
ON THE WARING–GOLDBACH PROBLEM

FOR SEVENTH POWERS

ANGEL V. KUMCHEV

Abstract. We use sieve theory and recent estimates for Weyl sums over al-

most primes to prove that every sufficiently large even integer is the sum of 46
seventh powers of prime numbers.

1. Introduction

Let k be a natural number and let H(k) denote the least integer s such that the
diophantine equation

(1.1) pk1 + pk2 + · · ·+ pks = n

is soluble in primes p1, . . . , ps for all sufficiently large integers n satisfying certain
local conditions. The local conditions are designed to exclude degenerate cases, in
which (1.1) reduces to a similar equation in fewer unknowns. For example, since
every representation of an even integer n as the sum of three primes reduces to a
representation of n − 2 as the sum of two primes, we study (1.1) with k = 1 and
s = 3 only when n is odd.

In 1937 I. M. Vinogradov [16] found a new method for estimating sums over
primes, which he used to prove that H(1) ≤ 3. Hua [4] used Vinogradov’s method
to establish the bound

(1.2) H(k) ≤ 2k + 1 (k ≥ 1),

which is still the best result known for k ≤ 3. Later, work of Vinogradov, Hua,
and Davenport from the 1940s and 1950s (see Hua [5]) and a technique in Waring’s
problem developed in the mid-1980s by Thanigasalam [11, 12] and Vaughan [14]
led to a series of improvements on (1.2) for k ≥ 4. In particular, it was known by
the late 1980s that

H(4) ≤ 15, H(5) ≤ 23, H(6) ≤ 33, H(7) ≤ 47, H(8) ≤ 63, H(9) ≤ 83.

Recently, Kawada and Wooley [7] showed that

H(4) ≤ 14 and H(5) ≤ 21.

The main innovation in [7] is the use of minor arc estimates stemming directly from
sharp estimates for exponential sums over primes rather than from estimates for
artificially introduced exponential sums over consecutive integers. The purpose of
the present paper is to obtain a similar result for seventh powers of primes. We
establish the following theorem.

Theorem 1. Every sufficiently large even integer can be written as the sum of 46
seventh powers of prime numbers, that is, H(7) ≤ 46.

2000 Mathematics Subject Classification. 11P32, 11L20, 11N36, 11P05, 11P55.

1
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We deduce Theorem 1 from the following result.

Theorem 2. Let 23 ≤ s ≤ 45 and let Es(x) denote the number of integers n ≤ x,
with n ≡ s (mod 2), that cannot be represented as sums of s seventh powers of
prime numbers. Then for any A > 0, one has

(1.3) E23(x)� x(log x)−A,

with an implied constant depending at most on A. When s ≥ 24, there exists an
absolute constant θ < 1 such that

(1.4) Es(x)� xθ−(s−23)/672.

The main novelty in Theorem 2 is the estimate for E23(x), which is also the
case used in the proof of Theorem 1. A variant of (1.4) was announced earlier as
a part of Theorem 3 in Kumchev [8]. It is possible that a more delicate treatment
of the major arcs (say, by a variant of the approach of Liu and Zhan [10]) would
have allowed us to extend (1.4) to the case s = 23. However, this would entail a
significant amount of extra effort that would be spent wiser elsewhere.

As in earlier work on the subject, the proof of Theorem 2 uses the Hardy–
Littlewood method. The new ingredients that allow us to bound E23(x) are the
exponential sum estimates in Kumchev [9], the main result in Thanigasalam [13],
and the sieve method in Harman [3]. The reader acquainted with Harman’s method
will recognize that we apply it in its most primitive form and may wonder whether
it is not possible to dispense with the use of sieves altogether. That appears not to
be the case. On the other hand, without the results in [9] and [13], even the most
sophisticated version of the sieve does not seem to yield the desired result.

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive
real number. Any statement in which ε occurs holds for each positive ε, and any
implied constant in such a statement is allowed to depend on ε. The letter p, with or
without subscripts, is reserved for prime numbers; c denotes an absolute constant,
not necessarily the same in all occurrences. As usual in number theory, φ(n) and
τ(n) denote Euler’s totient function and the number of divisors function. Also, if
z ≥ 2, we define

(1.5) ψ(n, z) =

{
1, if n is divisible by no prime p < z,

0, otherwise,

and we write e(x) = exp(2πix) and (a, b) = gcd(a, b).
We use several decompositions of the unit interval into sets of major and minor

arcs. If 1 ≤ Y ≤ X, we define the set of major arcs M(Y,X) as the union of the
intervals

M(q, a;Y,X) =
{
α ∈ [0, 1] : |qα− a| ≤ Y X−1

}
with 0 ≤ a ≤ q ≤ Y and (a, q) = 1.

2. Auxiliary results

2.1. Mean-value estimates. Our immediate goal is to describe a set of admissible
exponents λ1, . . . , λ22 satisfying (2.1) below. Our choice is motivated by the work of
Thanigasalam [12, 13] and Vaughan [14]. We set θ22 = 1, θ21 = 12/13, α20 = 37/91,
and then define recursively

νi =
1 + ji − 6αi
2ji − 1 + αi

, θi = (6 + νi)/7, αi−1 = 1/7 + θiαi (13 ≤ i ≤ 20),
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with ji given by Table 1.

Table 1. The values of ji

i 13 14 15 16 17 18 19 20

ji 5 5 5 5 4 4 3 3

Further, we choose

θi =

{
1, if i = 1,

193/224, if 2 ≤ i ≤ 12,
and λi = θ1 · · · θi (1 ≤ i ≤ 22).

In particular, a quick calculation reveals that

(2.1) λ1 + · · ·+ λ22 > 6.987443 > 7− 2/159.

We now define the generating functions

g(α;X) =
∑

X<x≤2X

e
(
αx7

)
and Gi(α) =

22∏
j=i

g
(
α;Pλj

)
(1 ≤ i ≤ 20).

The following lemma is the main result of this section.

Lemma 1. Let P ≥ 10 and assume the above notation. Then

(2.2)

∫ 1

0

|Gi(α)|2 dα� Gi(0)P ε (1 ≤ i ≤ 20).

Furthermore, if u ≥ 1, we have

(2.3)

∫ 1

0

|g(α;P )|u|G1(α)|2 dα� G1(0)2Pu−7.

Proof. To prove (2.2), we refer to the theorem in Thanigasalam [13] for the case
i = 20 and then apply the iterative method in Vaughan [14] to deduce the remaining
cases (see the discussion pertaining to k = 7 on pp. 455–459 in [14]).

We deduce (2.3) from (2.2) by a simple version of the circle method. We write

(2.4) N = M(Q,P 7), n = [0, 1] \N, and N(q, a) = M(q, a;Q,P 7),

where Q = P 1/9. For α ∈ n, Lemma 2.1 in Kawada and Wooley [7] yields

(2.5) g(α;P )� P 63/64+ε.

Combining (2.1), (2.2), and (2.5), we obtain

(2.6)

∫
n

|g(α;P )|u|G1(α)|2 dα� G1(0)Pu−1/64+ε � G1(0)2Pu−7.003.

Suppose now that α ∈ N(q, a) ⊂ N. By Lemmas 6.1 and 6.3 in Vaughan [15],

g
(
α;Pλj

)
�

{
q−1/7P (1 + P 7|α− a/q|)−1, if j = 1,

q−1/7Pλj , if 2 ≤ j ≤ 10,

whence

|g(α;P )|u|G1(α)|2 � G1(0)2Pu(q + P 7|qα− a|)−3.
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We deduce that∫
N

|g(α;P )|u|G1(α)|2 dα�
∑
q≤Q

∑
1≤a≤q
(a,q)=1

∫
N(q,a)

G1(0)2Pu dα

(q + P 7|qα− a|)3
(2.7)

� G1(0)2Pu−7.

The desired bound follows from (2.4), (2.6), and (2.7). �

2.2. Exponential sum estimates.

Lemma 2. Let α be real, let ξm be complex numbers with |ξm| ≤ τ(m)c, and define

(2.8) S(α) =
∑

M<m≤2M

∑
N<n≤2N

P<mn≤2P

ξmψ(n, z)e
(
α(mn)7

)
,

with ψ(n, z) given by (1.5). Suppose that M ≤ P 11/20, z ≤
√

2P/M , and that there
exist integers a and q satisfying

(2.9) 1 ≤ q ≤ Q, (a, q) = 1, |qα− a| < QP−7,

with Q ≤ P . Then

(2.10) S(α)� qεLc
(
PΨ(α)−1/2 + P 11/20Ψ(α)1/2 + Pz−1

)
,

where Ψ(α) = q + P 7|qα− a| and L = logP . In particular, we have

(2.11)
∑

P<p≤2P

e
(
αp7

)
� qεLc

(
PΨ(α)−1/2 + P 11/20Ψ(α)1/2

)
.

Proof. (2.10) is the case k = 7 of Lemma 5.6 in Kumchev [9]. (2.11) follows from

(2.10) on choosing M = 1
2 and z =

√
2P . �

Lemma 3. Let 1/192 < ρ < 1/141 and let α be a real number such that no integers
a and q satisfy (2.9) with Q = P 1/4. Let S(α) be defined by (2.8) and suppose that

z ≤ P 1−128ρ and M ≤ P (7−15ρ)/13.

Then

(2.12) S(α)� P 1−ρ+ε.

Proof. This follows from the results in §3 of [9]. Let R = P (49−14ρ)/13. By Dirich-
let’s theorem on diophantine approximation, there exist integers a and q satisfying

(2.13) 1 ≤ q ≤ R, (a, q) = 1, |qα− a| < R−1.

By assumption, a and q must also satisfy

(2.14) q + P 7|qα− a| > P 1/4.

When z ≤ P 1−130ρ, (2.13) and (2.14) suffice to deduce (2.12) from Lemma 3.3
in [9]. When P 1−130ρ < z ≤ P 1−128ρ, we recall Buchstab’s identity

(2.15) ψ(n, z2) = ψ(n, z1)−
∑

z1≤p<z2

∑
n=pk

ψ(k, p) (2 ≤ z1 < z2).

Applying (2.15) with z1 = P 1−130ρ and z2 = z, we obtain

S(α) = S1(α)− S2(α),
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where

S1(α) =
∑

M<m≤2M

∑
N<n≤2N

P<mn≤2P

ξmψ(n, z1)e
(
α(mn)7

)
,

S2(α) =
∑

M<m≤2M

∑
z1≤p<z

∑
N<kp≤2N

P<mkp≤2P

ξmψ(k, p)e
(
α(mkp)7

)
.

We can now use Lemma 3.3 in [9] to bound S1(α) and Lemma 3.1 in [9] (with
(m,n) = (mk, p)) to bound S2(α). �

2.3. Estimates for sums over integers free of small prime divisors. In this
section, we prepare some asymptotic estimates for exponential sums over numbers
free of small primes.

Lemma 4. Let 2 ≤ z ≤ y ≤ zc, let ψ(n, z) be defined by (1.5), and let ω(u) be the
continuous solution of the differential delay equation{

(uω(u))′ = ω(u− 1), if u > 2,

ω(u) = u−1, if 1 < u ≤ 2.

Let B > 0 and let β be a real number, with |β| ≤ y−7(log y)B. Then for any A > 0,∑
n≤y

ψ(n, z)e
(
βn7

)
= eγW (z)

∫ y

z

e
(
βt7
)
ω

(
log t

log z

)
dt+O

(
y(log y)−A

)
,

the implied constant depending at most on A and B. Here, γ is Euler’s constant
and W (z) =

∏
p<z

(
1− p−1

)
.

Proof. When β = 0, this follows from (1.7) in de Bruijn [2] and de la Vallée Poussin’s
form of the prime number theorem (see §18 in Davenport [1]). The general case
follows from the case β = 0 by partial summation. �

Lemma 5. Let 2 ≤ z ≤ y ≤ zc, let ψ(n, z) be defined by (1.5), and let a and q
be integers, with (a, q) = 1 and 1 ≤ q ≤ (log y)B for some B > 0. Then for any
A > 0, ∑

n≤y
n≡a (mod q)

ψ(n, z) =
1

φ(q)

∑
n≤y

ψ(n, z) +O
(
y(log y)−A

)
,

the implied constant depending at most on A and B.

Proof. This is a generalization of the Siegel–Walfisz theorem. By a variant of (3)
in §20 of Davenport [1], it suffices to show that

(2.16)
∑
n≤y

ψ(n, z)χ(n)� y(log y)−A,

for every nonprincipal character χ mod q. When z ≥ y1/2, (2.16) follows by partial
summation from (3) in §22 of [1]. When z < y1/2, we apply Buchstab’s identity in
the reverse. By (2.15),

(2.17)
∑
n≤y

ψ(n, z)χ(n) =
∑
n≤y

ψ(n,
√
y)χ(n) +

∑
z≤p<√y

∑
n≤yp−1

ψ(n, p)χ(np).
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The first sum on the right of (2.17) can be estimated as before and the second sum
is bounded above by

y(log y)2 max
M,M ′

M−1
∣∣∣ ∑
M<p≤M ′

χ(p)
∣∣∣,

the maximum being over all pairs M,M ′ with z ≤ M < M ′ ≤ min(2M,y). Since
this quantity can also be estimated by means of (3) in §22 of [1], the desired result
follows. �

3. Proof of Theorem 1

Let n be a large even integer and set

(3.1) P = 1
4n

1/7 and Pj = Pλj (1 ≤ j ≤ 23),

where λ1, . . . , λ22 are the exponents defined in §2.1 and λ23 = 1. We aim to prove
that the set

U =
{
n− p71 − · · · − p723 : Pj < pj ≤ 2Pj

}
contains an integer that can be represented as the sum of 23 seventh powers of
primes. If m is a natural number, we denote by r(m) the number of solutions of

p71 + p72 + · · ·+ p723 = m,

subject to Pj < pj ≤ 2Pj . By Cauchy’s inequality,

(3.2) |U| ≥
( ∑
m∈U

r(n−m)

)2( ∑
m<n

r(n−m)2
)−1

.

The first sum on the right side of (3.2) is equal to the total number of 23-tuples
p1, . . . , p23 with Pj < pj ≤ 2Pj , while the second sum is bounded above by the
integral on the left side of (2.3) (with u = 2). Hence, appeals to the prime number
theorem and Lemma 1 yield

(3.3) |U| � n(log n)−46.

Since the numbers in U are odd, the desired conclusion follows from (3.3) and (1.3).

4. Proof of Theorem 2

4.1. Preliminaries. For the sake of simplicity, we present the case s = 23 in
detail and then sketch the changes required in the proof of (1.4). Let N be a large
parameter. We set P = 1

2N
1/7 and define P1, . . . , P22 by (3.1). We also write

z = P 15/79, L = logP, and X = PP1 · · ·P22N
−1.

Recalling (2.15), we obtain

ψ(m,
√

2P ) = ψ(m, z)−
∑

z≤p<
√
2P

∑
m=kp

ψ(k, p)(4.1)

≥ ψ(m, z)−
∑

z≤p<
√
2P

∑
m=kp

ψ(k, z) = w(m), say.
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When P < m ≤ 2P , the left side of (4.1) is equal to the indicator function of the
primes, so the number of representations of n as the sum of 23 seventh powers of
prime numbers is bounded below by the quantity

R(n) =
∑

m,p1,...,p22:(4.2)

w(m),

where the summation is over the 23-tuples m, p1, . . . , p22 subject to

(4.2)

{
m7 + p71 + · · ·+ p722 = n,

P < m ≤ 2P, Pj < pj ≤ 2Pj .

We now introduce some notation needed in the application of the circle method.
We write

h(α) =
∑

P<m≤2P

w(m)e
(
αm7

)
, fj(α) =

∑
Pj<p≤2Pj

e
(
αp7

)
,

R(n;B) =

∫
B

h(α)f1(α) · · · f22(α)e(−αn) dα.

Further, let

S∗(q, a) =
∑

1≤b≤q
(b,q)=1

e
(
ab7/q

)
, vj(β) =

∫ 2Pj

Pj

e
(
βt7
)

log t
dt,

v∗(β; z) =

∫ 2P

P

e
(
βt7
) [
ω

(
log t

log z

)
−
∫ √2P

z

ω

(
log(t/u)

log z

)
du

u log u

]
dt,

where ω(u) is the function defined in Lemma 4. We define the singular series S(n)
by

S(n) =

∞∑
q=1

B(n, q), B(n, q) = φ(q)−23
∑

1≤a≤q
(a,q)=1

S∗(q, a)23e (−an/q) .

The series S(n) is thoroughly studied in Chapter 8 of Hua [5]. In particular,
Theorem 12 in [5] asserts that

(4.3) 1� S(n)� 1

for all odd n. The singular integral associated with R(n) is J(n) = J(n;∞), where

J(n; ξ) =

∫ ξ

−ξ
v1(β)2v2(β) · · · v22(β)e (−βn) dβ.

Note that a routine application of the Fourier inversion formula yields

(4.4) XL−23 � J(n)� XL−23.

Because of the presence of the sieve weights w(m), we also have to deal with a
variant of J(n; ξ), namely,

J∗(n; ξ) =

∫ ξ

−ξ
v∗(β; z)v1(β) · · · v22(β)e (−βn) dβ.

Finally, we define the sets of major and minor arcs by M = M(P 1/4, N) and
m = [0, 1] \M, respectively.
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4.2. The major arcs. Let B be a real number with B ≥ A + c, where c is the
constant appearing in (4.13) below. We may assume that B ≥ 50. Our first order
of business is to approximate R(n;M0), where M0 = M(LB , N). When

|qα− a| ≤ LBN−1, 1 ≤ q ≤ LB , (a, q) = 1,

Lemma 5, the prime number theorem, and some partial summation yield

fj(α) = φ(q)−1S∗(q, a)vj(α− a/q) +O
(
PjL

−3B) (1 ≤ j ≤ 22)

and

h(α) = φ(q)−1S∗(q, a)h(α− a/q) +O
(
PL−3B

)
.

Furthermore, by Lemma 4,

h(α− a/q) = eγW (z)v∗(α− a/q; z) +O
(
PL−3B

)
.

Since the measure of M0 is O(L2BN−1), we deduce that

(4.5) R(n;M0) = eγW (z)
∑
q≤LB

B(n, q)J∗
(
n;LB/(qN)

)
+O

(
XL−B

)
.

In the next section, we show that if q ≤ LB/2, then

(4.6) eγW (z)J∗
(
n;LB/(qN)

)
= δJ(n) +O

(
XL−23.5

)
,

where δ is a positive absolute constant. Since by Lemma 8.5 in Hua [5] we have
B(n, q)� q−10, (4.4)–(4.6) and the trivial bound for J∗(n; ξ) imply that

(4.7) R(n;M0) = δS(n)J(n) +O
(
XL−23.5

)
.

We deal with the contribution from the remainder of the major arcs by means
of Lemma 2. Let K = M \M0 and write

K(q, a) =

{
M(q, a;P 1/4, N) \M(q, a;LB , N), if q ≤ LB ,
M(q, a;P 1/4, N), if LB < q ≤ P 1/4.

We want to bound the cardinality of the set

(4.8) X =
{
n ∈ (N, 2N ] : |R(n;K)| ≥ XL−25

}
.

By Bessel’s inequality,

(4.9)
∑
n∈X
|R(n;K)|2 ≤

∫
K

|h(α)f1(α) . . . f22(α)|2 dα.

For α ∈ K(q, a), (2.11) gives

(4.10) fj(α)�

{
q−1/2+εLcP1(1 +N |α− a/q|)−1/2, when j = 1,

q−1/2+εLcPj , when j = 2, 3, 4.

Furthermore, by (4.1), h(α) is the difference of two sums of the form (2.8) with
M ≤ P 1/2 and z = P 15/79. Applying (2.10) to each of those sums, we find that
when α ∈ K(q, a),

(4.11) h(α)� q−1/2+εLcP (1 +N |α− a/q|)−1/2.
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Combining (4.9)–(4.11) and the trivial bounds for f5(α), . . . , f22(α), we get∑
n∈X
|R(n;K)|2 �

∑
q≤P 1/4

∑
1≤a≤q
(a,q)=1

∫
K(q,a)

q−4(XN)2Lc

(1 +N |α− a/q|)2
dα(4.12)

� (XN)2Lc
∑

q≤P 1/4

∫
K(q,0)

q−3dβ

(1 +N |β|)2
� X2NLc−B .

Recalling (4.8), we deduce that

(4.13) |X | � NLc−B � NL−A.

4.3. The singular integral. In this section, we establish (4.6). By Lemma 6.2 in
Vaughan [15],

vj(β)� PjL
−1 (1 + P 7

j |β|
)−1

(1 ≤ j ≤ 22),

and a similar argument yields

v∗(β; z)� P (1 +N |β|)−1.

Also, some elementary analysis reveals that

v∗(β; z) = δ0Lv1(β) +O
(
PL−1

)
,

where

δ0 = ω

(
79

15

)
−
∫ 64/79

1/2

ω

(
79u

15

)
du

1− u
.

We remark that numerical integration shows that δ0 > 0.01. Using the above
estimates, we find that if q ≤ LB/2, then

J∗
(
n;LB/(qN)

)
= J∗(n;L1/2N−1) +O

(
XL−22.5

)
= δ0LJ(n;L1/2N−1) +O

(
XL−22.5

)
= δ0LJ(n) +O

(
XL−22.5

)
.

Thus, (4.6) with δ = 79
15δ0 follows from the formula (see Ingham [6], p. 24)

W (z) = e−γ(log z)−1 +O
(
(log z)−2

)
.

4.4. The minor arcs. Next we proceed to bound the cardinality of the set

(4.14) Y =
{
n ∈ (N, 2N ] : |R(n;m)| ≥ XL−25

}
.

By Bessel’s inequality,

(4.15)
∑
n∈Y
|R(n;m)|2 ≤

∫
m

|h(α)f1(α) · · · f22(α)|2 dα.

We can estimate the last integral by means of Lemmas 1 and 3. By Lemma 3 with
ρ = 1/158 (note that 15/79 = 1− 128/158),

(4.16) sup
α∈m
|h(α)| � P 157/158+ε.

Also, by comparing the underlying diophantine equations, we get∫ 1

0

|f1(α) · · · f22(α)|2 dα ≤
∫ 1

0

|G1(α)|2 dα,
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where G1(α) is the generating function appearing in Lemma 1. Thus, (2.2) yields

(4.17)

∫ 1

0

|f1(α) · · · f22(α)|2 dα� Pλ1+···+λ22+ε.

Recalling (2.1), we conclude from (4.14)–(4.17) that

(4.18) |Y| � NP−η,

where η = 1/79− 2/159.
Finally, suppose that n ∈ (N, 2N ] is an odd integer such that n 6∈ X ∪ Y. Then,

by (4.3), (4.4), (4.7), (4.8), and (4.14), we obtain

R(n)� XL−23.

In view of (4.13) and (4.18), this implies that all but O(NL−A) odd n ∈ (N, 2N ]
are representable as the sum of 23 seventh powers of primes. This establishes the
case s = 23 of the theorem.

4.5. The case s ≥ 24. The generating function h(α)f1(α) · · · f22(α) that we used
above is now replaced by

(4.19) h(α)f1(α)s−22f2(α) · · · f22(α).

First, we note that when s ≥ 24, we can use (4.10) and (4.11) to estimate directly
R(n;K) in a similar fashion to (4.12). Hence, when s ≥ 24, we have X = ∅.
Further, by the case k = 7 of Theorem 3 in [9],

sup
α∈m
|f1(α)| � P 191/192+ε.

Thus, for every additional copy of f1(α) in the generating function (4.19), we can
save a factor of P 1/96 on (4.18). Making use of these observations, we obtain (1.4)
with θ = 1− η/7 ≈ 0.999989.

References

[1] H. Davenport, Multiplicative Number Theory, third ed., Graduate Texts in Mathematics,
vol. 74, Springer–Verlag, New York, 2000, revised by H. L. Montgomery.

[2] N. J. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Proc.

Kon. Ned. Akad. Wetensch. 53 (1950), 803–812.
[3] G. Harman, On the distribution of αp modulo one II, Proc. London Math. Soc. (3) 72 (1996),

241–260.

[4] L. K. Hua, Some results in prime number theory, Quart. J. Math. Oxford Ser. 9 (1938),
68–80.

[5] , Additive Theory of Prime Numbers, American Mathematical Society, Providence,
RI, 1965.

[6] A. E. Ingham, The Distribution of Primes, reprint of the 1932 original ed., Cambridge Uni-

versity Press, Cambridge, 1990, with a foreword by R. C. Vaughan.
[7] K. Kawada and T. D. Wooley, On the Waring–Goldbach problem for fourth and fifth powers,

Proc. London Math. Soc. (3) 83 (2001), 1–50.

[8] A. Kumchev, On the Waring–Goldbach problem. Exceptional sets for sums of cubes and
higher powers, to appear in Canad. J. Math.

[9] , On Weyl sums over primes and almost primes, preprint.
[10] J. Y. Liu and T. Zhan, An iterative method in the Waring–Goldbach problem, preprint.

[11] K. Thanigasalam, Improvement on Davenport’s iterative method and new results in additive

number theory I, Acta Arith. 46 (1985), 1–31.
[12] , Improvement on Davenport’s iterative method and new results in additive number

theory III, Acta Arith. 48 (1987), 97–116.



THE WARING–GOLDBACH PROBLEM FOR SEVENTH POWERS 11

[13] , On admissible exponents for kth powers, Bull. Calcutta Math. Soc. 86 (1994), 175–

178.

[14] R. C. Vaughan, On Waring’s problem for smaller exponents, Proc. London Math. Soc. (3)
52 (1986), 445–463.

[15] , The Hardy–Littlewood Method, second ed., Cambridge Tracts Math., vol. 125, Cam-

bridge University Press, Cambridge, 1997.
[16] I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad.

Nauk SSSR 15 (1937), 291–294, in Russian.

Department of Mathematics, 1 University Station, C1200, The University of Texas
at Austin, Austin, TX 78712

E-mail address: kumchev@math.utexas.edu


