ON WEYL SUMS OVER PRIMES AND ALMOST PRIMES

ANGEL V. KUMCHEV

1. INTRODUCTION

In this paper, we pursue estimates for the exponential sum

(1.1) flay=">" e(ap?),

P<p<2P

where « is a real number, k is a positive integer, e(z) = exp(27iz), and the summation is
over prime numbers. This sum was introduced as a tool in analytic number theory by I. M.
Vinogradov in the late 1930’s. In 1937, Vinogradov developed an ingenious new method
for estimating sums over primes and applied that method to obtain the first unconditional
estimate for f(«) with £ = 1. That estimate is the main novelty in his celebrated proof [25]
that every sufficiently large odd integer is the sum of three primes. In the sharper form
given in [27, Chapter 6], Vinogradov’s result states (essentially) that if @ and ¢ are integers
satisfying

(1.2) ¢>1, (a,9)=1 |ga—a]<q,
one has
(1.3) flo) < ¢P (g + P27 4 qp )"

for any fixed e > 0. Vinogradov also obtained estimates for f(«) with k£ > 2 and used them
to give the first unconditional results concerning the Waring-Goldbach problem. When
k > 2, the sharpest estimates for f(a) obtained by Vinogradov’s method were proven by
Harman [3, 4]. In particular, he showed in [3] that if (1.2) holds, one has

1—-k

(1.4) fla) < pite (q_l + P24 qP"“)4

Vinogradov’s approach does not rely heavily on the particular form of the phases in (1.1)
and can be applied to more general sums (see [3, 28]). In 1991, Baker and Harman [1]
demonstrated that, using the diophantine properties of the sequence am”/q, one can derive
sharper bounds for f(a/q) with k > 2. They proved (essentially) that if ¢ is near P*/? and
(a,q) =1, one has

fla/q) < PrrtTe,

where p(2) = 1/7 and p(k) = 2 x 27% for k > 3. They applied this bound to obtain new

results on the distribution of ap® modulo one. On the other hand, research on topics related
to the Waring—Goldbach problem prompted several authors to give improvements on (1.4)
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valid for all real a. The sharpest result of that kind asserts (in a slightly stronger form) that
if £ > 3 and a and ¢ are integers with

1<q< P’ (a,q)=1, |ga—a|<P "2
one has
q7(1/2k)+sp(log P)4
(1+ Prla—a/q)V?’
where p(3) = 1/24 and p(k) = 2751 if k > 4. This was proven by Kawada and Wooley [11]
in the case k > 4 and by Wooley [29] in the case k = 3. In the present paper, we combine

the Kawada—Wooley and the Baker-Harman methods and obtain the following improvement
on the first term on the right side of (1.5).

(1.5) fla) < pl-rlk)+e |

Theorem 1. Let k > 3 and define

114,  ifk =3,
2 _ .
§><2 k, kaf24

(1.6) p(k) = {

Suppose that o € R and that there exist a € Z and q € N satisfying

(1.7) 1<¢<Q, (a,9)=1, |ga—a|]<Q*
with
(1.8) Q= Pk —2kp(k))/(2k—1)

Then for any fired € > 0 one has
q—l/QkPH—a
(1+ P —a/q))"*

where the implied constant depends at most on k and €.

(1.9) fla) < PR 4

The proof of Theorem 1 uses machinery from additive number theory and diophantine
approximation. If «v is close to a rational a/q with a small denominator, we are able to obtain
a substantially sharper result using methods from multiplicative number theory. Developing
an approach introduced by Linnik [15] and applied by several authors to derive versions
of Vinogradov’s bound (1.3) for the linear sum f(«), we prove the following ‘major arc’
estimate.

Theorem 2. Let k € N and o € R, and suppose that there exist a € Z and q € N satisfying
(1.10) 1<¢<Q, (a,q)=1, |ga—al<QP7*
with Q < P. Then for any fixed € > 0 one has
¢° P(log P)*
(¢+ P¥lgar—a])'*

where ¢ > 0 is an absolute constant and the constant implied in < depends at most on k
and €.

(1'11) f(oz) <<Q1/2P11/20+s+
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When k = 1, Theorem 2 can be used in two ways. Choosing Q = P2, we essentially
recover (1.3), a result that has previously been inaccessible via multiplicative methods. Al-
ternatively, applying (1.11) with @ < PY27¢  we obtain an estimate that is sharper than
(1.3), but is not applicable for all @« € R. When k > 2, only the latter scenario occurs. How-
ever, in this case, the resulting estimate—when applicable—is quite sharp. For example, if
g < PY? we obtain

fla/q) < Pq~'/%+,
which is also the estimate one obtains for £ > 2 on the assumption of the Generalized
Riemann Hypothesis, albeit in the slightly longer range ¢ < P'/2.
Combining Theorem 2 with Theorem 1 and (1.4), we obtain the following result.

Theorem 3. Let k > 2, let p(k) be defined by (1.6) for k > 3, and let p(2) = 1/8. Suppose
that o € R and that there exist a € Z and q € N satisfying (1.7) with

o {P3/2, ifk =2,
T\ pUR-2ko()/(26-1) ik > 3.
Then for any fived € > 0 one has
¢ Plog P
(g + P*lga —a|)'"*

where ¢ > 0 is an absolute constant and the constant implied in < depends at most on k
and €.

(1.12) f(a) < prrette 4

Theorems 2 and 3 enable us to make progress in several questions related to the Waring—
Goldbach problem. Using Theorem 3, we can deduce new estimates for cardinalities of
exceptional sets for sums of powers of primes. For example, replacing (1.4) by (1.12) in a
recent work by Liu and Zhan [18] on sums of three squares of primes, we obtain the following
result.

Theorem 4. Let
N ={neN:n=3(mod24), n#0 (mod 5)}.
Then for any fized € > 0 all but O (1’7/8+6) integers n € NN (1,z] can be expressed as the

sum of three squares of prime numbers.

Theorem 4 improves on [18, Theorem 1], in which the bound for the number of possible
exceptions is O (z!1/12*¢). Using our bounds for cubic Weyl sums, one can also sharpen the
estimates of Wooley [29] for exceptional sets for sums of cubes of primes. The author [13]
has proved the following theorem.

Theorem 5. Let 5 < s < 8 be an integer. Define 0, and the sets N, by
05 = 79/84, 0 =31/35, 0-=51/84, O5=23/84;
Ns={neN: n=1(mod?2), n#0,£2 (mod 9), n #Z 0 (mod 7)},
Ne={neN: n=0(mod 2), n# +1 (mod 9)},
N;={neN: n=1(mod2), n#0 (mod9)},
Ng={neN: n=0 (mod2)}.
3



Then all but O (xGS) integers n € Ny N (1,z] can be represented as the sum of s cubes of
prime numbers.

The respective exponents 65 in Wooley [29] are as follows:
05 =35/36, 0¢=17/18, 6;=23/36, 0s=11/36.

Estimates for exceptional sets of the above type depend on one’s ability to apply the
Hardy-Littlewood circle method with a set of major arcs that is significantly larger than the
‘standard’ set of major arcs in the Waring—Goldbach problem. Let

(1.13) m=m@Q.P)= |J |J {eeR:|ga—a <QPF},
S
and define
. B q aa:k B 2P e (ﬁyk)
S*(q,a) = ; €(7>7 U(ﬂ)—/P md%
(z,9)=1
B 0 q S*(q7a>s (_%) B s
Sual) =3 3 S (=)t = [ voret=ns)as,

Applications of the circle method to the Waring—Goldbach problem require approximations
of the form

/ fla)’e(—na)da =~ &y s(n)Jx s(n),

with @ as large as possible. The standard approach toward such approximations (see Hua
[10, Chapter 7]) works when @ < (log P)# for some fixed A > 0. Starting with celebrated
works by Vaughan [22] and Montgomery and Vaughan [20], this traditional barrier has been
broken in some special cases (see [16, 17, 20, 21]), but so far the general result has withstood
improvement. Using Theorem 2, we can change that. The author [13, Proposition 1] has
established the following general theorem.

Theorem 6. Let k,s and n be integers with k > 2, s > 5 and PFr<n< Pk Lete >0 be
fized, and let M be defined by (1.13) with Q < PY?~¢. Then for any A > 0 one has

(1.14) / fl@)’e(—na)da = &y 4(n)Jys(n) + O (P**(log P)~*) |
where the implied constant depends at most on A, k,s and €.

Remark 1.1. A comment is in order regarding the proofs of Theorems 1 and 2. As usual in
such matters, we reduce the estimation of sums over primes to the estimation of multiple
sums. However, instead of applying combinatorial identities such as Vaughan’s [23] or Heath-
Brown’s [9], we use a sieve argument due to Harman [6]. This makes the proofs of the
theorems a little longer, but has the added benefit that, in the process, we obtain also
estimates for certain Weyl sums over almost primes free of small prime divisors (see Lemmas
3.3 and 5.6 below). Such estimates are of independent interest, since Weyl sums over almost
primes arise naturally in applications in which we want to combine the circle method with

sieve methods. For example, the proof of Theorem 5 uses sieve ideas and Lemma 3.3,
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whereas the respective ‘sievefree’ result relying on Theorem 3 provides the somewhat weaker
exponents

05 =20/21, 66 =19/21, 6, =13/21, 0Os=2/T.

Estimates for Weyl sums over almost primes were also crucial in the author’s work [14] on
the Waring—Goldbach for seventh powers.

Remark 1.2. After the work on this paper was completed, the author learned that Professor
Harman [7] has obtained independently Theorem 1 for & > 5. His proof also depends on
an interaction between the methods in [1] and [11], but there are some differences in the
details. Furthermore, Harman and the author [8] have obtained a further improvement on

Theorem 4: by [8, Theorem 1], the number of exceptional integers counted in Theorem 4 is
19) ( .276/ 7+€) ]

Notation. Throughout the paper, the letter € denotes a sufficiently small positive real num-
ber. Any statement in which e occurs holds for each positive €, and any implied constant in
such a statement is allowed to depend on e. Implicit constants are also allowed to depend
on k. Any additional dependence will be mentioned explicitly. The letter p, with or without
indices, is reserved for prime numbers; ¢ denotes an absolute constant, not necessarily the
same in all occurrences. Also, we use P to denote the ‘main parameter’ and write L = log P.

As usual in number theory, u(n), ¢(n) and 7(n) denote, respectively, the Mobius function,
the Euler totient function and the number of divisors function. We write e(x) = exp(2mix)
and (a,b) = ged(a,b) and use x(n) to denote Dirichlet characters, sometimes referring to the
function x°, defined by taking x°(n) = 1 for all n € N, as the ‘trivial character’. Also, we use
m ~ M and m < M as abbreviations for the conditions M < m < 2M and c;M < m < co M,
and Y to denote summation over the Dirichlet characters mod ¢. Finally, if z > 2, we

x mod ¢
define

1, if (n,P(2)) =1,

1.15 = h = .

( ) ¥(n,2) {0, otherwise, where  P(2) L[Zp

2. AUXILIARY RESULTS
When k > 3, we define the multiplicative function wg(q) by
e kp~=12 ifu>0,0=1,
Wk (pk i ) = —u—1 :
D , ifu>0,v=2,... k.

This function enters our analysis through applications of the following result.

Lemma 2.1. Let k be an integer with k > 3 and let 0 < p < 2'7F. Also, let X > 2 and let
T be any subinterval of [X,2X). Then either

(2.1) Z e (az®) < X'7Pre
z€L

or there exist a € Z and q € N such that

(2.2) 1<qg<X*  (a,q)=1, |ga—al <X,
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and

cwi(q)X 1/2
2.3 k X1/2+e
(2.3) E e<am)<<1+X’f\a—a/q]+

€L
Proof. By Dirichlet’s theorem on diophantine approximation, there exist a € Z, ¢ € N with

1§q§Xk_17 (a>q):17 ’qa—a” SXl_k‘

If ¢ > X, Weyl’s inequality [24, Lemma 2.4] yields (2.1) with p = 2'=%. By the argument of
[24, Theorem 4.2],

(2.4) %; e <a%k> < wi(q),

whenever (a,q) = 1. If ¢ < X, we deduce (2.3) from (2.4) and [24, Lemmas 6.1 and 6.2].

Thus, at least one of (2.1) and (2.3) holds, and the lemma follows on noting that when

conditions (2.2) fail, then (2.3) implies (2.1). O
The following lemma is a slight variation of [1, Lemma 6]. The proof is the same.

Lemma 2.2. Let g and X be positive integers exceeding 1 and let 0 < § < % Suppose that
q1a and denote by S the number of integers x such that

X <zr<2X, (x,q =1, Hamk/qH <0,
where ||af| = miél|a —n|. Then
ne
S < 0q° (¢ + X).

Next, we list some mean-value estimates for Dirichlet polynomials. We define the Dirichlet
polynomials

(2.5) M(s,x) = Y &mx(m)m™, N(s,x) = Y nax(n)n”",
(26) R(s, 0 = 300, K(so) = 3 x(r)r,
<R r=K

where the coefficients &,,, n,, 0, are complex numbers such that
En| < 7(M)% [na] < T(R) (0] < 7(r)"

Lemma 2.3. Suppose that M > N > 2 and M(s,x), N(s,x) are defined by (2.5). Further,
set P = MN and suppose that 1 < q,T < P¢. Then

T
> / |MN (3 +it, x)|dt < L (P2 + (qTM)"? + ¢T)..
x mod ¢ -T
Proof. This follows from the mean-value theorem for Dirichlet polynomials [19, Theorem 6.4]
and Cauchy’s inequality. 0

Lemma 2.4. Suppose that M > N >2, R > 2, and M (s, x),N(s,x), R(s,x) are defined by
(2.5) and (2.6). Further, set P = MNR and suppose that 1 < q,T < P° and R < P33,
Then

T
(2.7) E / ‘MNR (% +it,X)‘dt < L° (Pl/2 + (qTM)l/Z +qTP1/20) ‘
T

xmod g%
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Proof. This is a variant of [2, Lemma 4]. If M > P%? the upper bound (2.7) follows
from Lemma 2.3, so we may assume that M < P%2°. Let A denote the right side of (2.7).
Following the proof of [2, Lemma 4] without referring to (3.2), (3.23) or (3.30) in [2], we
obtain

T
(28) L Z/ IMNR (L +it,x) | dt < Ay + A,
T

xmod g7~
4 (qT)Y2(PMOYY2 4 (qT)¥ (PRI  (¢T)V4(P(MR)*)VS,
where Ay = P2 and A, = ¢TP'/?. By the hypotheses M < P%?° and R < P3%/3,
(qT)V2(PMPYV12 < (¢T)2 P14 < AVPAL2 < A,
<qT)3/4(PR7)1/16 < <qT)3/4P13/80 _ A}“Agﬂ <A,
and
(qT)1/4(P(MR)3)1/8 < (qT)1/4P85/224 < A?/4A$/4 <A,
Thus, (2.7) follows from (2.8). O

Lemma 2.5. Suppose that K,T > 2 and K (s,x) is defined by (2.6). Then

T
Z'/ K (L +it, x| dt < qTLe,
T

xmodgqg®

where L = log(2¢TK) and " denotes summation over the non-principal characters mod q.
Also, if X° is the trivial character and K < T?, we have

27
/ K (3 +it, ") ['dt < TL"
T
Proof. The proof of this result is similar to the proof of [12, Lemma 5. O

Lemma 2.6. Suppose that M > N > 2, K > 2, and M(s,x),N(s,x), K(s,x) are defined
by (2.5) and (2.6). Further, set P = MNK and suppose that 1 < q,T < P°. Then

T
T

xmod q¥ —
! . . .
where > denotes summation over the non-principal characters mod q or over x = x°, the

trivial character, according as ¢ > 1 or ¢ = 1.

Proof. The proof is similar to the proof of [2, Lemma 10] under hypothesis (3.39) in [2], with
Lemmas 2.4 and 2.5 playing the roles of Lemmas 4 and 9 in [2]. O

The next lemma is a simple tool that reduces the estimation of a bilinear sum to the
estimation of a similar sum subject to ‘nicer’ summation conditions.

Lemma 2.7. Let & : N — C satisfy |(z)| < X, let M, N > 2, and define the bilinear form

m~M n~N
m<n
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where |&n| < 1, |n,| < 1. Then

(2.9) B(M,N) < L

> &, ®(mn)

mn~M n~N

where || < [&ml, 175 < Inn| and L =log(2M N X). The same estimate holds, if we replace
the summation condition m < n in the definition of B(M, N) with U < mn < U".

+ 1,

Proof. Suppose that B(M, N) is subject to the condition m < n (the alternative case can be
dealt with in a similar fashion). We recall the truncated Perron formula
1 [bHTL ub
2.10 — —dw =F O =—"——
( ) 210 Jyiy W v () + (T1’ log U|) 7

where b > 0 and E(u) is 0 or 1 according as 0 < u < 1 or u > 1. By (2.10) with b = L™*
and T} = (MNX)?,

sarN) =3 [0S S Gt () 2 o),

=Tt oM N

whence (2.9) follows upon choosing
$n = En(m+1/2)7" and ), = gmn™

for a suitable wy with Re wy = b. O

3. MULTILINEAR WEYL SUMS, I

In this section, we obtain upper bounds for the multilinear Weyl sums appearing in the
proof of Theorem 1. Our first result—a Type II sum estimate—is a variant of [11, Lemma
3.1] and [29, Lemma 2.1].

Lemma 3.1. Let k> 3 and 0 < p < (2"3 + 2)_1. Suppose that o € R and that there exist
a €7 and q € N such that (1.7) holds with @Q subject to

(3.1) P <Q < PP
Let M > N >2, [&,] < 1, || <1, and define

g(a) = Z Z Emime (O‘<mn)k) .

m~M n~N
mn~ P

Then
Wi (q)1/2pl+€

gla) < P'7PF 4 :
(1+ Pkla—a/q)"?

provided that

(3.2) max <P2k”, P(k—1+4kﬂ)/(2k—1)> < M < pi=?%,
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Proof. We follow the proof of [11, Lemma 3.1]. Let Z(ny, ns) be the (possibly empty) interval
[M,2M) N [P/ny,2P/ny) and define

Ti(a) = Z Z e(a (n';€ — nlf) mk) :

N<ni1<na<2N |meZ(ni,n2)
By Cauchy’s inequality and an interchange of the order of summation,
(3.3) l9(a)|? < PM + MT: ().

Define o by M? = P?*L~! and denote by A the set of pairs (n1, ns) with n; ~ N for which
there exist b € Z, r € N such that

(3.4) L<r<MY, (br)=1, |r(nf—n})a—b] <Mk,

By (3.2), we may suppose that o < 2'=%. We can then apply Lemma 2.1 with p = o to the
inner summation in 77 («). We get

(35) Tl(Oé) < NP1—2p+5 + T2(a)7
where o
WE\T
(m%@\f L+ M* |<n,§ - nlf) o — b/r’

We now change the summation variables in T(«) to
d= (ni,n2), m=mny/d, h=(ny—ny)/d.
We obtain
wg(r)M
3.6 T
(3:6) 20) < D D TN R R, Ry~ b

dh<N n

where R(n,h) = ((n + h)* —n*) /h and the inner summation is over n satisfying
n~Nd?' (nh)=1 (nd,(n+h)d) €N.

For each pair (d, h) appearing in the summation on the right side of (3.6), Dirichlet’s theorem
on diophantine approximation yields b; € Z and r; € N with

(3.7) 1<r < M*P (b,r1) =1, |rihd"a—b| < P* M
As R(n,h) < 3¥*Nk -1 combining (3.2), (3.4) and (3.7), we get
|birR(n, h) — bry| < M"Y + rR(n, h) P*** M~
<Lk 33k ph—1+4kp ) r—(2k=1) 1~k 1

Hence,
b blR(”u h) T1
3.8 L= SRS S—
38) r ri 0 (r.R(n,h)
Combining (3.6) and (3.8), we obtain
M e
(3.9) Ty(e) < _ o (_) |
dhng 14+ MENF |hdko — by Jry| (n%;l (r1, R(n, h))
n,h)=1

9



where Ny = Nd~'. By [11, eq. (3.11)],

T g g
> o () <o

(i)
so we deduce from (3.9) that
(3.10) Ty(a) < Ty(a) + P,
where () MN
o) = Y ol

dnen 1 MENF [hdFac — by fr|

We now write H for the set of pairs (d, h) with dh < N for which there exist b; € Z and
r1 € N subject to

(3.11) 1< <P*, (by,r) =1, |rhd'a—b|< NPFED,
We have
(3.12) Ty(a) < Tu(e) + NP2t
where ] N
Tile) = 2 1+M:Jl\fu’i’i<1rllfzdkal—b /ri
(d,h)EH 1 1771

For each d < N, Dirichlet’s theorem on diophantine approximation provides by € 7Z and
Ty € N with

(313)  1<m<yPUEINTL (byr) =1, [radto— by < 2NPHECD,
11) and (3.13), we obtain
|borih — byra| < 1o N PR | 9 j N PR2e—1)

o e A R

Combining (3.

whence
bl hbg T9
— = T =-—.
1 T2 ’ ! (7"2, h)

Therefore, on writing Z = M*NF-! !dka — bg/?“g!, we deduce that

Z Z 7“2MN1 To < rswg(re) MN?L
1+ Zh " (ro, h) o d*>(1+ ZNd-1)’

d<N h<Ni

Here we have used the estimate

(3.14) S owi (r/ (nd))) < rfur(r)D (1< 5 <),
d~D

which can be established similarly to [11, Lemma 2.3]. Hence,

(3.15) Ty(a) < Ts(a) + NP20Fe,
where
Z U)k TQ)NPH_S
1+ Pkd=F* |d*a — by /19])

D
10



and D is the set of integers d < P?! for which there exist by € Z and 7, € N with
(316) 1 S T2 S P2ka_1, (bg,?"g) = 1, ‘ngkOé — b2| S Pk(2p_1)L_1.
Combining (3.16) and the hypotheses (1.7) and (3.1), we deduce that
|7‘2dka — b2q‘ < rdt QY 4 g PR 7Y
< P4ka—1L—l + QPk(Qp—l)L—l < 2L—l < 1’
whence
by dFa q

=—, Ty= .
rs g 27 (g, d%)

Thus, recalling (3.14), we get

(3.17) T5(a) < T ;’\’Zfojf o7 Z wi (¢/(g,d")) d? <

d<p?r

The lemma follows from (3.2), (3.3), (3.5), (3.10), (3.12), (3.15) and (3.17). O

wk(q)NPH-a
14+ PFla—a/q|

The next lemma provides an estimate for trilinear sums usually referred to as Type 1/11
sums.

Lemma 3.2. Let k > 3 and 0 < p < 2'7%. Suppose that o € R and that there exist a € Z
and q € N such that (1.7) holds with Q given by (1.8). Let M, N, X > 2, |, <1, |n.| <1,

and define
g(a) = Z Z Z Emnne (a(mnz)*) .
m~M n~N x~X

mnx~ P

Then )
pite
pl-pte wk(Q)
A L)

provided that
(3.18) M < P(kf(QkJrl)p)/(Qkfl), MN < P172k_1p’ M N2 < Ppl-2p

Proof. Define o by X° = P?L~! and denote by M the set of pairs (m,n) with m ~ M and
n ~ N for which there exist b; € Z and r; € N with

(3.19) 1<r < XM, (by,r) =1, |ri(mn)fa—b| < XD,
Noting that (3.18) implies o < 2'7*, we apply Lemma 2.1 to the summation over z and get
where
wg(r1) X
Ti(a) = Z k k :
Wl 1+ X*|(mn)rka — by /1]

For each m ~ M, we apply Dirichlet’s theorem on diophantine approximation to find b € Z
and r € N with

(3.21) L<r<X*Pr (br)=1, |rmPfa—0b| < P¥X7"
11



By (3.18), (3.19) and (3.21),
|bir — bnfry| < XM oy PR X
< L—k: + 24k‘Pk(2p—1)(MN2)kL—k < 24k+1L—k < 1’

whence

Thus, by (3.14),

X T
(322) T1<CY><< Z 1—|—(NX)k |mka_b/r|n§]:vwk ((T,nk))

ka r)NX
< Z 1+ (N |mka—b/r|

Let M’ be the set of integers m ~ M for which there exist b € Z and r € N with

(3.23) 1<r<P*Lt (br) =1, }rmkoz b < P kL=t
By (3.22),
(3.24) Ti(a) < Ty(a) + PIPte,
where
rewg(r)NX

T = .
2(a) m; 1+ (NX)F [mFa — b/r]
We now consider two cases depending on the size of ¢ in (1.7).

Case 1. Suppose that ¢ < P*1=P) M=% In this case, we estimate Th(a) as in the proof of
Lemma 3.1. Combining (1.7), (1.8), (3.18) and (3.23), we obtain

‘rmka — bq! < gP*eOMFLT 4 rmPQT < 3FLT < 1.

Therefore,

b mFa q

- = r= )

g (g, mF¥)
and by (3.14),

anX q wk(q>P1+a

3.25 T — )
(3:25) (a) < 1+Pk|a—a/q|n§4wk((q,mk)) < 1+ Pkla —a/q|

Case 2. Suppose that ¢ > P*(1=?) \[=* In this case, we estimate T5(c) by the method of [1,
Lemma 10]. By a standard splitting argument,

wy(r)N X1+
(3:26) <> D T Nx R

dlg meMqy(R,Z)

where
(3.27) 1< R<prept, PFI=PNFL < Z < PPMF
and My(R, Z) is the subset of M’ containing integers m subject to

(m,q)=d, r~R, |rm"a—bl<Zz7"
12



We now estimate the inner sum on the right side of (3.26). We have
(3.28) D wlr) < wi(r)So(r),
meMy(R,Z) r~R

where Sy(r) is the number of integers m ~ M with (m, q) = d for which there exists b € Z
such that

(3.29) (b,r)=1 and ‘rmkoz —bl<Zz7n.
By (1.7), (3.27) and (3.29),
(3.30) So(r) < S(r),

where we write S(r) for the number of integers m subject to

m~ Md", (m,q¢) =1, Hardk_lmk/q'H < 0,
with ¢ = qd™t, § = Z71 + 21 RM*(qQ)~! and ||0| = rglei%\e —n|. When (q,rd*) < ¢, we
appeal to Lemma 2.2 and, on noting that (3.18) implies M < P*=UM~F < ¢ we obtain
(3.31) S(r) < 8¢°d (M + q) < §¢"*=.
Combining (3.30) and (3.31), we get
(3.32) So(r) < 0g*Te.
Since for each m ~ M there is at most one pair (b, r) satisfying (3.29) and r ~ R, we have
(3.33) Y S < Y 1< Md+1,

T (mog)d

and we also have the bounds

(3.34) Z wy(r)y <

r~R

Rt ifk=3,j=4,
RVE if k>4, =k,

which follow from [11, Lemma 2.4]. We now apply Holder’s inequality and then appeal to
(3.32), (3.33) and (3.34). We obtain

1/4 3/4
(3.35) Z w3(r)Sy(r) < (5q1+5)1/4 <Z ’LU3(?")4> <Z 30(7”)>

r~R r~R r~R
(g,rd®)<q

< 51/4q1/4+5R71/4M3/4.

Similarly, if £ > 4, we have

1/k 1-1/k
(3.36) ST w(r)So(r) < (9%) " (Zwk(r)k> (Z&)('r))

r~R r~R r~R
(grd*)<q

< (51/kq1/k+eR(1—k)/k2M(k—l)/k'

13



On the other hand, by (3.33),

(3.37) > w(r)So(r) < RTVE(Md™ 1) < Mg F 41,
r~R
(¢,;rd*)=q

on noting that the sum on the left side is empty unless Rd* > ¢. Combining (3.28) and
(3.35)—(3.37), we deduce

(3.38) Z w?’(r) < 51/4q1/4+5R_1/4M3/4+Mq_1/3+ 1
meMy(R,Z)
and
(3.39) Z wi(r) < 61/kq1/k+sR(1fk)/k2M(kfl)/k 4 MgV 1
meMq(R,Z)
for k > 4.

Substituting (3.38) into (3.26), we get

M3/4NX1+5 Q M3 1/4
e plte -1/3 N X1+
1+ (NX)3RZ)-! (RZ 0 > e

1/44€ + P1+€ (M2Q_1)

Tra) <

1/4

< (PQM?) + MPP 4+ NX'e

The choice of ) and the hypothesis (3.18) of the lemma ensure that the first three terms
on the right side of the last inequality are < P'=7*¢; furthermore, in conjunction with the
hypothesis ¢ > P33 M~3 of the present case, the definition of @ in (1.8) implies NX <
P'=¢. Therefore, if k = 3,

(3.40) Ty(a) < PYrte,

If k > 4, by (3.26) and (3.39),

M(k—l)/kNX1+sR1/k2 Mk
TQ(OZ) < ( Q

1/k

P1+5 —1/k NX1+5
I+ (NX) Rz \Bz " Q) T
)1/k+€

< (PpQMkfl —|—P1+5 (PpMklefl)l/k +Mpp+€ +NX1+€,

and using (1.8) and (3.18), we find that (3.40) holds in this case as well.
The desired estimate follows from (3.20), (3.24), (3.25) and (3.40). O

The following lemma uses the sieve of Eratosthenes-Legendre and Lemmas 3.1 and 3.2 to
derive an upper bound for a bilinear Weyl sum with coefficients supported on numbers not
divisible by small primes.

Lemma 3.3. Let k> 3 and 0 < p < (Qk + 2)71. Suppose that o € R and that there exist
a € Z and q € N such that (1.7) holds with Q given by (1.8). Let z, M, N > 2, let |{,,] <1,
and let ¥(n, z) be defined by (1.15). Also, write

g(@) =Y > &ub(n, 2)e (a(mn)*) .

m~M n~N
mn~P

14



Then
w(q) PP

g(a) < PP 4 ,
(1+ Ptla —a/q])"?

provided that

(3.41) 2 < 2y = min <p(k—(8k—2)p)/(2k—1)’ Pl—(2k+2)p>
and
(3.42) M < min (PO CR/EED ploE a2

Proof. Let Z(m,d) denote the interval
[Nd™',2Nd™") N [P(md)~",2P(md)™") .
Using the properties of the Mébius function, we can write g(«) in the form

gla)=> "> > &uulde (a(mnd)")

d|P(z) m~M neZ(m,d)
:{Z Z} = g1() + ga(@),  say.
d<P2  d>p2

Note that the hypothesis (3.42) of the lemma implies hypothesis (3.18) of Lemma 3.2 with
(m,n,z) = (m,d,n), so a simple splitting-up argument yields

plte
Pl—p+a wk’(Q) )
gi(a) < T T Pra—a/q]
Therefore, it suffices to show that

wk(q)1/2pl+a

3.43 o) < P1PTe 4 .
59 e (1+ Prla—a/q|)"?

We write

(3.44) { Z Z } = go1(@) + goo(a), say.

d<zoPZ2?¢  d>zoP2r

By Lemma 2.7,

go1() < L Z Z Z Emmndae (a mnd)k) +1,

d[P(z) m~M neP)(md)
with [n,| <1, |04] < 1. Thus, Lemma 3.1 with (m,n) = (mn,d) yields
wila)! 2P
(15 PHla— af)

We now turn our attention to gs2(ar). Each d appearing in the summation has a factorization
d = py---p, subject to

(3.45) 9271(04) < pl=rte 4

2
pr<---<p1 <z pi--pr> 2P
15



Therefore, there is a unique integer r1, 1 < r; < r, such that
P2p S P1-DPry S ZOP2P < P1-DPri+1-
On writing p = p,,, p’ = Pry41, A1 =P1- Pr—1, d2 = Pry12 -+ Dr, We Obtain

g2a2(a Zzz&nﬂ di)u(dz)ip(dy, p)e (a(mnpp'didz)®) |

pp di,da mn
where m ~ M, n € Z(m, pp'dids) and p,p’, dy, ds are subject to
p<p<z di|P2), dy|P®), dip<zP* <dpp.
Hence, using Lemma 2.7 to remove the summation conditions

Y <p, dipp > 20P*, npp'dids ~ N,

we get
goo(a) < L° Z Z Euive (a(uv)®) | + L2,
P2/J<u§zop20 uv~P
with coefficients |€,| < uf, |7i,| < 1 (the new variables being u = mnp'dy and v = pd,).
Applying Lemma 3.1 with (m n) = (u,v), we deduce
1/2P1+5
(3.46) goo(q) < Plrte 4 wi(q) T
(1+ Prla—a/q|)
Combining (3.44)—(3.46), we complete the proof of (3.43) and establish the lemma. O

4. PROOF OF THEOREM 1

Let 2y denote the right side of (3.41) and let z; = 2P'/3. We apply Buchstab’s combina-
torial identity in the form

(4.1) Y, z) =, z)— Y vEp) (2<% <)

Applying (4.1), we obtain

(4.2) fla) = Z W(n, V2P)e (an®)

n~P
=Y vz (an) = Y N @ a(jp)t).
n~P 20<p<V/2P j~Pp~!

Lemma 3.3 applies to the first sum on the right side of this identity. On the other hand, the
second sum on the right side of (4.2) is equal to

> D v (@GP )+ >, D v (alip)).

20<p<z1 j~Pp—1 21<p<V2P j~Pp~!
The first of these sums can be estimated by Lemma 3.1 and the second can be rewritten as

gl@)=">_ > ¢ e (alip)),

21 <p<v2P J€L(p)
16



where Z(p) is the interval max(p, P/p) < j < 2P/p. Another appeal to (4.1) yields

Z Z¢],Zo ))

21 <p<2P JEL(p)

- XX vl (atnp)).

21<p1<v2P jp2€Z(p1)
Z0<p2<z1
Since these two sums can be estimated by Lemmas 3.3 and 3.1, respectively, this completes
the proof. 0

5. MULTILINEAR WEYL suMs, II

In this section, we derive bounds for exponential sums from the large sieve. As we men-
tioned in the Introduction, this idea goes back to Linnik [15], who used the large sieve to
prove zero-density estimates for Dirichlet L-functions and then applied the latter to deduce
bounds for exponential sums. We use a variant of Linnik’s method that was introduced by
Vaughan [23] and has also been used by Harman [5]. It derives exponential sum estimates di-
rectly from large sieve inequalities for Dirichlet polynomials. We start with two lemmas that
relate upper bounds for exponential sums to mean-value estimates for Dirichlet polynomials.

Lemma 5.1. Let k € N and o € R, and suppose that o« = a/q+ 5, where a € Z, ¢ € N and

(a,q) = 1. Define
= Z &ne (omk)
n~P

with coefficients &, subject to |&,| < 7(n)¢, and suppose that there exists z > 2 such that
& = 0 unless (n,P(z)) = 1. Then

(5.1) gla) < g **(|g(B) + £(B)) + ¢ LPz",
where
(5.2) 28 = 33 Gaxn)e (Bn4)|.

/ . . .
Here, > denotes summation over the non-principal characters mod q.

Proof. We have

(5.3) g(a) = gi(a) + O(g2),
where
gl(a) = Z gne (ank)a g2 = Z ‘5n|
(n,9)=1 (n,q)>1

Using the properties of the coefficients £,,, we obtain

(5.4) g2 < Z Z 7(n) < ¢°L°Pz1.

dlg n~
d>z n=0 (mod d)

17



On the other hand, by the orthogonality of the Dirichlet characters mod g,

1 k
(5.5) 9(e) = 5o > Sug.a) ) Eaxn)e (Bn*)

x mod ¢ n~P

1 ax”
.0 = xe (20,
r=1
By [26, Problem VI.14], we have
(5.6) Sy(g,a) < ¢'/?,
so separating the contribution from the principal character, we deduce from (5.5) that
(5.7) gi(e@) < g (|9(B)] + g2 + 2(8)).
Clearly, (5.1) follows from (5.3), (5.4) and (5.7). O
Lemma 5.2. Let k € N, f € R, q € N, and suppose that ¢ < P°. Define

9(B.x) = D> &ummx(mn)e (B(mn)*)

m~M n
mn~P

where

and

G(s,x)= > > &unux(mn)(mn)~,

mx=xM nxN
where &, N, are complex numbers subject to &, < 7(m)S, |n,| < 7(n)¢, and N = PM .
Then

/P T
(5.8) E g9(B,x) < L max Py E / ’G (% 4 it,X) } dt + qTyP~ ',
-T
X X

a<T<pPs Ty + T

where Ty = P*|B] + 1 and Zx denotes summation over a set of characters mod q.

Proof. Applying (2.10) with b = % and T} = P, we get

1 LTy v — s
Z Emnnx(mn) = —/ G(s,x) 2 . Lds+ O (P_2+6) ,

21 %77;7*1

y1<mn<ysz

whenever P < y; < yo < 2P and mi? In — y;| > P~2. Hence, by partial summation,
ne

1 %+iT1

(5.9) 930 = 5= [ Gl hlo)ds + 0 (TP 1),
T J iy

where

h(s) Zh(S;B)Z/ y e (By") dy.

P
We now observe that

h(o +it) < P°min (1, [t|~'/?),
and that, unless k7 |S|PF < |t| < 282kr|B| Pk, we also have

h(o +it) < P?min (Ty ', [t| 1) .
18



Hence,

VPT,

To + [t|’

and (5.8) follows from (5.9) by a standard splitting argument. O

h(1/2 +it) <

The next lemma provides preliminary estimates for sums of the form appearing on the
right side of (5.1) by combining Lemma 5.2 with Lemmas 2.4 and 2.6. Define

(5.10) 9B:%) = D> YD &umndrx(mnr)e (B(mnr)¥)

m~M n~N r
mnr~P

where the coefficients &,,, 1, J, are complex numbers with
En| < 7(M)% [na] < T(R) (0] < 7(r)"

Also, through the remainder of this section, >’ has the same meaning as in Lemma 2.6: it
represents summation over the non-principal characters mod ¢ or a single term with y = x°
according as ¢ > 1 or ¢ = 1.

Lemma 5.3. Let k € N, B € R, ¢ € N, and suppose that ¢ < P and q|3] < P**. Let
9(B,x) be defined by (5.10), and suppose that max(M, N) < P2 gnd either MN > P?7/3
or 6, =1 for all r. Then

(5.11) S 1908, )] < L (PU(B) ™ 4 qPHY™w(5) 1) |

x mod ¢q

where ¥(3) = P*|8| + 1.
Proof. By Lemma 5.2,

(5.12) S 1908, x)] < 2 LEP) LVP‘I’ Z/ (41 it,y)| de + P,

x mod ¢
where 2 < T < P? and

Z Z Z EmMndr X (mnr) (mnr)~%.

m=xM nxN r<xP(MN)-1

When M N > P?/35 we can bound the right side of (5.12) by Lemma 2.4; when 6, = 1, we
can apply Lemma 2.6. O

Lemma 5.4. Let k € N, 8 € R, ¢ € N, and suppose that ¢ < P and q|3| < P*=*. Also, let
9(B,x) be defined by (5.10) with 6, = (r, z), and suppose that

2 < PBM gnd  max(M, N) < P20,
Then (5.11) holds.

Proof. We consider two cases depending on the sizes of M and N. By symmetry, we may
assume that N < M.

Case 1. Suppose that MN > P?7/35 or M > P20 If the former condition holds, we apply
Lemma 5.3 with §, = ¥(r, z). Otherwise, we write n’ = nr and apply Lemma 5.3 with
(m,n,r) = (m,n’, 1).
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Case 2. Suppose that M < P%29 and M N < P?"/%5_ We have

(5.13) ST BN < LY | S Gunen(@)x(murd)e (B(mnrd)t) |,

xmod ¢ xmod g |m,n,rd
where m,n,r,d are subject to
d|P(z), d~D, m~DM, n~N, mnrd~P.
We now consider two subcases depending on the size of D.

Case 2.1. Suppose that ND < P!/20. Then, we estimate the right side of (5.13) by
Lemma 5.3 with (m,n,r) = (m,nd,r).

Case 2.2. Suppose that ND > P'/20. Our argument is similar to that used in the proof of
Lemma 3.3. Suppose that d occurs on the right side of (5.13). We observe d has at least
two prime divisors, as otherwise we would have

DN < zN < 2(MN)Y? < o p?"/70 < pl1/20,
Decomposing d into prime factors, we have d = p; - - - p;, where
p;<--<p <z, mN<PYO<p . piN.
Hence, there is a unique ¢, 1 <7 < 7, such that
py - piN < P/ < pi-piaN,
and consequently, d has a unique factorization d = pp’dyd, in which
p<p, (PE)=1 do|Plp), pd <PV* <ppd.
Thus, the sum over d on the right side of (5.13) can be rearranged in the form
Z Z Z ) (dy, p ) (pp/d1d2)e (a(mnrpp/dldQ)k) )
p<p’ d1|P(2) d2|P(p
where p, p', d, dy are subject to
pdy < N2 < pp'dy,  pp'didy ~ D, rpp'dids ~ R, mnrpp'dids ~ P.

Using Lemma 2.7 to simplify the summation conditions, we obtain

L ZI 9(8,x)] < ZI SN by (uop)e (a(uvp)) [+ 1,

x mod ¢ xmod q |(u~M’' v~N' p
uvp~P

where the new summation variables are u = mrdy and v = p'dy, the coefficients satisfy
1€u| < T(w)C, 7| < 7(0)4, 16, <1, and M" and N’ are subject to

N/ < P11/20, M/ < PQ/QO, MINI > Pz—l

The desired estimate then follows from Lemma 5.3 with (m,n,r) = (u, v, p). O
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Lemma 5.5. Let k € N, 8 € R, q € N, and suppose that ¢ < P and q|3| < P*™*. Let &,, be
complex numbers with |&,| < 7(m)¢, and define

9(B.x) = 32 3 G, 2)x(mm)e (B(mn)*) |

m~M n
mn~P

where Y(n, z) is given by (1.15). Then (5.11) holds, provided that
(5.14) M < P2 < \/2P/M.

Proof. We use Buchstab’s identity (4.1) to write g(/3,x) as a linear combination of expo-

nential sums for which (5.11) can be established by means of Lemmas 5.3 or 5.4. We may

assume that z > P?3/M0 for otherwise the result is an immediate corollary to Lemma 5.4.
Set zy = P?¥/10 Applying (4.1) twice, we get

9(B,x) = 91(B,x) — 9208, x) + 93(8, x),

where
gi(B:x) = Y D &mmmax(mn)e (B(mn)¥) (i =1,2,3),
m~M n
mn~P
with
i = ¢(n,20)7 ho = Z ¢(]7 Zo> and Nn,3 = Z ¢(jap2)a
n=pj n=pip2j
20<p<z
the primes py, ps in 7, 3 being subject to
(5.15) 2 <pe<p <z pps<2PM.

The desired estimates for g;(8,x) and g¢»(83,x) follow from Lemma 5.4. We decompose
g3(B3, x) further. We write

g3(ﬁ7X): Z + Z 2294(B7X)+g5(/8a>()7 say.

P1p2a<PIY/20  pipy>pl1/20 [om,j
Consider g4(f, x). Using (4.1) once more, we obtain
g4(ﬂ7 X) = 96(57 X) - g?(ﬁa X)>
where gs(3, x) and g7(3, x) are obtained from g4(5, x) by replacing 7, 3 with
M6 = Z ¥(j,20) and  mu7 = Z V(4 ps),

n=pip2j n=p1p2p3j
the prime p3 in 7, 7 being subject to
20 < p3 <p2, pipeps < 2PM

The sum gg(3, x) is covered by Lemma 5.4 and we will show that g7(8, x) can be dealt with
by Lemma 5.3. Indeed, either

PO < pipy < PY, jpsM < 2P

or

pips < PP M < 2Pz < PMP py < \fpips < P
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In the former case we can apply Lemma 5.3 with (m,n,r) = (mjps, pip2,1) and in the
latter with (m,n,r) = (mj, p1p2, p3). (Also, we need to appeal to Lemma 2.7 to remove the
‘unwanted’ summation conditions.)

We now turn to g5(3, x). By (4.1),

95(8,x) = 9s(B,x) — 90(B, x),

where gs(, x) and go(f3, x) are defined similarly to gs(3, x) and g7(5, x). We can estimate
g3(B,%) by Lemma 5.4 (note that p;ps > P'/2° and the second inequality in (5.15) yield
peM < 2P%2%). On the other hand, the summation variables in go(f3, x) satisfy

j < 2P/(Mpipaps) < 2P20251 < 22,

so j = ps > ps and we can replace the coefficient (7, ps) by ¥(4,20) whenever j > ps.
Furthermore,

piM < 2P/(papsj) < 2Pz;° < PY/20 and (pap3)? < pipops < 2PM 1,

so any subsum of go((,x) in which the constraints on m, pi, ps, p3 make the summation
condition j > ps superfluous can be dealt with via Lemma 5.4.> In particular, Lemma 5.4
applies to the subsum of go(3, x) with pipspsM < P2?7/35 as in this case,

ps < \/2P/pips < PY10 < PYF <
Finally, in the remainder of go(, x), we have
piM < 2Pz < PM0 pypy < \/2P/M < PUVP . j < 2p¥,
and we can refer to Lemma 5.3 with (m,n,r) = (mp1, p2ps, 7). O

We are finally in position to state the main result of this section. Combining Lemmas 5.1
and 5.5, we obtain the following estimate for bilinear Weyl sums over almost primes.

Lemma 5.6. Let k € N and a € R, and suppose that there exist a € Z and q € N satisfying
(1.10) with @ < P. Let &,, be complex numbers with |&,,| < 7(m)¢, and define

gla) =D Y &utb(mn, 2)e (a(mn)*),

m~M n

mn~P
with ¥ (n, z) given by (1.15). Suppose that conditions (5.14) hold. Then
(5.16) g(a) < L (PU(a) /2 + () /2P0 4 P2l

where ¥(a) = q + P*|qa — al.

Remark 5.1. Sometimes, one needs a slight variation of Lemma 5.6 in which z, instead of
being fixed, depends on m. Let &, and 7, be complex numbers as above, and let z(m) be
defined by z(m) = m or z(m) = Zm™! with Z € R. Suppose that the sequences (&,,) and
(n,) are supported on integers free of prime divisors < z and that z(m) > z for all m ~ M.
We claim that the exponential sum

gla) =" > > &umt(r,z(m))e (a(mnr)®)

m~M n~N r
mnr~P

IWe can use Lemma 2.7 to remove troublesome summation conditions involving m, p1, p2, p3, but using
that lemma to remove j > p3 would alter the coefficients ¥ (4, z9), which we need in order to apply Lemma 5.4.
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satisfies (5.16), provided that
MN < P2 and  z(m) < +/2P/MN

The proof of this estimate is similar to the proof of Lemma 5.6. Only a few ‘cosmetic’
changes are needed because of the interdependence between m and r. For example, in the
proof of the respective variant of Lemma 5.4, in place of (5.13) we have a bound of the form

STl <Y Y Y uuldEim.d)],

x mod g xmod q [m~M d|P(z(m))
where 3(m, d) represents the double sum over n and r. Since
S St =~ XY ),
d|P(z(m)) p<z(m) d|P(p)

an appeal to Lemma 2.7 gives

> s d)S(m,d) < LI Y Y > &bpu(d)S(m, pd)|,

m~M p<z0 d|P(p)

where zy = max,, z(m). The sum on the right side of this inequality can then be dealt with
in the same fashion as that on the right side of (5.13). O

6. PROOFS OF THEOREMS 2, 3 AND 4

We are finally in position to complete the proofs of Theorems 2—4.

Proof of Theorem 2. Apply Lemma 5.6 with M =1 and z = V2P. O
Proof of Theorem 3. If a and ¢ satisfy (1.10) with Q = P?**®) Theorem 2 yields the bound
q° P(log P)°

fla) < PY5Fe 4

(¢ + P¥|ga — a|)"/*
which is even stronger than (1.12). On the other hand, if @ and ¢ satisfy (1.7) but not (1.10)
with Q = P%*®*) the estimate

f(Oé) < Pl—p(k:)—i—a
follows from Theorem 1 or (1.4) according as k > 3 or k = 2. O
Proof of Theorem 4. We fix k = 2. Let 9 be the set of a € [0,1] for which there exist
integers a and ¢ satisfying (1.10) with Q = P'/37¢ and let m = [0, 1] \ 9. By the argument
n [18], the desired bound will follow, if we show that

(6.1) max |f(a)] < P7/5F=,
acm
By Dirichlet’s theorem on diophantine approximation, for every o € R there exist integers
a and q satisfying (1.7) with Q = P%?2. Since for a € m we also have
q+ P*qgo — a| > P3¢,

the desired bound (6.1) follows from Theorem 3. O
23



Acknowledgements. This paper was written while the author enjoyed the benefits of a Post-
doctoral Fellowship at the University of Toronto. He would like to take this opportunity to
express his gratitude to the Department of Mathematics and especially to Professor J. B.
Friedlander for the support. He would also like to thank Professor D. R. Heath-Brown for
a discussion, from which the exposition, in its present form, benefited greatly. Last but not
least, the author thanks the referee for several helpful suggestions.

REFERENCES

[1] R. C. Baker and G. Harman, On the distribution of ap® modulo one, Mathematika 38 (1991), 170-184.
[2] R. C. Baker, G. Harman, and J. Pintz, The exceptional set for Goldbach’s problem in short intervals,
Sieve Methods, Exponential Sums and their Applications in Number Theory, Cambridge University
Press, 1997, pp. 1-54.
[3] G. Harman, Trigonometric sums over primes. I, Mathematika 28 (1981), 249-254.
, Trigonometric sums over primes. II, Glasgow Math. J. 24 (1983), 23-37.
, On averages of exponential sums over primes, Analytic Number Theory and Diophantine Prob-
lems, Birkhauser, 1987, pp. 237-246.
6] , On the distribution of ap modulo one. II, Proc. London Math. Soc. (3) 72 (1996), 241-260.
[7] , Trigonometric sums over primes. III, J. Théor. Nombres Bordeaux 15 (2003), 727-740.
[8] G. Harman and A. V. Kumchev, On sums of squares of primes, Math. Proc. Cambridge Philos. Soc.
140 (2006), 1-13.
[9] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J.
Math. 34 (1982), 1365-1377.
[10] L. K. Hua, Additive Theory of Prime Numbers, American Mathematical Society, 1965.
[11] K. Kawada and T. D. Wooley, On the Waring-Goldbach problem for fourth and fifth powers, Proc.
London Math. Soc. (3) 83 (2001), 1-50.
[12] A. V. Kumchev, The difference between consecutive primes in an arithmetic progression, Quart. J. Math.
Oxford (2) 53 (2002), 479-501.

[5]

[13] , On the Waring—Goldbach problem: exceptional sets for sums of cubes and higher powers, Canad.
J. Math. 57 (2005), 298-327.
[14] , On the Waring-Goldbach problem for seventh powers, Proc. Amer. Math. Soc. 133 (2005),

2927-2937.

[15] Yu. V. Linnik, On the possibility of a unique method in certain problems of “additive” and “distributive”
prime number theory, Dokl. Akad. Nauk. SSSR 49 (1945), 3-7, in Russian.

[16] J. Y. Liu and M. C. Liu, The exceptional set in the four prime squares problem, Illinois J. Math. 44
(2000), 272-293.

[17] J. Y. Liu and T. Zhan, Distribution of integers that are sums of three squares of primes, Acta Arith. 98
(2001), 207-228.

[18] , The exceptional set in Hua’s theorem for three squares of primes, Acta Math. Sinica (N.S.) 21
(2005), 3357350.

[19] H. L. Montgomery, Topics in Multiplicative Number Theory, Springer-Verlag, 1971.

[20] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach’s problem, Acta Arith. 27
(1975), 353-370.

[21] X. M. Ren, The Waring—Goldbach problem for cubes, Acta Arith. 94 (2000), 287-301.

[22] R. C. Vaughan, On Goldbach’s problem, Acta Arith. 22 (1972), 21-48.

[23] , Mean value theorems in prime number theory, J. London Math. Soc. (2) 10 (1975), 153-162.

[24] , The Hardy-Littlewood Method, 2nd ed., Cambridge University Press, 1997.

[25] I. M 1nogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk SSSR
15 ( 937), 291294, in Russian.

[26] , An Introduction to the Theory of Numbers, translated from the 6th Russian ed., Pergamon
Press, 1955.

[27] , Special Variants of the Method of Trigonometric Sums, Nauka, 1976, in Russian.

24



[28] , The Method of Trigonometric Sums in Number Theory, 2nd ed., Nauka, 1980, in Russian.
[29] T. D. Wooley, Slim exceptional sets for sums of cubes, Canad. J. Math. 54 (2002), 417-448.

DEPARTMENT OF MATHEMATICS, TOWSON UNIVERSITY, 8000 YORK RoAD, TowsoN, MD 21252
E-mail address: akumchev@towson.edu

25



