case when f is far away from all polynomials, and
the second handles the rest of the cases. More precisely,the first part of the proof is
given in Section 3, and it handles the case when f either belongs to class ii) above
or it belongs to class iii) but for some positive δ we have r(x) � xδ. The second
part of the proof is given in Section 4 it handles the rest of the functions, so when
either f is a polynomial (class i)), or when f belongs to class iii) and r(x)� xδ for
all positive δ.

When f belongs to the classes i) or iii), these assumptions mean that the poly-
nomial part of f has a positive degree d. For functions of class iii), we call d the
degree of f . When f is non-polynomial (so class ii)), then there exists a real number
c ≥ 0 such that, for any fixed ε > 0, one has

xc−j−ε � f (j)(x)� xc−j+ε (j = 0, 1, 2, . . . ), (2.1)

the implied constants depending at most on f, j and ε. (See [3] for a proof.) For
functions of class ii), we call the number c in (2.1) the degree of f . Thus, we have
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now defined the degree of any function f ∈ U subject to (1.3). We denote the
degree of f by df . By (2.1),

xdf−j−ε � f (j)(x)� xdf−j+ε (j = 0, 1, . . . , df ) (2.2)

for any function f ∈ U satisfying the above hypotheses.
When f is of classes ii) or iii), we denote by cf the degree of its non-polynomial

part. Thus, cf = df or cf = dr according as f is of class ii) or iii). In particular,
we have

xcf−j−ε � f (j)(x)� xcf−j+ε (j > df ). (2.3)

We also recall the following result of Boshernitzan [2, Theorem 1.4].

Lemma 2.1. Suppose that f ∈ U satisfies condition (1.3). Then the following two
conditions are equivalent.

(a) The sequence
(
{f(n)}

)
n∈N is dense in [0, 1).

(b) For every polynomial g(x) ∈ Q[x], one has

lim
x→∞

∣∣f(x)− g(x)
∣∣ =∞.

2.2. Bounds on exponential sums.

Lemma 2.2. Let k ≥ 2 be an integer and put K = 2k. Suppose that a ≤ b ≤ a+N
and that f : [a, b] → R has continuous kth derivative that satisfies the inequality
0 < λ ≤ |f (k)(x)| ≤ hλ for all x ∈ [a, b]. Then∑

a≤n≤b

e(f(n))� hN
(
λ1/(K−2) +N−2/K + (Nkλ)−2/K

)
.

Proof. This is a variant of van der Corput [11, Satz 4]. �

2.3. The Hilbert–Kamke problem. Let N1, . . . , Nk be large positive integers.
The Hilbert–Kamke problem is concerned with the system of Diophantine equations

xj1 + xj2 + · · ·+ xjs = Nj (1 ≤ j ≤ k).

It is known that this system has solutions in positive integers x1, . . . , xs, provided
that:

(a) s is sufficiently large;
(b) there exist real numbers µ1, . . . , µk−1 > 1 and ν1, . . . , νk−1 < 1 such that

µjN
j/k
k ≤ Nj ≤ νjs1−j/kN j/k

k (1 ≤ j < k);

(c) the Nj ’s satisfy the congruences

∆j(N1, . . . , Nk) ≡ 0 (mod ∆0) (1 ≤ j ≤ k),

where

∆0 =

∣∣∣∣∣∣∣∣∣
1 2 · · · k
12 22 · · · k2

...
...

...
1k 2k · · · kk

∣∣∣∣∣∣∣∣∣ = 1!2! · · · k! (2.4)

and ∆j(N1, . . . , Nk) is the determinant resulting from replacing the num-
bers j, . . . , jk in the jth column of ∆0 by N1, . . . , Nk, respectively.

The reader can find a proof of the sufficiency of conditions (a)–(c) above in [7, §2.7],
for example.
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2.4. Bounded gaps imply basis. For a sequence A = (an)n∈N, we define the
sumset sA by

sA =
{
a1 + a2 + · · ·+ as | ai ∈ A

}
.

In the proof, we shall need the following elementary result.

Lemma 2.3. Let A = (an)n∈N be an integer sequence such that:

(a) for some s ∈ N, the sumset sA has bounded gaps;
(b) gcd

{
an − a1 | n ∈ N

}
= 1.

Then A is an asymptotic basis.

This lemma can be derived from more general results by Erdős and Graham [5,
Theorem 1] or by Nash and Nathanson [9, Lemma 1]. For the sake of completeness,
we present a direct proof.

Proof. By hypothesis (b), we have

gcd(a2 − a1, a3 − a1, . . . , ak − a1) = 1

for some k ∈ N. Thus, there exist integers x2, . . . , xk such that

k∑
j=2

xj(aj − a1) = 1. (2.5)

Define the integers a′j and a′′j , 2 ≤ j ≤ k, by

a′j =

{
aj if xj ≥ 0,

a1 if xj < 0;
a′′j =

{
a1 if xj ≥ 0,

aj if xj < 0.

We can rewrite (2.5) as

k∑
j=2

|xj |a′j = 1 +

k∑
j=2

|xj |a′′j . (2.6)

Let g and M be, respectively, the largest gap of sA and the least element of sA,
and suppose that N is an integer with

N ≥M + g

k∑
j=1

|xj |a′′j .

Then

N − g
k∑
j=1

|xj |a′′j = b+ h

for some integers b and h, with b ∈ sA and 0 ≤ h ≤ g. Hence, by (2.6),

N = b+ h+ g

k∑
j=1

|xj |a′′j = b+ h

k∑
j=1

|xj |a′j + (g − h)

k∑
j=1

|xj |a′′j .

This establishes that every sufficiently large N is the sum of s+ g
∑
j |xj | elements

of A. Thus, A is an asymptotic basis. �
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3. Proof of Theorem A in case r(x)� xδ

Let δ > 0 and consider a function f ∈ U with its non polynomial part r(x)
satisfying r(x)� xδ. For simplicity, we write d = df and c = cf . In the case when
f is of class ii), we assume that d ≥ 1; otherwise, the sequence an = [f(n)] contains
all sufficiently large integers, and the result is trivial.

3.1. A variant of the circle method. Let s ∈ N and suppose thatN ≥ N0(s, d, δ),
where δ is the positive number from the hypotheses of the theorem. We set
X = N1/d and Ns = N/(s+ 1), and we choose X0 and X1 so that

f(X0) = Ns, f(X1) = 2Ns.

Let Rs(N) denote the number of solutions of the equation

[f(n1)] + [f(n2)] + · · ·+ [f(ns)] = N

in integers n1, n2, . . . , ns with X0 < ni ≤ X1. Then

Rs(N) =

∫ 1/2

−1/2
S(α)se(−αN) dα, (3.1)

where

S(α) =
∑

X0<n≤X1

e(α[f(n)]).

Put ω = X1/2−d. We will show that when s ≥ 3 and 0 < ε < (6s)−1, one has∫ ω

−ω
S(α)se(−αN) dα� Xs−d−2ε; (3.2)

sup
ω≤|α|≤1/2

|S(α)| � X1−σ+ε, (3.3)

where σ = σ(c, d) > 0. Clearly, the theorem follows from (3.1)–(3.3).
Suppose that |α| ≤ ω and define

T (α) =
∑

X0<n≤X1

e(αf(n)), I(α) =

∫ X1

X0

e(αf(t)) dt.

We have

S(α) = T (α) +O(ωX1). (3.4)

Furthermore, since

sup
X0≤t≤X1

|αf ′(t)| � ωXd−1+ε < 1/2,

[8, Lemma 8.8] gives

T (α) = I(α) +O(1). (3.5)

Let ∆1 = ωX1 + 1. Combining (3.4) and (3.5), we find that∫ ω

−ω

∣∣S(α)s − I(α)s
∣∣ dα� ∆1

∫ ω

−ω
|I(α)|s−1 dα+ ω∆s

1. (3.6)

Since

inf
X0≤t≤X1

|αf ′(t)| � |α|Xd−1−ε,

we deduce from [8, Lemma 8.10] that

I(α)� |α|−1X1−d+ε.
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From the last inequality and the trivial bound for I(α), we obtain

I(α)� X1+ε

1 +Xd|α|
. (3.7)

Hence, for s ≥ 3,∫ ω

−ω
|I(α)|s−1 dα�

∫ ω

−ω

Xs−1+(s−1)ε dα

(1 +Xd|α|)s−1
� Xs−d−1+(s−1)ε.

Upon noting that

∆1 � X3/2−d+ε � X1/2+ε,

we deduce from (3.6) that∫ ω

−ω

∣∣S(α)s − I(α)s
∣∣ dα� Xs−d−1/3. (3.8)

We now evaluate ∫ ω

−ω
I(α)se(−αN) dα.

By (3.7), ∫
|α|>ω

|I(α)|s dα�
∫ ∞
ω

Xs+sε dα

(1 + αXd)s
� Xs−d−1/3,

so ∫ ω

−ω
I(α)se(−αN) dα =

∫
R
I(α)se(−αN) dα+O

(
Xs−d−1/3

)
. (3.9)

If g is the inverse function to f on the interval X0 ≤ t ≤ X1, then

I(α) =

∫ 2Ns

Ns

g′(u)e(αu) du = V (α), say.

By Fourier’s inversion formula, the integral on the right side of (3.9) equals∫
Ds
g′(u1) · · · g′(us−1)g′(N − u1 − · · · − us−1) du,

where Ds is the (s− 1)-dimensional region defined by the inequalities

Ns ≤ u1, . . . , us−1 ≤ 2Ns, Ns ≤ N − u1 − · · · − us−1 ≤ 2Ns.

Note that Ds contains the (s− 1)-dimensional box

N/(s+ 1) ≤ u1, . . . , us−1 ≤ N/s

and

inf
Ns≤u≤2Ns

g′(u)� X
1−d−ε/s
1 .

We deduce that ∫
R
I(α)se(−αN) dα� Ns−1Xs−sd−ε

1 � Xs−d−2ε. (3.10)

Combining (3.8)–(3.10), we obtain (3.2).
We now proceed to the estimation of S(α) on the two minor arcs. For non-integer

reals x, α and K ≥ 2, we have

e(−α{x}) = c(α)
∑
|k|≤K

e(kx)

k + α
+O (Φ(x;K) logK) , (3.11)
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where |c(α)| ≤ ‖α‖ and Φ(x;K) = (1 +K‖x‖)−1. Furthermore,

Φ(x;K) =
∑
k∈Z

bke(kx), |bk| �
K logK

K2 + |k|2
. (3.12)

By (3.11),

S(α) =
∑

X0<n≤X1

e(αf(n))e(−α{f(n)})

=
∑
|k|≤K

|c(α)|
|k + α|

|T (k + α)|+O(∆(K) logK), (3.13)

where

∆(K) =
∑

X0<n≤X1

Φ(f(n);K)�
∑
k∈Z
|bk||T (k)|. (3.14)

Combining (3.12)–(3.14), we obtain

sup
ω≤|α|≤1/2

|S(α)| �
(

sup
ω≤|β|≤K2

|T (β)|+X1K
−1
)

log2K. (3.15)

The estimate (3.3) follows readily from (3.15) with K = Xσ and the bound

sup
ω≤|β|≤X2σ

|T (β)| � X1−σ, (3.16)

which we establish in the next section.

3.2. Estimation of T (β). We now establish (3.16). By a standard dyadic argu-
ment, we can reduce (3.16) to the estimation of the exponential sum

W (β) =
∑

P<n≤P1

e
(
βf(n)

)
, (3.17)

where X0 ≤ P < P1 ≤ min(2P,X1) and P 1/2−d−ε ≤ |β| ≤ P 2σ+ε. We also assume,
as we may, that 0 < σ < 1

4 .

Suppose first that f is of class iii) and set η = 1
4 min(1, c). We consider two cases

depending on the relative sizes of β and P .
Case 1: P 1/2−d−ε ≤ |β| ≤ P−c+η. Let

p(x) = αxd + · · ·+ αkx
k

be the polynomial part of f . When d ≥ 2, we apply Lemma 2.2 with k = d, N = P ,
λ = |β|, and h = P ε. We obtain

W (β)� P 1+ε
(
|β|1/(K−2) + P−2/K + (|β|P d)−2/K

)
� P 1−σ1+ε,

where K = 2d and σ1 = min(1, c/2)K−1. When d = 1, we have

|β|P−ε � |βf ′(x)| � |β|P ε,

so the Kuzmin–Landau inequality (see [8, Corollary 8.11]) gives

W (β)� P ε|β|−1 � P 1/2+2ε.
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Case 2: P−c+η ≤ |β| ≤ P 2σ+ε. We recall (2.3) and apply Lemma 2.2 with k = d+1,
N = P , λ = |β|P c−k−ε/4, and h = P ε/2. We get

W (β)� P 1+ε
(
(|β|P c−k)1/(J−2) + P−2/J + (|β|P c)−2/J

)
,

where J = 2d+1. Since

(|β|P c−k)1/(J−2) � P (2σ−1+ε)/(J−2) � P−1/(2J),

we deduce that
W (β)� P 1+ε

(
P−1/(2J) + P−2η/J

)
.

Combining the above estimates, we conclude that when f is of class iii), (3.16)
holds with σ = 2−d−2 min(c, 1). When f is of class ii), we can argue similarly to
Case 2 above to show that (3.16) holds with σ = 2−k−1, where k = dd+ 1e. �

4. Proof of Theorem A when r(x)� xδ for all δ

In this section, we assume that f is either of class i) or it is of class iii) with
r(x) � xδ for all δ. In this case, Theorem A follows from Lemma 2.3. Under the
hypotheses of Theorem A, we have

lim
x→∞

∣∣q−1f(x)− g(x)
∣∣ =∞

whenever q ∈ N and g(x) ∈ Q[x]. Hence, by Lemma 2.1, the fractional parts{
q−1f(n)

}
are dense in [0, 1). In particular, the Diophantine inequality

a− 1

q
≤
{
f(n)

q

}
<
a

q
.

has solutions for any given integers a and q, with 1 ≤ a ≤ q. Therefore, every
arithmetic progression a (mod q) contains an element of A. This establishes that
A satisfies hypothesis (b) of Lemma 2.3.

We see, that it is enough to show that the set of sums [f(x1)] + · · ·+ [f(xs)] has
bounded gaps when s is sufficiently large. It suffices to show that every large real
N lies within a bounded distance from a sum f(x1) + · · · + f(xs). Suppose that
f(x) = p(x) + r(x), where

p(x) = αkx
k + · · ·+ α1x, r(x)� (|x|+ 1)δ,

with 0 < δ < 1/2. We define U and V in terms of N by the equations

N = sf(U + V ) + sαkV
k, V = U1−δ.

These are well-defined, since the function f(U+V )+αkV
k is strictly increasing for

U sufficiently large. We then set X = [U ] and Y = V +{U}, so that X+Y = U+V .
Using the Taylor expansion

f(X + Y ) = f(X) +

k∑
j=1

f (j)(X)

j!
Y j +O(X−δ),

we obtain

N = sf(X) +

k−1∑
j=1

f (j)(X)

j!
(sY j) + sαk(Y k + V k) +O(X−δ). (4.1)

We are going to use the result on the Hilbert–Kamke problem to replace the terms
sY j in (4.1) by s-fold sums of jth powers. Let ∆0 denote the determinant in
(2.4). The idea is to approximate each sY j by a suitable multiple of ∆0 and carry
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the residual error to the next step. We first find a positive integer M1 such that
0 < sY 1 −∆0M1 ≤ ∆0. Let E1 = sY −∆0M1 be the residual error. Then (4.1)
becomes

N = sf(X) +
f ′(X)

1!
∆0M1 +

f ′(X)

1!
E1 +

f ′′(X)

2!
(sY 2) + · · ·

+ sαk(Y k + V k) +O(X−δ)

= sf(X) +
f ′(X)

1!
∆0M1 +

f ′′(X)

2!

(
sY 2 +

2f ′(X)

f ′′(X)
E1

)
+ · · ·

+ sαk(Y k + V k) +O(X−δ).

Next, we find a positive integer M2 such that

0 < sY 2 +
2f ′(X)

f ′′(X)
E1 −∆0M2 ≤ ∆0.

We then carry the residual error

E2 = sY 2 +
2f ′(X)

f ′′(X)
E1 −∆0M2

to next step and repeat the process. Upon setting E0 = 0, this process yields a
recursive integer sequence M1,M2, . . . ,Mk, defined by the conditions

0 < Ej = sY j +
jf (j−1)(X)

f (j)(X)
Ej−1 −∆0Mj ≤ ∆0 (1 ≤ j < k);

0 < Ek = s(Y k + V k) +
kf (k−1)(X)

f (k)(X)
Ek−1 −∆0Mk ≤ ∆0.

Substituting into (4.1), we get

N = sf(X) +

k∑
j=1

f (j)(X)

j!
∆0Mj +O(1), (4.2)

By the choices of the Mj ’s, we have

∆0Mj = sY j(1 +O(XY −2)) (1 ≤ j < k),

∆0Mk = 2sY k(1 +O(XY −2)),

whence

∆0Mj = 2−j/ks1−j/k(∆0Mk)j/k(1 +O(XY −2)) (1 ≤ j < k).

Recalling that Y � X1−δ and δ < 1/2, we conclude that the integers ∆0M1, . . . ,∆0Mk

satisfy conditions (b) and (c) in §2.3. Therefore, if s is sufficiently large, there exist
positive integers y1, . . . , ys such that

∆0Mj = yj1 + · · ·+ yjs (1 ≤ j ≤ k).

Substituting these into (4.2), we obtain

N = sf(X) +

k∑
j=1

f (j)(X)

j!
(yj1 + · · ·+ yjs) +O(1)

= f(X + y1) + · · ·+ f(X + ys) +O(1).

Thus, as desired, N lies within a bounded distance of a sum of the form f(x1) +
· · ·+ f(xs). �
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