
AN ADDITIVE PROBLEM WITH PRIME NUMBERS
FROM A THIN SET

A. Kumchev , D. I. Tolev

In 1937 I. M. Vinogradov [10] found an asymptotic formula for the number of the solutions in
prime numbers of the equation

p1 + p2 + p3 = N . (1)

This formula implies that every sufficiently large odd integer may be represented as the sum of three
primes. In [11] he proved a similar theorem for the equation

pn1 + pn2 + · · ·+ pnk = N .

Later, Hua Lo-Keng using the method of I. M. Vinogradov obtained an asymptotic formula for
the number of the solutions J = J(N1, . . . , Nn) of the system

p1 + p2 + · · ·+ pk = N1

p21 + p22 + · · ·+ p2k = N2

· · · · · · · · ·
pn1 + pn2 + · · ·+ pnk = Nn

(2)

with prime unknowns p1, . . . , pk. He showed [7, Chapter 10] that if k0(n) is defined by the table

n 2 3 4 5 6 7 8 9 10

k0(n) 7 19 49 113 243 413 675 1083 1773

Table 1.

in the case of 2 ≤ n ≤ 10, and by the formula

k0(n) = 2[n2(3 log n+ log log n+ 4)]− 21 (3)

in the case of n ≥ 11, and if k ≥ k0(n), then

J =
P k−0.5n(n+1)

(logP )k
·
(
γσ +O

(
log logP

logP

))
. (4)

Here P = N
1/n
n and γ and σ are the singular integral and the singular series, which values are

given in [7, pp.139–140]. Hua Lo-Keng also proved [7, Chapter 11] that if N1, . . . , Nn satisfy some
arithmetical conditions (conditions of congruent solvability) then σ ≥ σ0 > 0 where σ0 does not de-
pend on N1, . . . , Nn, and that if the orders of magnitude of N1, . . . , Nn satisfy some other conditions
(conditions of positive solvability) then γ ≥ γ0 > 0 where γ0 does not depend on N1, . . . , Nn.

In 1986 Wirsing [12] considered (1) for prime numbers from a thin set (the set of prime numbers
S is called to be thin if the number of the primes p ≤ x such that p ∈ S equals o(π(x)), x → ∞).
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He showed that there exists a thin set of prime numbers S such that for every sufficiently large odd
integer N the equation (1) has solutions in prime numbers from S. However, Wirsing did not give
an example for such a set because his method does not allow this.

In 1988 Gritsenko [3] (see also [4] and [5]) considered some additive problems with prime numbers
from the set

{p — prime | (2n)α ≤ p < (2n+ 1)α for some n ∈ N}

where 1 < α ≤ 2 is a fixed number. This set is not thin but the method of Gritsenko may be used
for studying of additive problems with primes from thin sets.

In 1990 Balog and Friedlander [1] proved that if 1 < c < 21/20 then every sufficiently large odd
integer N can be represented in the form (1) where pj belong to the set of the Piatetski-Shapiro
prime numbers

{p− prime | p = [nc] for some n ∈ N} .

In this paper we study the system (2) in prime numbers p ”close to squares“, i.e. such that
√
p

is close to an integer.
We use the standard notation: A� B means that A = O(B); A � B means that A� B � A;

p, p1, . . . , pk are prime numbers; ε is an arbitrary small positive number, not necessary the same
in all appearances; e(x) = e2πix; ‖α‖ = min({α}, 1 − {α}), Λ(n) is von Mangoldt’s function. The
constants are absolute or depend only on n, k, λ.

Let J0 = J0(N1, . . . , Nn) be the number of the solutions of (2) in prime numbers p1, . . . , pk such
that ‖√p1‖, . . . , ‖

√
pk‖ < P−λ, where λ > 0 is a fixed number. One can expect that if λ is sufficienly

small and N1, . . . , Nn satisfy the conditions of congruent and positive solvability, then J0 is close to
2kJP−λk.

We prove the following theorem:

Theorem. Let n ≥ 2 and k ≥ k0(n), where k0(n) is defined by Table 1 and (3). There exists an
absolute constant c > 0 such that if

0 < λ < λn =

{ c
n3 log2 n

,if n ≥ 3

1
64 ,if n = 2

(5)

then the asymptotic formula

J0 =
P k(1−λ)−0.5n(n+1)

(logP )k
·
(

2kγσ +O
(

log logP

logP

))
. (6)

holds. Here P , σ, γ are the same as in (4).
The upper bound for λ depends on the estimate for an exponential sum. To obtain this estimate

we use in the case n = 2 the method of van der Corput. In the case n ≥ 3 we can not use this
method and so we use the method of I. M. Vinogradov. For the constant c we may get for example
c = 10−6 but for small values of n we may obtain a better result (for instance in the case n = 3 we
may get c = 1/13000).

For the proof of the theorem we need some lemmas:

Lemma 1. Let r be an integer, α and β be real, 0 < ∆ < 0.25, ∆ < β − α < 1−∆. There exists
a periodic with period 1 function ψ(t) such that:

1◦ ψ(t) = 1 , if α+ 0.5∆ ≤ t ≤ β − 0.5∆;
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2◦ ψ(t) = 0 , if β + 0.5∆ ≤ t ≤ 1 + α− 0.5∆;
3◦ 0 < ψ(t) < 1 , if α− 0.5∆ < t < α+ 0.5∆ or β − 0.5∆ < t < β + 0.5∆;
4◦ ψ(t) has the Fourier expansion

ψ(t) =

∞∑
h=−∞

g(h) e(ht)

where g(0) = β − α and

|g(h)| ≤ min

(
β − α, 1

π|h|
,

1

π|h|

(
r

π|h|∆

)r)
for h 6= 0.

Proof. See [9], p. 23.

We denote as usual

Jr,n(P ) =

1∫
0

· · ·
1∫

0

∣∣∣∣∣∣
∑
x≤P

e(α1x+ · · ·+ αnx
n)

∣∣∣∣∣∣
r

dα1 . . . dαn . (7)

Lemma 2. If n > 10 and r ≥ r0(n) = 2[n2(2 log n+ log log n+ 4)], then we have

Jr,n(P )� P r−0.5n(n+1).

Proof. See [9, p. 70].

Lemma 3. Let 2 ≤ n ≤ 10 and r ≥ r0(n) where r0(n) is defined by the table

n 2 3 4 5 6 7 8 9 10

r0(n) 6 16 46 110 240 410 672 1080 1770

Table 2.
Then we have

Jr,n(P )� P r−0.5n(n+1)+ε .

Proof. See [7, Chapter 5].

Lemma 4. Let k ≥ 2, K = 2k−2 and F (x) be a real-valued function with k contionuous derivatives
in [a, b] such that

|F (k)(x)| � h , uniformly in x ∈ [a, b] .

We have ∣∣∣∣∣∣
∑

a<n≤b

e(F (n))

∣∣∣∣∣∣� (b− a)h1/(4K−2) + (b− a)1−2/K + (b− a)1−2/K+1/K2

h−1/2K .

Proof. This is Theorem 2.8 on p. 14 of [2].
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Let 0 < M < M1 ≤ 2M , 0 < D < D1 ≤ 2D, MD � X. Suppose that am, M < m ≤ M1, and
bd, D < d ≤ D1 are complex numbers such that |am| � Xε, |bd| � Xε. We consider sums of two
types:

Type I sums:

W1 =
∑

M<m≤M1

am
∑

D<d≤D1

X<md≤X1

e(f(md)) ,

W ′1 =
∑

M<m≤M1

am
∑

D<d≤D1

X<md≤X1

(log d) e(f(md)) ;

Type II sums:

W2 =
∑

M<m≤M1

am
∑

D<d≤D1

X<md≤X1

bd e(f(md)) .

Lemma 5. Let f(n) be a real-valued function. Let X > 2, X1 ≤ 2X and u, v, z be positive numbers
(z − 1/2 ∈ N) satisfying

2 ≤ u < v ≤ z < X , 4u2 ≤ z , 64uz2 ≤ X1 , v3 ≤ 32X1 .

Then the sum ∑
X<n≤X1

Λ(n) e(f(n))

may be decomposed into O(log10 x) sums, each either of Type I with D > z, or of Type II with
u < D < v.

Proof. See Lemma 3 of [6].

Lemma 6. Suppose that U > 0, P ≥ 1 and α = a/q + θ/q2, (a, q) = 1, q ≥ 1, |θ| ≤ 1. Then for
every β we have

P∑
x=1

min
(
U,

1

‖αx+ β‖

)
�
(
P

q
+ 1

)
(U + q log q) .

Proof. This is Lemma 2 on p. 111 of [8].

Lemma 7. Suppose that n ≥ 3, x1, . . . , xn are arbitrary real numbers and h ≤ P 1/n3

log2 P . For
the sum

T =
∑
p≤P

e(h
√
p+ x1p+ · · ·+ xnp

n)

we have
|T | � P 1−c/n3 log2 n.

The constant c > 0 is absolute.

Proof. In order to prove the lemma we are following the approach of I. M. Vinogradov (see [8, pp.
112–113]). It is easy to see that

|T | ≤ |T1|+ P 1−1/n3

(8)
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where
T1 =

∑
X<m≤X1

Λ(m) e(f(m))

and P 1−1/n3 ≤ X < X1 ≤ min(2X,P ), f(t) = h
√
t+ x1t+ · · ·+ xnt

n.

Applying Lemma 5 with u = X1/n3

, v = 210X1/3, z = [X2/5] + 1/2, we decompose T1 into
O(log10X) sums of Type I with D > z and sums of Type II with u < D < v.

Let us consider a Type II sum W2. Using the Cauchy inequality and changing the order of
summation we obtain

|W2|2 � X2−1/n3+ε +MXε
∑

DX−1/n3<q≤D

∑
D<d≤D1−q

∣∣∣∣∣∣
∑

M ′<m≤M ′1

e(f1(m))

∣∣∣∣∣∣ (9)

where M ≤M ′ < M ′1 ≤M1 and f1(m) = f(m(d+ q))− f(md).
Let A = [M1/2X−1/6n]. Then∣∣∣∣∣∣

∑
M ′<m≤M ′1

e(f1(m))

∣∣∣∣∣∣� 1

A2

∑
M<m≤2M

|U(m)|+A2 (10)

where

U(m) =

A∑
x,y=1

e(f1(m+ xy)) .

We choose r = [3n/2], r1 = n+ 1, r2 = [(3n− 1)/2] and define k1(n) by the table

n 3 4 5 6 7 > 7

k1(n) 46 240 410 1080 1770 2[r2(2 log r + log log r + 4)]

Table 3.

Using Taylor’s formula we get

f1(m+ xy) = f1(m) +

r∑
j=1

αj(xy)j +O(X−1/5n
3

) ; αj =
f
(j)
1 (m)

j!
.

Hence
|U(m)| � |U1(m)|+A2X−1/5n

3

(11)

where

U1(m) =

A∑
x,y=1

e(α1xy + · · ·+ αrx
ryr) .

After some calculations we obtain

|U1(m)|k
2
1 � A2(k21−k1)J2

k1,r(A)

r∏
j=1

Tj (12)
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where Jk1,r(A) is given by (7) and

Tj =
∑

|d|<k1Aj
min

(
k1A

j ,
1

‖αjd‖

)
.

The trivial estimate for the quantity Tj is

Tj � A2j . (13)

If r1 ≤ j ≤ r2 we can find a better estimate. It is easy to see that in this case we have

αj =
aj
qj

+
θj
q2j

, |θj | ≤ 1

where

aj =
αj
|αj |

, qj =

[
1

|αj |

]
≥ 1 , (aj , qj) = 1 .

Hence Lemma 6 gives

Tj � A2X−1/2+j/3n+1/n3

(14)

for r1 ≤ j ≤ r2.
Using Lemmas 2 and 3 and the inequalities (12)–(14) we get

|U1(m)| � A2−c/n3 log2 n (15)

for some absolute constant c > 0, and combining (9)–(11) and (15):

|W2| � X1−c/n3 log2 n (16)

where c > 0 is another absolute constant.
For the Type I sums we have

|W1| , |W ′1| �MXε

∣∣∣∣∣∣
∑

D′<d≤D′1

e(f(md))

∣∣∣∣∣∣
where D ≤ D′ < D′1 ≤ D1. Choosing A = [D1/2X−1/6n], r = [3n/2], r1 = n + 1, r2 = [(3n− 1)/2]
and arguing as above we obtain

|W1| , |W ′1| � X1−c/n3 log2 n. (17)

The inequalities (8), (16) and (17) prove the lemma.

Lemma 8. Suppose that h ≤ P 1/16 log2 P and x1, x2 are real numbers. Then we have∣∣∣∣∣∣
∑
p≤P

e(h
√
p+ x1p+ x2p

2)

∣∣∣∣∣∣� P 15/16+ε.
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Proof. Using Lemma 5 with u = 2−10X1/5, v = 210X1/3 and z = [X2/5] − 1/2 we reduce the
estimation of the above sum to the estimation of Type I and Type II sums. Let us consider a Type
II sum W2. Using the Cauchy inequality we obtain

|W2|2 �MX1+ε +MXε
∑
q≤D

∑
D<d≤D1−q

∣∣∣∣∣∣
∑

M ′<m≤M ′1

e(ϕ(m))

∣∣∣∣∣∣ (18)

where M ≤M ′ < M ′1 ≤M1 and

ϕ(m) = h(
√
d+ q −

√
d)
√
m+ x1mq + x2((d+ q)2 − d2)m2 .

Since |ϕ′′′(m)| � hqD−1/2M−5/2 Lemma 4 with k = 3 gives∣∣∣∣∣∣
∑

M ′<m≤M ′1

e(ϕ(m))

∣∣∣∣∣∣� h1/6q1/6D−1/12M7/12 +M3/4 + h−1/4q−1/4D1/8M7/8 . (19)

Using (18) and (19) we get
|W2| � X15/16+ε. (20)

For the Type I sums we use again Lemma 4 with k = 3 and we obtain

|W1| , |W ′1| � X9/10+ε.

The last inequality and (20) prove the lemma.

Proof of the Theorem. We define the function

χ(t) =

{
1 , if ‖t‖ ≤ P−λ
0 , if ‖t‖ > P−λ

.

Obviously

J0 =
∑

χ(
√
p1) · · ·χ(

√
pk)

where the summation is over all primes p1, . . . , pk satisfying (2). Using Lemma 1 we construct two
functions χ1(t) and χ2(t) corresponding to the next values of α, β, ∆, r:

χ1(t) : α = −P−λ + 0.5∆ , β = P−λ − 0.5∆ , ∆ = P−λ/ logP , r = [log2 P ] ;
χ2(t) : α = −P−λ − 0.5∆ , β = P−λ + 0.5∆ , ∆ = P−λ/ logP , r = [log2 P ] .

Then χ1(t) ≤ χ(t) ≤ χ2(t) and so

J1(P ) ≤ J0(P ) ≤ J2(P ) (21)

where
Jj =

∑
χj(
√
p1) · · ·χj(

√
pk) , j = 1, 2 .

Let us consider for example J1. We have

J1 =

1∫
0

· · ·
1∫

0

(
S(x1, . . . , xn)

)k
e(−x1N1 − · · · − xnNn) dx1 . . . dxn (22)
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where
S = S(x1, . . . , xn) =

∑
p≤P

χ1(
√
p) e(x1p+ · · ·+ xnp

n) .

According to Lemma 1 we get
S = (2P−λ −∆)G+ V (23)

where

G = G(x1, . . . , xn) =
∑
p≤P

e(x1p+ · · ·+ xnp
n) , (24)

V = V (x1, . . . , xn) =
∑
|h|6=0

g(h)
∑
p≤P

e(h
√
p+ x1p+ · · ·+ xnp

n) . (25)

The equalities (22) and (23) imply

J1 = (2P−λ −∆)kJ +O(R)

where J is the number of solutions of (2), and

R =

k∑
s=1

P−λ(k−s)Rs (26)

Rs =

1∫
0

· · ·
1∫

0

|G(x1, . . . , xn)|(k−s)|V (x1, . . . , xn)|s dx1 . . . dxn .

Using the asymptotic formula (4) we have

J1 =
P k(1−λ)−0.5n(n+1)

(logP )k
·
(

2kγσ +O
(

log logP

logP

))
+O(R) . (27)

From the properties of the coeficients g(h) and Lemmas 7 and 8 we obtain

V0 = max
x1,...,xn

|V (x1, . . . , xn)| � P 1−δ (28)

where

δ =

{ c
n3 log2 n

, if n ≥ 3,

1/16 , if n=2.

If n ≥ 3 and r0(n) is the function defined in Lemmas 2 and 3, then following the proof of
Theorem 2 of [4] we get

Rs �
{
P k−0.5n(n+1)−sδ , if 1 ≤ s ≤ (k − r0),
P k−0.5n(n+1)−δ(k−r0−1)+ε , if (k − r0) < s ≤ k.

(29)

If 0 < λ < δ/2000, then (26) and (29) imply

R� P k(1−λ)−0.5n(n+1)−ρ1 (30)
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for some ρ1 = ρ1(n, k, λ) > 0.
In the case n = 2 we have

R� V0

P−(k−1)λ 1∫
0

1∫
0

|G(x1, x2)|k−1 dx1dx2 +

1∫
0

1∫
0

|S(x1, x2)|k−1 dx1dx2

 . (31)

Lemma 3 implies
1∫

0

1∫
0

|G(x1, x2)|k−1 dx1dx2 � P (k−1)−3+ε. (32)

Using Lemmas 1 and 4 it is easy to prove that∑
p≤P

‖√p‖≤P−λ

1� P 1−λ, (33)

and therefore
|S(x1, x2)| � P 1−λ.

The last inequality implies

1∫
0

1∫
0

|S(x1, x2)|k−1 dx1dx2 � P (k−7)λR∗ (34)

where R∗ denotes the number of the solutions of the system

x1 + x2 + x3 = y1 + y2 + y3

x21 + x22 + x23 = y21 + y22 + y23

in integers 1 ≤ x1, . . . , y3 ≤ P such that ‖
√
x1‖, . . . , ‖

√
y
3
‖ ≤ P−λ. Arguing as in the proof of

Lemma 5.4 of [7] and using (33) we get

R∗ � P 3−3λ+ε. (35)

From (34) and (35) we obtain

1∫
0

1∫
0

|S(x1, x2)|k−1 dx1dx2 � P (k−4)(1−λ)+ε. (36)

Inequalities (28), (31), (32) and (36) imply

R� P k(1−λ)−3−ρ2 (37)

for some ρ2 = ρ2(k, λ) > 0.
From (27) and (30) in the case n ≥ 3, and from (27) and (37) in the case n = 2 we derive

J1 =
P k(1−λ)−0.5n(n+1)

(logP )k
·
(

2kγσ +O
(

log logP

logP

))
.
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Since similar conclusions hold for J2 the assertion of the theorem follows from (21).

Finally the authors would like to thank Bulgarian National Science Fund for the financial
support (grant MM-430).
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