AN ADDITIVE PROBLEM WITH PRIME NUMBERS
FROM A THIN SET

A. Kumchev , D. L. Tolev

In 1937 I. M. Vinogradov [10] found an asymptotic formula for the number of the solutions in
prime numbers of the equation
p1+p2+ps=N. (1)

This formula implies that every sufficiently large odd integer may be represented as the sum of three
primes. In [11] he proved a similar theorem for the equation

pr+ps+-+pr=N.

Later, Hua Lo-Keng using the method of I. M. Vinogradov obtained an asymptotic formula for
the number of the solutions J = J(Ny, ..., N,) of the system

pLtpet-tpe=MN
Pi+p3+-+pi =N

Py +p3+ -+ pp =Ny

(2)

with prime unknowns p,...,pr. He showed [7, Chapter 10] that if ko(n) is defined by the table

n 2 3 4 5 6 7 8 9 10
ko(n) 7 19 49 113 243 413 675 1083 1773
Table 1.

in the case of 2 < n < 10, and by the formula
ko(n) = 2[n*(3logn + loglogn + 4)] — 21 (3)

in the case of n > 11, and if k > ko(n), then

Pk70.5n(n+1) log IOgP
! = T log Py (”‘”O( log P )) @

Here P = NY/™ and ~v and o are the singular integral and the singular series, which values are
given in [7, pp.139-140]. Hua Lo-Keng also proved [7, Chapter 11] that if Ny,..., N, satisfy some
arithmetical conditions (conditions of congruent solvability) then o > oy > 0 where gy does not de-
pend on Ny,..., Ny, and that if the orders of magnitude of Ny, ..., N, satisfy some other conditions
(conditions of positive solvability) then v > 9 > 0 where g does not depend on Ny, ..., N,.

In 1986 Wirsing [12] considered (1) for prime numbers from a thin set (the set of prime numbers
S is called to be thin if the number of the primes p < x such that p € S equals o(w(x)), z — o0).
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He showed that there exists a thin set of prime numbers .S such that for every sufficiently large odd
integer N the equation (1) has solutions in prime numbers from S. However, Wirsing did not give
an example for such a set because his method does not allow this.
In 1988 Gritsenko [3] (see also [4] and [5]) considered some additive problems with prime numbers
from the set
{p — prime | (2n)* < p < (2n 4 1)* for some n € N}

where 1 < a < 2 is a fixed number. This set is not thin but the method of Gritsenko may be used
for studying of additive problems with primes from thin sets.

In 1990 Balog and Friedlander [1] proved that if 1 < ¢ < 21/20 then every sufficiently large odd
integer N can be represented in the form (1) where p; belong to the set of the Piatetski-Shapiro
prime numbers

{p — prime | p = [n°] for some n € N} .

In this paper we study the system (2) in prime numbers p ”close to squares®, i.e. such that ,/p
is close to an integer.

We use the standard notation: A < B means that A = O(B); A < B means that A < B < 4;
D, P1,...,Pr are prime numbers; € is an arbitrary small positive number, not necessary the same
in all appearances; e(z) = €2™; ||a|| = min({a},1 — {a}), A(n) is von Mangoldt’s function. The
constants are absolute or depend only on n, k, A.

Let Jy = Jo(Nq,...,Ny,,) be the number of the solutions of (2) in prime numbers p1, ..., px such

that ||/p1ll,- -, |[v/Prl < P~*, where A > 0 is a fixed number. One can expect that if \ is sufficienly
small and Vy, ..., N, satisfy the conditions of congruent and positive solvability, then J, is close to
2k JPAE,

We prove the following theorem:

Theorem. Let n > 2 and k > ko(n), where ko(n) is defined by Table 1 and (3). There exists an
absolute constant ¢ > 0 such that if

ﬁ Jifn>3
O<A<A, =408 (5)
61 dafn =2
then the asymptotic formula
Pr(1=X)—0.5n(n+1) log log P
= 2k D .
%0 (log P)F ( o < log P )> ©

holds. Here P, o, 7y are the same as in (4).

The upper bound for A depends on the estimate for an exponential sum. To obtain this estimate
we use in the case n = 2 the method of van der Corput. In the case n > 3 we can not use this
method and so we use the method of I. M. Vinogradov. For the constant ¢ we may get for example
¢ =107 but for small values of n we may obtain a better result (for instance in the case n = 3 we
may get ¢ = 1/13000).

For the proof of the theorem we need some lemmas:

Lemma 1. Let r be an integer, o and 8 be real, 0 < A < 0.25, A < —a <1—A. There exists
a periodic with period 1 function 1(t) such that:

1° Yt =1, ifa+05A<t<B—05A;
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2° () =0,if B+05A <t<1+a—0.5A;
3 0<yt)<l,ifa—05A<t<a+0.5A orf—05A<t<f+0.5A;
4° (t) has the Fourier expansion

where g(0) = f — o and

. 1 1 " '
o < min (3= o (i) )

for h # 0.
Proof. See [9], p. 23.

We denote as usual

1 T

ern(P):/~-~/1 Ze(a1x+~-~+anx”) doy . ..do, . (7)
0

0 <P

Lemma 2. Ifn > 10 and 7 > ro(n) = 2[n*(2logn + loglogn + 4)], then we have
J7'777,(P) < P’I’—O.5n(n+1).
Proof. See [9, p. 70].

Lemma 3. Let 2 <n <10 and r > ro(n) where ro(n) is defined by the table

n 2 3 4 5 6 7 8 9 10
ro(n) 6 16 46 110 240 410 672 1080 1770
Table 2.

Then we have
Jrn(P) < Pr—0.5n(n+1)+s )

Proof. See [7, Chapter 5.

Lemma 4. Let k > 2, K = 272 and F(x) be a real-valued function with k contionuous derivatives
in [a,b] such that
|[F®) (2) < b, uniformly in x € [a,b] .

We have
Z e(F(n)) < (b_ a)hl/(4K—2) 4 (b_a)l—Q/K + (b_a)l—Q/K-‘,-l/th_l/QK.
a<n<b

Proof. This is Theorem 2.8 on p. 14 of [2].
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Let 0 < M < My <2M,0< D < Dy <2D, MD = X. Suppose that a,,, M < m < M7, and
by, D < d < D; are complex numbers such that |a,,| < X¢, |bg| < X¢. We consider sums of two
types:

Type I sums:
Wy = Z am Z e(f(md)) ’
M<m< M D<d<D;
X<md<X;
Wi= Y am Y, (logd)e(f(md);
M<m<M; D<d<D;
X<md<X;

Type II sums:

Wo= > am Y  bae(f(md)).
M<m<M,; D<d<D;
X<md<X;

Lemma 5. Let f(n) be a real-valued function. Let X > 2, X1 < 2X and u, v, z be positive numbers
(z — 1/2 € N) satisfying

2<u<v<z< X | P <z , 64uz? < X , v3 < 32X, .

Then the sum

Y. Alm)e(f(n))

X<n<X;

may be decomposed into O(loglo x) sums, each either of Type 1 with D > z, or of Type I with
u<D<uw.

Proof. See Lemma 3 of [6].

Lemma 6. Suppose that U >0, P> 1 and a = a/q+0/q¢*, (a,q) =1, ¢ > 1, || < 1. Then for

every B we have
1 P
min —4+1)(U+qlo .
Z ( +6H) (q )( 7log9)

Proof. This is Lemma 2 on p. 111 of [8].

Lemma 7. Suppose that n > 3, x1,...,x, are arbitrary real numbers and h < p/n’ log2 P. For
the sum

T =Y e(hybt+amp+-+z.p")
p<P

we have
|T‘ < Plfc/n310g2n

The constant ¢ > 0 is absolute.

Proof. In order to prove the lemma we are following the approach of I. M. Vinogradov (see [8, pp.
112-113]). It is easy to see that

IT| < |Ty| + P4/ 8)
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where
Ti= Y. Am)e(f(m))
X<m<X;
and PL=V/"" < X < X; <min(2X, P), f(t) = v/t + a1t + - - + 2 t™.
Applying Lemma 5 with v = X'/ v = 210X1/3 - = [X2/5] 4+ 1/2, we decompose T} into
O(log™ X) sums of Type I with D > z and sums of Type II with v < D < v.

Let us consider a Type IT sum Wj. Using the Cauchy inequality and changing the order of
summation we obtain

Wol? < X271 xe YT > Yo elfi(m) (9)
DX—l/n3<q§D D<d<D:1—q |M’'<m<M;]

where M < M’ < M] < Mj and f1(m) = f(m(d+ q)) — f(md).
Let A= [M'Y2X~1/6"]. Then

> )€ g S [Um)+ A (10)
M’ <m<M{ M<m<2M
where
A
U(m) = e(fi(m+ay)).

We choose 7 = [3n/2], 11 =n+ 1, r2 = [(3n — 1)/2] and define k1 (n) by the table

n 3 4 5 6 7 > 7
ki(n) 46 240 410 1080 1770 2[r?(2logr + loglogr + 4)]
Table 3.

Using Taylor’s formula we get

" €))
i 2 m
fl(m+$y)=f1(m)+2aj(xy)j—|—(9(X’1/5”3) Caj = 1]’5 )
=1 ~
Hence )
U (m)| < [Ux(m)] + A2X 1/ (11)
where
A
Ur(m) = Y elmay+ -+ opa’y") .
z,y=1
After some calculations we obtain
ULm)H < 20 2 () T[T (12)

Jj=1
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where Jy, »(A) is given by (7) and

1
TJ = Z min (klA‘], T) .
Pt [ad]|
The trivial estimate for the quantity T} is
T, < A% (13)

If r1 < j <17y we can find a better estimate. It is easy to see that in this case we have

a; 0;
aj =t 101
qj q;
where
O[j 1
=L i=|—>1 , iqi)=1.
a; |Olj| q;j |:|a]|:| = (CL] QJ)
Hence Lemma 6 gives
T, < A2 X —1/2+5/3n+1/n° (14)

for 1 < j < ro.
Using Lemmas 2 and 3 and the inequalities (12)—(14) we get

\Ul(m)| < 14270/713 log® n (15)
for some absolute constant ¢ > 0, and combining (9)—(11) and (15):
|W2‘ < A)(l—c/n3 log? n (16)

where ¢ > 0 is another absolute constant.
For the Type I sums we have

Wil Wil < MX| Y e(f(md))
D'<d<D)

where D < D’ < D} < D;. Choosing A = [D'/2X~Y/6"] r =[3n/2], r1 =n+1, 1 = [(3n —1)/2]
and arguing as above we obtain

|W1‘, ‘Wll| <<X17c/n310g2n. (17)

The inequalities (8), (16) and (17) prove the lemma.

Lemma 8. Suppose that h < P/1%1og® P and x1, xo are real numbers. Then we have

Ze(h\/f)—l—wlp—i—xsz) < P15/16+s.
p<P



An additive problem

Proof. Using Lemma 5 with v = 2710X/5 ¢ = 210X'/3 and 2z = [X?/°] — 1/2 we reduce the
estimation of the above sum to the estimation of Type I and Type II sums. Let us consider a Type
II sum W5. Using the Cauchy inequality we obtain

Wol? < MX'E 4 MX> " ) > elp(m) (18)

q<D D<d<D1—q |M’'<m<M!
where M < M’ < M| < M; and

o(m) = h(\/d+ q — Vd)v/m + z1mq + 22 ((d + q)? — d*)m? .
Since | (m)| < hgD~*/2M~%/? Lemma 4 with k = 3 gives

Z 6(()0(771)) < h1/6q1/6D71/12M7/12 +M3/4 +h71/4q71/4D1/8M7/8 . (19)
M'<m< My

Using (18) and (19) we get
Ws| < X19/10e, (20)

For the Type I sums we use again Lemma 4 with £ = 3 and we obtain
Wil , [Wi| < X9/10%,

The last inequality and (20) prove the lemma.

Proof of the Theorem. We define the function

L o] < P
t) = ’ .
w={g s

Obviously
Jo =Y x(v/p1) -+ x(v/pr)

where the summation is over all primes py, ..., px satisfying (2). Using Lemma 1 we construct two
functions x1(t) and x2(t) corresponding to the next values of «, 8, A, r:

xi1(t): a=—-P*4+05A, B=P*—05A, A=P*logP, r=]log?P|;
xo(t): a=—-P*-05A, B=P*+05A, A=P *logP, r=/[log’P].

Then x1(t) < x(t) < x2(t) and so
J1(P) < Jo(P) < J2(P) (21)

where
Ji=> " xi(o) iV L i=1.2.

Let us consider for example J;. We have

1 1
J1:/---/(S(xl,...,xn))ke(—xll\ﬁ—---—ann)dxl...dxn (22)
0 0
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where
S=8(x1,...,2,) = Z x1(v/p) e(z1ip + -+ - + x,p") .
p<P
According to Lemma 1 we get
S=02P*-AG+V (23)
where
G:G(xh...,xn):Ze(m1p+--~+xnp”), (24)
p<P
V=V(zy,...,2,) = Z g(h) Z e(hy/p+x1ip+ -+ 200") - (25)
[R|#0 p<P

The equalities (22) and (23) imply
Ji= 2P - A)*J+O(R)

where J is the number of solutions of (2), and

R=Y p AR, (26)

Using the asymptotic formula (4) we have

Pr(1—A)=0.5n(n+1) A loglog P
I = g P . (2 Nyo + O (()g)) + O(R) . (27)

From the properties of the coeficients g(h) and Lemmas 7 and 8 we obtain

Vo= max |V(zy,...,2,)| < P*° (28)

T1yeeesTn

where

__c ifn>3
§=14 n’log’n PR =
1/16 if n=2.

If n > 3 and ro(n) is the function defined in Lemmas 2 and 3, then following the proof of
Theorem 2 of [4] we get

Pk—0.5n(n+1)—s6 ; fl1<s< (k _ ,r0>7
R, < {Pk—0.5n(n+1)—6(k—r0—1)+s , if (/{1 _ TO) < s<k. (29)
If 0 < A < 6/2000, then (26) and (29) imply
R<< Pk(l*A)*O‘Bn(rH»l)fpl (30)
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for some p; = p1(n, k,A) > 0.
In the case n = 2 we have

11 11
R <V Pi(k*l)/\//|G($1,$2)\k71d$1d$2+//|5($17$2)|k71 dzidzy | . (31)
0 0 00
Lemma 3 implies
11
// |G 1’1,372 -1 dJEldl‘Q < P(k71)73+6. (32)
0 0
Using Lemmas 1 and 4 it is easy to prove that
> 1< P (33)
p<P
lvall<P~*

and therefore
|S(CC1,1‘2)| < Pli)\.

The last inequality implies
11
//|S x1,22) ¥ daydry < PFTDARY (34)
0 0

where R* denotes the number of the solutions of the system

1+ T2+ x3=Yy1+ Y2+ Y3
ot +ay+as =yl s+ 3

in integers 1 < z1,...,y3 < P such that [|/z,||,...,[[\y;l < P~*. Arguing as in the proof of
Lemma 5.4 of [7] and using (33) we get
R* < p373:e, (35)
From (34) and (35) we obtain
11
//|S 1, 29) [ doyday < PR=HU=N e, (36)
00

Inequalities (28), (31), (32) and (36) imply
R < pFI-N=3=p2 (37)

for some pa = pa(k, A) >
From (27) and (30) in the case n > 3, and from (27) and (37) in the case n = 2 we derive

Pr(1=X)—=0.5n(n+1) log log P
J = (200 =5 ) -
! (log P)* ( Yo+ ( log P ) )

9
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Since similar conclusions hold for J> the assertion of the theorem follows from (21).

Finally the authors would like to thank Bulgarian National Science Fund for the financial
support (grant MM-430).
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