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1. Introduction

The Waring–Goldbach problem is concerned with the solvability of the equation

(1.1) pk1 + · · ·+ pks = n,

where p1, . . . , ps are prime unknowns. It is conjectured that for any pair of integers k, s ∈ N with s ≥ k + 1

there exist a fixed modulus qk,s and a collection Nk,s of congruence classes mod qk,s such that (1.1) is solvable

for all sufficiently large n ∈ Nk,s. While a proof of this conjecture appears to be beyond the reach of present

methods, some significant progress has been made. Let H(k) denote the least s for which a set of integers

Nk,s as above exists. The first breakthrough came in 1937, when I. M. Vinogradov [23] developed a new

method for estimating sums over primes and used it to solve the ternary Goldbach problem for sufficiently

large n, that is, he proved that H(1) ≤ 3. Shortly thereafter, Hua [8] showed that

(1.2) H(k) ≤ 2k + 1 for all k ≥ 1,

which is the best result to date for k ≤ 3. On the other hand, when k ≥ 4, (1.2) has been improved on. If k

is large, an approach based on I. M. Vinogradov’s mean-value theorem gives the best results. In particular,

using this approach, Hua [9, Theorem 14] showed that

H(k) ≤ 2k(2 log k + log log k +O(1)).

For smaller k ≥ 4, the sharpest bounds for H(k) have been obtained by variants of Davenport’s iterative

method. Thanigasalam [19] obtained

H(6) ≤ 33, H(7) ≤ 47 H(8) ≤ 63, H(9) ≤ 83, and H(10) ≤ 107,

and Kawada and Wooley [10] proved recently that

H(4) ≤ 14 and H(5) ≤ 21.

One can reduce further the number of variables needed to solve (1.1) by trying to represent almost all

n ∈ Nk,s instead of all but finitely many such n. Let Ek,s(x) be the number of n ∈ Nk,s ∩ (1, x] for which
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(1.1) cannot be solved in primes p1, . . . , ps. Exploiting the nature of the proofs of the above bounds for

H(k), one can show that along with each estimate of the form H(k) ≤ s0(k) one also has

(1.3) Ek,s(x)� x(log x)−A

for any fixed A > 0 and for any s ≥ 1
2s0(k). In this paper, we pursue improvements on the right side of (1.3)

for s < s0(k). The first such improvement was obtained by Vaughan [21], who showed that

E1,2(x)� x exp
(
−c
√

log x
)

for some constant c > 0. Shortly afterward, Montgomery and Vaughan [17] proved that there exists an

absolute constant θ < 1 such that

E1,2(x)� xθ,

and several authors used their method to give such estimates with explicit values of θ, the most recent result

being θ = 0.914 due to Li [13]. The first to obtain a similar estimate for an exceptional set for sums of

squares or higher powers of primes were Leung and Liu [12], who showed that

(1.4) E2,3(x)� xθ,

with an absolute constant θ < 1. Later, Bauer, Liu and Zhan [2, 15, 16] obtained a series of refinements of

this estimate, the most recent being given by Liu and Zhan [16]. They establish (1.4) for every fixed θ in

the interval 11/12 < θ < 1 and, in fact, their work and Lemma 2.3 below suffice to extend the range for θ

to 7/8 < θ < 1 (see Kumchev [11, Theorem 6]). Furthermore, Liu and Liu [14] and Ren [18] proved that for

any fixed ε > 0 one has

(1.5) E2,4(x)� x13/15+ε and E3,5(x)� x152/153+ε,

respectively, and Ren’s method can be easily adjusted to produce the bounds

(1.6) E3,s(x)� x1−(s−4)/153+ε (s = 6, 7, 8).

Using a recent refinement of the treatment of exceptional sets for additive representations (see Brüdern,

Kawada and Wooley [4]), Wooley [25, 26] improved further on (1.5) and (1.6). He proved that for any fixed

ε > 0 one has

E2,4(x)� x13/30+ε,

E3,5(x)� x35/36+ε, E3,6(x)� x17/18+ε,

E3,7(x)� x23/36+ε, E3,8(x)� x11/36+ε.
(1.7)
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Our first theorem improves on (1.7). Let us define the sets N3,s, 5 ≤ s ≤ 8, by

N3,5 = {n ∈ N : n ≡ 1 (mod 2), n 6≡ 0,±2 (mod 9), n 6≡ 0 (mod 7)},

N3,6 = {n ∈ N : n ≡ 0 (mod 2), n 6≡ ±1 (mod 9)},

N3,7 = {n ∈ N : n ≡ 1 (mod 2), n 6≡ 0 (mod 9)},

N3,8 = {n ∈ N : n ≡ 0 (mod 2)}.

We can state our result as follows.

Theorem 1. Let 5 ≤ s ≤ 8 be an integer, let E3,s(x) be defined as above, and define θs by

θ5 = 79/84, θ6 = 31/35, θ7 = 17/28, θ8 = 23/84.

Then

E3,s(x)� xθs .

Remark 1.1. The method of proof produces a bound of the form

E3,s(x)� xθ
′
s+ε,

where θ′s depends on the lowest positive zero of a function defined in terms of certain multiple integrals (see

(7.28)). Since finding the exact value of θ′s seems to be an impossible task, we have replaced θ′s by a reasonably

close upper bound. Thus, one can easily improve the value of θ5 in Theorem 1 to, say, θ5 = 79/84 − 10−7,

but one needs a new idea in order to obtain θ5 = 79/84− 10−4.

We establish Theorem 1 in §§6 and 7, using the following tools.

(1) New exponential sum estimates from [11].

(2) A larger than usual set of major arcs. Using the standard treatment of the major arcs in the

Waring–Goldbach problem, one can only obtain estimates of the form (1.3) for exceptional sets.

Earlier estimates for E3,s(x) by Ren [18] and Wooley [25] rely on the more refined treatment in [18,

Theorem 2], but that result is insufficient for our purposes. In §3, we obtain new results concerning

the major arcs in the Waring–Goldbach problem, which let us take the set of major arcs in the

proof of Theorem 1 larger than allowed by Ren’s theorem. Our approach is somewhat different from

that used in [18] or in related work on sums of squares [14, 15] and also enables us to treat fourth

and higher powers as well as quasi-Waring–Goldbach problems (i.e., problems in which some of the

unknowns are almost prime instead of prime).

(3) Sieve ideas. Using only (1) and (2), we can already obtain a considerable improvement on (1.7), but

the result would be somewhat weaker than Theorem 1. For example, we would only have

E3,5(x)� x20/21+ε.
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In order to establish Theorem 1, we employ sieve techniques. We use the sieve method in Harman

[6, 7], and for the result on sums of six cubes we also need a variant of the vector sieve of Brüdern

and Fouvry [3]. These matters are discussed in §7.

The methods we develop for the proof of Theorem 1 can be generalized quite naturally to yield estimates

for exceptional sets for sums of fourth and higher powers of primes. Next we state a few such estimates.

Theorem 2, which we establish in §§4 and 5, contains the results on biquadrates of primes that one can deduce

from the estimates in [11] and §3. For the sake of brevity, we have avoided the use of sieve methods, although

such use would undoubtedly lead to a slightly stronger result. We have also excluded E4,7(x), E4,8(x) and

E4,9(x) from consideration, since the treatment of those cases—while possible—would complicate further

the treatment of the major arcs. Theorem 3, whose proof we omit, lists the results we can prove for fifth

and higher powers as well as the results on seven, eight and nine biquadrates (and also some results on ten

and more biquadrates that are superseded by Theorem 2).

Theorem 2. Let 10 ≤ s ≤ 13 be an integer, let

N4,s = {n ∈ N : n ≡ s (mod 240)},

and let E4,s(x) be defined as above. Also, define θs by

θ10 = 15/16, θ11 = 3/4, θ12 = 35/48, θ13 = 1/2.

Then for any fixed ε > 0 one has

E4,s(x)� xθs−δ+ε,

where δ = 335/56832 and the implied constant depends at most on ε.

Theorem 3. Let k and s be integers with 4 ≤ k ≤ 10 and 1
2s0(k) ≤ s < s0(k), where s0(k) is given by the

following table:

k 4 5 6 7 8 9 10

s0(k) 14 21 33 47 63 83 107

Also, let ρ(k) = 2
3 × (k2k)−1 and define

θk,s =



1− (s− 7)/48, if k = 4,

1− (2s− 21)/240, if k = 5, 11 ≤ s ≤ 18,

4/5− (2s− 37)/240, if k = 5, s = 19, 20,

1− (2s− s0(k))× ρ(k), if 6 ≤ k ≤ 10.

Then there exists an absolute constant δ > 0 such that

Ek,s(x)� xθk,s−δ.
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Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real number. Any statement

in which ε occurs holds for each positive ε, and any implied constant in such a statement is allowed to depend

on ε. Implicit constants are also allowed to depend on k (when it appears in a statement). Any additional

dependence will be mentioned explicitly. The letter p, with or without indices, is reserved for prime numbers;

c denotes an absolute constant, not necessarily the same in all occurrences. Also, we often use P to denote

the “main parameter”; in such situations, we write L = logP .

As usual in number theory, µ(n), φ(n) and τ(n) denote, respectively, the Möbius function, the Euler

totient function and the number of divisors function. Also, if z ≥ 2, we define

(1.8) ψ(n, z) =

1, if (n,P(z)) = 1,

0, otherwise,

where P(z) =
∏
p<z

p.

We write e(x) = exp(2πix) and (a, b) = gcd(a, b) and use m ∼ M as an abbreviation for the condition

M ≤ m < 2M .

Throughout the paper, we use decompositions of the unit interval into major and minor arcs. If 1 ≤ Y ≤

X, we define the set of major arcs M(Y,X) as the union of the intervals

M(q, a;Y,X) =
{
α ∈ [0, 1] : |qα− a| ≤ Y X−1

}
with 0 ≤ a ≤ q ≤ Y and (a, q) = 1. The corresponding set of minor arcs is denoted by m(Y,X) =

[0, 1] \M(Y,X).

2. Exponential sum estimates

In this section, we record several exponential sum estimates from [11].

Lemma 2.1. Let 0 < ρ < 1/10. Suppose that α ∈ R and that there exist a ∈ Z and q ∈ N such that

(2.1) 1 ≤ q ≤ Q, (a, q) = 1, |qα− a| ≤ Q−1,

with

(2.2) Q = P (9−6ρ)/5.

Let M ≥ N ≥ 2, |ξm| ≤ 1, |ηn| ≤ 1. Then

(2.3)
∑
m∼M

∑
n∼N

mn∼P

ξmηne
(
α(mn)3

)
� P 1−ρ+ε +

q−1/6P 1+ε

(1 + P 3|α− a/q|)1/2
,

provided that

(2.4) max
(
P 8ρ, P (2+12ρ)/5

)
≤M ≤ P 1−2ρ.
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Furthermore, if ψ(n, z) is defined by (1.8),

(2.5)
∑
m∼M

∑
n∼N

mn∼P

ξmψ(n, z)e
(
α(mn)3

)
� P 1−ρ+ε +

q−1/6P 1+ε

(1 + P 3|α− a/q|)1/2
,

provided that

(2.6) z ≤ min
(
P (3−22ρ)/5, P 1−10ρ

)
and

(2.7) M ≤ min
(
P (3−7ρ)/5, P 1−6ρ

)
.

Proof. These estimates are [11, Lemmas 3.1 and 3.3] with k = 3. �

Lemma 2.2. Let k ≥ 4 and define ρ(k) = 2
3 × 2−k. Suppose that α ∈ R and that there exist a ∈ Z and

q ∈ N satisfying (2.1) with

Q = P (k2−2kρ(k))/(2k−1).

Then for any fixed ε > 0 one has

(2.8)
∑
p∼P

e
(
αpk

)
� P 1−ρ(k)+ε +

P 1+ε

(q + P k|qα− a|)1/2
.

Proof. This is the case k ≥ 4 of [11, Theorem 3]. �

Lemma 2.3. Let k ∈ N and α ∈ R, and suppose that there exist a ∈ Z and q ∈ N satisfying

(2.9) 1 ≤ q ≤ Q, (a, q) = 1, |qα− a| < QP−k

with Q ≤ P . Then for any fixed ε > 0 one has

(2.10)
∑
p∼P

e
(
αpk

)
� Q1/2P 11/20+ε +

qεPLc

(q + P k|qα− a|)1/2
.

Proof. This is [11, Theorem 2]. �

Lemma 2.4. Let k ∈ N and α ∈ R, and suppose that there exist a ∈ Z and q ∈ N satisfying (2.9) with

Q ≤ P . Let ξm, ηn be complex numbers with |ξm| ≤ τ(m)c, |ηn| ≤ τ(n)c, and let zm be defined as zm = m

or zm = Zm−1 with Z ∈ R. Let z ≥ 2 be such that zm ≥ z for all m ∼M , and define

g(α) =
∑
m∼M

∑
n∼N

∑
r

mn∼P

ξmηnψ(mn, z)ψ(r, zm)e
(
α(mnr)k

)
,

where ψ(n, z) is given by (1.8). Suppose that

MN ≤ P 11/20 and max
m∼M

zm ≤
√

2P/M.

Then

(2.11) g(α)� qεLc
(
PΨ(α)−1/2 + Ψ(α)1/2P 11/20 + Pz−1

)
,
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where Ψ(α) = q + P k|qα− a|.

Proof. This result combines [11, Lemma 5.6] with the remark following its statement. �

Occasionally, we also need the following simple tool that reduces the estimation of a bilinear sum to the

estimation of a similar sum subject to “nicer” summation conditions. The proof can be found in [11, Lemma

2.7].

Lemma 2.5. Let M,N,X ≥ 2, let Φ : N→ C satisfy |Φ(x)| ≤ X, and define the bilinear form

B(M,N) =
∑
m∼M

∑
n∼N

ξmηnΦ(mn),

where |ξm| ≤ 1, |ηn| ≤ 1, and m and n are subject to a joint condition of one of the forms

m < n or U ≤ mn < U ′.

Then

(2.12) B(M,N)� L

∣∣∣∣∣ ∑
m∼M

∑
n∼N

ξ′mη
′
nΦ(mn)

∣∣∣∣∣+ 1,

where |ξ′m| ≤ |ξm|, |η′n| ≤ |ηn| and L = log(2MNX).

3. The major arcs in the Waring–Goldbach problem

In this section, we establish two general results concerning estimates for mean values of Weyl sums over

major arcs.

Let P1, . . . , Ps be real numbers with

(3.1) P ε ≤ Ps ≤ · · · ≤ P1 ≤ P,

and define

S∗(q, a) =

q∑
x=1

(x,q)=1

e

(
axk

q

)
, B(n, q) =

q∑
a=1

(a,q)=1

S∗(q, a)s

φ(q)s
e

(
−an
q

)
,

fi(α) =
∑
p∼Pi

e
(
αpk

)
, vi(β) =

∫ 2Pi

Pi

e
(
βyk

)
log y

dy.

We obtain the following proposition.

Proposition 1. Let k ≥ 2, s ≥ 5, and P k � N � P k. Let N ≤ n < 2N and define

(3.2) Sk,s(n) =

∞∑
q=1

B(n, q), Jk,s(n) =

∫
R
v1(β) · · · vs(β)e(−nβ)dβ.

Suppose that P1, . . . , Ps satisfy (3.1), that P5 � P , and that Q ≤ P 1/2−ε. Then for any A > 0, we have

(3.3)

∫
M(Q,N)

f1(α) · · · fs(α)e(−nα)dα = Sk,s(n)Jk,s(n) +O
(
P1 · · ·PsN−1L−A

)
,

where the implied constant depends at most on A, k, s, and ε.
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We should point out that (3.3) is not necessarily an asymptotic formula. The hypothesis s ≥ 5 implies the

absolute convergence of the singular series Sk,s(n) and the singular integral Jk,s(n), but we need to make

additional assumptions to ensure that the “main term” in (3.3) dominates the error term. We have left the

related analysis of Sk,s(n) and Jk,s(n) out of Proposition 1, since it is quite standard and can be carried

quickly (and often more efficiently) in any particular case, in which one may want to refer to the proposition.

We derive Proposition 1 from a more general result, Proposition 2 below, in which f1(α), . . . , fs(α) are

replaced by the exponential sums

(3.4) gi(α) =
∑
m∼Pi

λi(m)e
(
αmk

)
(1 ≤ i ≤ s),

where λ1(m), . . . , λs(m) are arithmetic functions having the following properties:

(A1) λi(m)� 1;

(A2) λi(m) = 0 unless (m,P(P ε)) = 1;

(A3) λi(m) is well distributed in arithmetic progressions to small moduli, that is, for any y ∼ Pi, q ≥ 1,

(a, q) = 1 and A > 0, we have∑
m≤y

m≡a (mod q)

λi(m)− 1

φ(q)

∑
m≤y

(m,q)=1

λi(m)� yL−A,

where the implied constant depends at most on A.

Using (A1)–(A3) and partial summation, we find that if α ∈M(q, a;LA, N),

(3.5) g1(α) · · · gs(α) =
S∗(q, a)s

φ(q)s
g1(β) · · · gs(β) +O

(
P1 · · ·PsL−3A

)
,

where β = α− a/q. Integrating both sides of (3.5) over M(LA, N), we get∫
M(LA,N)

g1(α) · · · gs(α)e(−nα)dα =
∑
q≤LA

B(n, q)J(n,LA/(qN))

+O
(
P1 · · ·PsN−1L−A

)
,

where

J(n,Z) =

∫ Z

−Z
g1(β) · · · gs(β)e(−nβ)dβ.

We now record the bounds

(3.6) B(n, q)� q1−s/2+ε and J(n,Z)� ZP1 · · ·Ps.

The latter is trivial and the former is a direct consequence from the estimate (see [24, Problem VI.14])

(3.7) S∗(q, a)� q1/2+ε.

Using (3.6), we conclude that if s ≥ 5,∑
q≤LA

B(n, q)J(n,LA/(qN)) = R(n,LA) +O
(
P1 · · ·PsN−1L−A/3

)
,
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where

(3.8) R(n,X) =

∞∑
q=1

B(n, q)J(n,X/(qN)).

Therefore, if s ≥ 5 and A > 0, we have

(3.9)

∫
M(L3A,N)

g1(α) · · · gs(α)e(−nα)dα = R(n,L3A) +O
(
P1 · · ·PsN−1L−A

)
,

where the implied constant in the O-term depends at most on A and s.

Suppose now that L3A ≤ Q ≤ P , that P � Pt � P (t ≤ s), and that λ1(m), . . . , λt(m) satisfy the

following additional hypothesis:

(A4) if α ∈M(q, a;Q,N), with (a, q) = 1 and q ≤ Q, we have

gi(α)� qεLc
(
PΨ(α)−1/2 + P 1−ρ1Q1/2 + P 1−ρ2

)
,

where ρ1, ρ2 > 0 and Ψ(α) = q +N |qα− a|.

Then for α ∈M(q, a;Q,N) ⊂M(Q,N), we have

g1(α) · · · gs(α)� qεLcP1 · · ·Ps
(

Ψ(α)−t/2 + P−tρ1Qt/2 + P−tρ2
)
.

If t ≥ 5, we deduce that

(3.10)

∫
N

g1(α) · · · gs(α)e(−nα)dα� LcP1 · · ·PsN−1E,

where N = M(Q,N) \M(L3A, N) and

E = L−A +Q(t/2)+2+εP−tρ1 +Q2+εP−tρ2 .

Since the condition

Q ≤ min
(
P 2tρ1/(t+4)−ε, P tρ2/2−ε

)
implies that E � L−A, combining (3.9) and (3.10), we obtain the following result.

Proposition 2. Let k ≥ 2, s ≥ 5, and P k � N � P k. Let gi(α), 1 ≤ i ≤ s, be defined by (3.4) with λi(m)

satisfying (A1)–(A3) and Pi satisfying (3.1). Suppose that P5 � P , that λ1(m), . . . , λ5(m) satisfy (A4), and

that

(3.11) Q ≤ min
(
P 10ρ1/9−ε, P 5ρ2/2−ε

)
,

where ρ1 and ρ2 are the numbers appearing in (A4). Then for any A > 0 we have∫
M(Q,N)

g1(α) · · · gs(α)e(−nα)dα = R(n,L3A) +O
(
P1 · · ·PsN−1L−A

)
,

where R(n,X) is defined by (3.8) and the implied constant depends at most on A, k, s, and ε.
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Proof of Proposition 1. We apply Proposition 2, choosing each function λi(m) equal to the characteristic

function of the set of primes. Axioms (A1) and (A2) are then immediate, and (A3) is the Siegel–Walfisz

theorem. Furthermore, Lemma 2.3 yields (A4) with ρ1 = 9/20 and ρ2 = ∞, so (3.11) follows from the

assumption Q ≤ P 1/2−ε of Proposition 1. Thus, it remains to show that

R(n,L3A) = S(n)J(n) +O
(
P1 · · ·PsN−1L−A

)
.

This asymptotic formula follows easily from (3.6) and the estimates

(3.12) gi(β) = vi(β) +O
(
PiL

−4A) for |β| ≤ L3AN−1,

and

(3.13) vi(β)� PiL
−1 (1 + P ki |β|

)−1
for all β ∈ R.

The approximation (3.12) follows from the Prime Number Theorem by partial summation, while (3.13) can

be obtained by partial integration (see [22, Lemma 6.2]). �

4. Minor arc estimates, I: biquadrates

The results of this section will be used in the proof of Theorem 2 to estimate the contribution from the

minor arcs. We start by fixing some notation. We put

ν1 = 1, ν2 = 13
16 , ν3 =

(
13
16

)2
, ν4 =

(
13
16

)2 91
111 , ν5 =

(
13
16

)2 78
111 ,

P0 = 1
4P, Pj = P νj (1 ≤ j ≤ 5), fj(α) =

∑
p∼Pj

e
(
αp4

)
(0 ≤ j ≤ 5).

Also, we write

F (α) = f1(α) · · · f4(α)f5(α)2.

The exponents νj were suggested by Thanigasalam [20, Theorem 3], which we state in the following form.

Lemma 4.1. Define

gj(α) =
∑
x∼Pj

e
(
αx4

)
and G(α) = g1(α) · · · g4(α)g5(α)2.

Then ∫ 1

0

|G(α)|2dα� P εG(0).

Lemma 4.2. Let Q ≥ P 1/12, let P 4 � N � P 4, and write m = m(Q,N). We have

(4.1)

∫
m

|f0(α)F (α)|2 dα� F (0)2P−2−δ+ε,

where δ = 355/14208 = 0.0249 . . . .
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Proof. We have

(4.2)

∫
m

|f0(α)F (α)|2 dα ≤ sup
α∈m
|f0(α)|2

∫ 1

0

|F (α)|2dα.

Comparing the underlying diophantine equations, we deduce

(4.3)

∫ 1

0

|F (α)|2dα ≤
∫ 1

0

|G(α)|2dα.

Since G(0)� F (0)L6, (4.1) follows from (4.2), (4.3), Lemma 4.1 and the estimate

(4.4) sup
α∈m
|f0(α)| � P 23/24+ε.

By Dirichlet’s theorem on diophantine approximation, every real α has a rational approximation a/q subject

to

1 ≤ q ≤ P 47/21, (a, q) = 1, |qα− a| ≤ P−47/21.

Since for α ∈ m we also have

q + P 4|qα− a| > Q ≥ P 1/12,

(4.4) follows from Lemma 2.2 with k = 4. �

The next lemma is the main result of this section.

Lemma 4.3. Let s be an integer with 10 ≤ s ≤ 13. Let Q ≥ P 1/12, P 4 � N � P 4, and write m = m(Q,N).

Also, let the set Z ⊂ N have cardinality Z, and write

K(α) =
∑
n∈Z

e(αn).

Then

(4.5)

∫
m

∣∣f0(α)s−6F (α)K(α)
∣∣ dα� F (0)Z1/2Pσs−δ/2+ε + F (0)ZP s−10−δ/3,

where δ = 335/14208 and σs is defined as follows:

σ10 = 15/8, σ11 = 5/2, σ12 = 83/24, σ13 = 4.

Proof. We write

Is(P ) =

∫
m

∣∣f0(α)s−7K(α)
∣∣2 dα.

By Cauchy’s inequality and Lemma 4.2, the integral on the left side of (4.5) is bounded above by

Is(P )1/2
(∫

m

|f0(α)F (α)|2 dα
)1/2

� F (0)P−1−δ/2+εIs(P )1/2.

Therefore, it suffices to show that

(4.6) Is(P )� P 2σs+2+εZ + P 2s−18+εZ2.
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Case 1: s = 10. By orthogonality,

(4.7)

∫ 1

0

|K(α)|2dα = Z.

Hence, recalling (4.4), we get

I10(P ) ≤ sup
α∈m
|f0(α)|6

∫ 1

0

|K(α)|2dα� P 23/4+εZ,

which establishes (4.6) for s = 10.

Case 2: s = 11. We have

(4.8) I11(P ) ≤
∫ 1

0

∣∣g(α)8K(α)2
∣∣ dα,

where

g(α) =
∑
x∼P0

e
(
αx4

)
,

By Weyl’s differencing lemma (see [22, Lemma 2.3]),

(4.9) |g(α)|8 � P 4
∑
|h1|<P0

∑
|h2|<P0

∑
|h3|<P0

∑
x∈I

e
(
α∆(x4;h)

)
,

where I = I(h) is a subinterval of [P0, 2P0) and ∆(x4;h) is the third-order forward difference of the function

x 7→ x4 with steps h1, h2, h3, that is,

∆(x4;h) = 12h1h2h3(2x+ h1 + h2 + h3).

Thus, we deduce from (4.8) that

(4.10) I11(P )� P 4J(P ),

where J(P ) is the number of solutions of the diophantine equation

(4.11) ∆(x4;h) = n1 − n2

subject to

(4.12) P0 ≤ x ≤ 2P0, |hi| < P0, nj ∈ Z.

The number of solutions of (4.11), (4.12) with n1 = n2 is bounded by P 3Z. Also, for each pair (n1, n2) with

n1 6= n2 there are at most P ε choices for x,h. Hence,

J(P )� P 3Z + P εZ2.

In conjunction with (4.10), this estimate establishes (4.6) for s = 11.

Case 3: s = 12. We have

I12(P ) ≤ sup
α∈m
|f0(α)|2I11(P )� P 107/12+εZ + P 6+εZ2,

on combining (4.4) and Case 2.
12



Case 4: s = 13. We have

I13(P ) ≤
∫ 1

0

∣∣g(α)12K(α)2
∣∣ dα.

Hence, by (4.9) and Parseval’s identity,

(4.13) I13(P )� P 4J(P ),

where J(P ) is the number of solutions of the diophantine equation

(4.14) ∆(x4;h) = n1 − n2 + x41 + x42 − x43 − x44,

subject to

(4.15) P0 ≤ x, x1, . . . , x4 ≤ 2P0, |hi| < P0, nj ∈ Z.

Let J0(P ) denote the number of solutions of (4.14), (4.15) subject to

(4.16) n2 − n1 = x41 + x42 − x43 − x44,

and let J1(P ) be the number of solutions of (4.14), (4.15) for which (4.16) fails. A standard divisor function

argument reveals that for each choice of n1, n2, x1, . . . , x4, J1(P ) counts at most P ε solutions of (4.14). On

the other hand, every solution counted by J0(P ) must have h1h2h3(2x + h1 + h2 + h3) = 0, and therefore,

each solution of (4.16) gives rise of O(P 3) solutions of (4.14), (4.15). We conclude that

(4.17) J(P ) = J0(P ) + J1(P )� P 3J2(P ) + P 4+εZ2,

where J2(P ) denotes the number of solutions of (4.16) in ni, xj subject to (4.15).

We now estimate J2(P ). We have

J2(P ) =

∫ 1

0

∣∣g(α)4K(α)2
∣∣ dα.

By Weyl’s differencing lemma,

|g(α)|4 � P
∑
|h1|<P0

∑
|h2|<P0

∑
x∈I

e
(
α∆(x4;h)

)
,

where I = I(h) is a subinterval of [P0, 2P0) and ∆(x4;h) is the second-order forward difference of the function

x 7→ x4 with steps h1, h2,

∆(x4;h) = 2h1h2
(
6x2 + 6(h1 + h2)x+ 2h21 + 3h1h2 + 2h22

)
.

Thus,

J2(P )� PJ3(P ),

where J3(P ) is the number of solutions of

∆(x4;h) = n1 − n2
13



subject to

P0 ≤ x ≤ 2P0, |hi| < P0, nj ∈ Z.

Estimating J3(P ) similarly to the quantity J(P ) from Case 2, we obtain

(4.18) J2(P )� P
(
P 2Z + P εZ2

)
.

Combining (4.13), (4.17) and (4.18), we get (4.6) with s = 13 and complete the proof of the lemma. �

5. Proof of Theorem 2

Let 10 ≤ s ≤ 13 and let Es = E4,s(N) denote the set of those n ∈ N4,s ∩ [N, 2N) for which (1.1) with

k = 4 has no solution in prime numbers p1, . . . , ps. It suffices to show that

(5.1) |Es(N)| � Nθs+ε

for all N ≥ N0(ε).

We define P by 2P 4 = N and adopt the notation set in §4. Also, we write Rs(n) for the number of

solutions of (1.1) with k = 4 in primes p1, . . . , ps subject to

Pj ≤ pj < 2Pj (1 ≤ j ≤ 5), P5 ≤ p6 < 2P5, P0 ≤ p7, . . . , ps < 2P0,

and if B is a measurable subset of [0, 1], we define

Rs(n;B) =

∫
B

f0(α)s−6F (α)e(−nα)dα.

Let us partition the unit interval into sets of major and minor arcs, M = M(Q,N) and m = m(Q,N),

where Q = P 1/2−ε. By orthogonality,

(5.2) Rs(n) = Rs(n; [0, 1]) = Rs(n;M) +Rs(n;m).

By Proposition 1,

(5.3) Rs(n;M) = S4,s(n)J4,s(n) +O
(
F (0)P s−10L−s−1

)
.

Here, S4,s(n) is defined by (3.2) and

J4,s(n) =

∫
R
v1(β) · · · v4(β)v5(β)2v0(β)s−6e(−nβ)dβ,

where

vj(β) =

∫ 2Pj

Pj

e
(
βt4
)

log t
dt =

∫ 16P 4
j

P 4
j

u−3/4e(βu)

log u
du.

A simple argument using Fourier transforms reveals that

(5.4) F (0)P s−10L−s � J4,s(n)� F (0)P s−10L−s
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for all n ∈ [N, 2N) (the reader can find detailed expositions of the treatments of similar singular integrals in

[10, §5] or in §7.2 of the present paper). Furthermore, if n ∈ N4,s, we have

(5.5) 1� S4,s(n)� 1.

The upper bound follows immediately from [9, Lemma 8.10], and the argument of [9, Lemma 8.12] gives

(5.6) S4,s(n)�
(

1 +

4∑
j=1

B
(
n, 2j

)) ∏
p∈{3,5}

(1 +B(n, p))

whenever s ≥ 8. A direct computation then reveals that the right side of (5.6) is non-zero if and only if

n ∈ N4,s. Combining (5.3)–(5.5), we conclude that

(5.7) Rs(n;M)� F (0)P s−10L−s

for all n ∈ N4,s ∩ [N, 2N).

We now turn to Rs(n;m). Using (5.2) and the definition of Es, we obtain∑
n∈Es

Rs(n;M) = −
∑
n∈Es

Rs(n;m),

so (5.7) implies that

(5.8) F (0)P s−10−ε|Es| �

∣∣∣∣∣∑
n∈Es

Rs(n;m)

∣∣∣∣∣ .
Furthermore, on writing

Ks(α) =
∑
n∈Es

e(αn),

Lemma 4.3 yields ∣∣∣∣∣∑
n∈Es

Rs(n;m)

∣∣∣∣∣ =

∣∣∣∣∫
m

f0(α)s−6F (α)Ks(−α)dα

∣∣∣∣(5.9)

� F (0)|Es|1/2Pσs−δ/2+ε + F (0)|Es|P s−10−δ/3.

The desired estimate (5.1) follows immediately from (5.8) and (5.9). �

6. Minor arc estimates, II: cubes

In this section, we prove minor arc estimates to be used in the proof of Theorem 1. Throughout the

section, Z denotes a set of integers having cardinality Z and

K(α) =
∑
n∈Z

e(αn).

We also define the exponential sums

(6.1) fj(α) =
∑
p∼Pj

e
(
αp3

)
, gj(α) =

∑
m∼P2

λj(m)e
(
αm3

)
(j = 1, 2),

where λ1(m) and λ2(m) are bounded arithmetic functions and P � P1, P2 � P .
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Lemma 6.1. Let 0 < ρ < 1/10 and suppose that g1(α) satisfies

(6.2) g1(α)� P 1−ρ+ε +
q1/6P 1+ε

(1 + P 3|α− a/q|)1/2
,

whenever there exist a ∈ Z and q ∈ N satisfying (2.1) with Q = P (9−6ρ)/5. Also, let

(6.3) X ≥ P 2ρ and P 3 � N � P 3,

and write m = m(X,N). Then

(6.4)

∫
m

∣∣f1(α)f2(α)2g1(α)g2(α)K(α)
∣∣ dα� Z1/2P 7/2−ρ+ε.

Proof. By Cauchy’s inequality, the integral on the left side of (6.4) does not exceed(∫ 1

0

|K(α)|2dα
)1/2(∫

m

∣∣f1(α)f2(α)2g1(α)g2(α)
∣∣2 dα)1/2

.

By orthogonality, ∫ 1

0

|K(α)|2dα = Z,

so the lemma will follow if we show that

(6.5)

∫
m

∣∣f1(α)f2(α)2g1(α)g2(α)
∣∣2 dα� P 7−2ρ+ε.

We start the proof of (6.5) by defining the sets

N = M(P 6ρ, N) and n = m(P 6ρ, N).

By Dirichlet’s theorem on diophantine approximation, every real α has a rational approximation a/q satis-

fying (2.1) with Q = P (9−6ρ)/5. Thus, by hypothesis (6.2),

(6.6) sup
α∈n
|g1(α)| � P 1−ρ+ε.

On the other hand, if X < P 6ρ, any α ∈ m ∩N has a rational approximation a/q subject to

X < q +N |qα− a| ≤ P 6ρ,

and Lemma 2.3 with k = 3 yields

(6.7) sup
α∈m∩N

|f1(α)| � P 1+εX−1/2 + P 11/20+3ρ+ε � P 1−ρ+ε.

Furthermore, using Hölder’s inequality, we deduce from Hua’s lemma [22, Lemma 2.5] that

(6.8)

∫ 1

0

|G(α)|2dα� P 5+ε,

whenever G(α) is a product of the form

G(α) = f1(α)u1f2(α)u2g1(α)v1g2(α)v2 ,

with u1, u2, v1, v2 ≥ 0 and u1+u2+v1+v2 = 4. The desired estimate (6.5) follows readily from (6.6)–(6.8). �
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Lemma 6.2. Let 0 < ρ < 1/10 and suppose that g1(α) satisfies (6.2), whenever there exist a ∈ Z and q ∈ N

satisfying (2.1) with Q = P (9−6ρ)/5. Also, assume (6.3) and write m = m(X,N). Then∫
m

∣∣f1(α)f2(α)g1(α)2g2(α)2K(α)
∣∣ dα� Z1/2P 9/2−2ρ+ε.

Proof. The proof is similar to the proof of Lemma 6.1, using the bounds

sup
α∈n
|g1(α)|2 � P 2−2ρ+ε and sup

α∈m∩N
|f1(α)f2(α)| � P 2−2ρ+ε

instead of (6.6) and (6.7). �

Lemma 6.3. Let 0 < ρ < 1/10 and suppose that g1(α) satisfies (6.2), whenever there exist a ∈ Z and q ∈ N

satisfying (2.1) with Q = P (9−6ρ)/5. Also, assume (6.3) and write m = m(X,N). Then for j = 4, 5 we have

(6.9)

∫
m

∣∣f1(α)f2(α)jg1(α)g2(α)K(α)
∣∣ dα� Z1/2P 3+j/2−ρ+ε + ZP j−ρ+ε.

Proof. By Cauchy’s inequality, the left side of (6.9) does not exceed(∫ 1

0

∣∣f2(α)2j−4K(α)2
∣∣ dα)1/2(∫

m

∣∣f1(α)f2(α)2g1(α)g2(α)
∣∣2 dα)1/2

.

Thus, (6.9) follows from (6.5) and the estimates∫ 1

0

∣∣f2(α)2j−4K(α)2
∣∣ dα� P ε

(
P 2j−7Z2 + P j−1Z

)
,

for which we refer to [25, Lemmas 5.1 and 6.2]. �

7. Proof of Theorem 1

Let Es = E3,s(N) denote the set of those n ∈ N3,s ∩ [N, 2N) for which (1.1) with k = 3 has no solution in

prime numbers p1, . . . , ps. We proceed to show that

(7.1) |Es(N)| � Nθs

for all N ≥ N0(ε), our approach being similar to that used in the proof of Theorem 2. We choose P = N1/3

and set

(7.2) P1 = 3
4P, P2 = 1

6P.

Let Rs(n) denote the number of solutions of (1.1) with k = 3 in primes p1, . . . , ps subject to

(7.3) P1 ≤ p1 < 2P1, P2 ≤ p2, . . . , ps < 2P2.

Also, let ρ be a parameter with 0 < ρ < 1/11 and define the sets of major and minor arcs,

M = M(Q,N) and m = m(Q,N),

with

(7.4) Q = min
(
P 1/2−ε, P 5/2−25ρ−ε

)
.
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We shall construct a generating function Fs(α) = Fs(ρ;α) with the following properties:

(F1) Fs(α) is a trigonometric polynomial with real coefficients;

(F2) if N ≤ n < 2N ,

Rs(n) ≥
∫ 1

0

Fs(α)e(−nα)dα;

(F3) if Z ⊂ [N, 2N), ∑
n∈Z

∫
m

Fs(α)e(−nα)dα� |Z|1/2Pσs−ρ+ε + |Z|P s−3−ρ+ε,

where σ5 = 7/2, σ6 = 9/2− ρ, σ7 = 5 and σ8 = 11/2;

(F4) if n ∈ N3,s ∩ [N, 2N),∫
M

Fs(α)e(−nα)dα =
(
Cs(ρ) +O

(
L−1

))
P s−3L−s,

where Cs(ρ) is a non-increasing function of ρ satisfying Cs
(
ρs + 10−6

)
> 0 with ρ6 = 3/35 and

ρs = 5/56 for s = 5, 7, 8.

By (F1) and the symmetry of M mod 1, the integral in (F4) is a real number. Thus, on choosing ρ = ρs+10−6,

the estimate

|Es(N)| � Nθs−(2/3)×10−6+ε

follows from (F2)–(F4) in the same way as (5.1) follows from (5.2), (5.7) and (5.9). This establishes (7.1).

7.1. Construction of F5(α). We now build a generating function F5(α) having properties (F1)–(F4) above.

Given an arithmetic function λ, define

g(α;λ) =
∑
m∼P2

λ(m)e
(
αm3

)
.

We start by expressing R5(n) as a linear combination of three types of terms:

• sums of the form ∑
m∼P2

γ(m)R4

(
n−m3

)
,

where g(α; γ) satisfies (6.2);

• sums of the form ∑
m1,m2∼P2

δ(m1)γ(m2)R3

(
n−m3

1 −m3
2

)
,

where g(α; γ) satisfies (6.2);

• other positive terms.

We produce such a representation for R5(n) by successive decompositions using Buchstab’s identity

(7.5) ψ(n, z1) = ψ(n, z2)−
∑

z2≤p<z1
n=pj

ψ(j, p) (2 ≤ z2 < z1).

18



We navigate the decompositions as to lead to exponential sums g(α; γ) that can be estimated by Lemma 2.1

(possibly in conjunction with Lemma 2.5). Also, we try to keep the terms of the last kind—“other”—to a

minimum, since the larger those terms the sooner the function C5(ρ) in (F4) vanishes as ρ increases.

We now proceed with the decomposition of R5(n). For the sake of brevity, we define z = P 1−10ρ,

X =
√

2P2, U = P 2ρ, V = P 1−8ρ and

W = min
(
P 1−6ρ, P (3−7ρ)/5

)
=

P
1−6ρ, if ρ > 2/23,

P (3−7ρ)/5, if ρ ≤ 2/23;

notice that, with the exception of X, these quantities have been chosen in accordance with Lemma 2.1. We

have

(7.6) R5(n) =
∑
p∼P2

R4

(
n− p3

)
=
∑
m∼P2

ψ(m,X)R4

(
n−m3

)
.

We now decompose the function ψ(m,X).

Applying twice Buchstab’s identity, we get

ψ(m,X) = ψ(m, z)−
∑
m=pj
z≤p≤W

ψ(j, z)(7.7)

−
∑
m=pj

W<p<X

ψ(j, p) +
∑

m=p1p2j
z≤p2<p1≤W

ψ(j, p2)

= γ1(m)− γ2(m)− γ3(m) + γ4(m), say.

We remark that (2.5) applies to g(α; γ1) and g(α; γ2). Furthermore, we can apply (2.3) to the exponential

sums corresponding to some subsums of γ4(m), while other subsums of γ4(m) we can decompose further.

Thus, we now partition γ4(m) into five subsums. We write

(7.8) γ4(m) = γ5(m) + · · ·+ γ9(m),

where γ5(m), . . . , γ9(m) are the subsums of γ4(m) subject to the following constraints:

γ5(m) : p1, p2 or p1p2 lies in [U, V ];

γ6(m) : z ≤ p2 < p1 < U < V < p1p2;

γ7(m) : z ≤ p2 < U < V < p1 < p1p2 ≤W ;

γ8(m) : z ≤ p2 < U < V < p1 < W < p1p2;

γ9(m) : V < p2 < p1 ≤W.

We remark that γ5(m) is the portion of γ4(m) that induces an exponential sum which can be estimated by

(2.3), while γ6(m) and γ7(m) are the portions for which we can give further decompositions.
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Next, we decompose γ6(m). Another appeal to (7.5) gives

γ6(m) =
∑
p1,p2

m=p1p2j

ψ(j, z)−
∑
p1,p2

∑
z≤p3<p2

m=p1p2p3j

ψ(j, p3)(7.9)

= γ10(m)− γ11(m), say.

We can apply (2.5) to g(α; γ10), and we deal with γ11(m) similarly to γ4(m). We have

(7.10) γ11(m) = γ12(m) + γ13(m) + γ14(m),

where γ12(m), γ13(m) and γ14(m) are the subsums of γ11(m) subject to

p2p3 ≤ V, V < p2p3 < p1p2p3 ≤W and V < p2p3 < W < p1p2p3,

respectively. We now apply (7.5) to γ13(m) and obtain

γ13(m) =
∑

p1,p2,p3
m=p1p2p3j

ψ(j, z)−
∑

p1,p2,p3

∑
z≤p4<p3

m=p1···p4j

ψ(j, p4)(7.11)

=
∑

m=p1p2p3j

ψ(j, z)−
∑

m=p1···p4j
p3p4≤V

ψ(j, p4)−
∑

m=p1···p4j
p3p4>V

ψ(j, p4)

= γ15(m)− γ16(m)− γ17(m), say.

Combining (7.9)–(7.11), we conclude that

(7.12) γ6(m) = γ10(m)− γ12(m)− γ14(m)− γ15(m) + γ16(m) + γ17(m),

where (2.5) applies to g(α; γ10) and g(α; γ15) and, since z2 > U , (2.3) applies to g(α; γ12) and g(α; γ16).

We now turn to γ7(m). Applying (7.5) once more, we get

γ7(m) =
∑
p1,p2

m=p1p2j

ψ(j, z)−
∑
p1,p2

∑
z≤p3<p2

m=p1p2p3j

ψ(j, p3)(7.13)

=
∑

m=p1p2j

ψ(j, z)−
∑

m=p1p2p3j
p2p3≤V

ψ(j, p3)−
∑

m=p1p2p3j
p2p3>V

ψ(j, p3)

= γ18(m)− γ19(m)− γ20(m), say,

where g(α; γ18) and g(α; γ19) can be estimated by (2.5) and (2.3), respectively.

Finally, combining (7.7), (7.8), (7.12) and (7.13), we deduce that

ψ(m,X) = γ1(m)− γ2(m)− γ3(m) + γ5(m) + γ8(m) + γ9(m)(7.14)

+ γ10(m)− γ12(m)− γ14(m)− γ15(m)

+ γ16(m) + γ17(m) + γ18(m)− γ19(m)− γ20(m).
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Substituting (7.14) into the right side of (7.6), we obtain the identity

(7.15) R5(n) = R5(n;λ1)−R5(n;λ2) +R5(n;λ3),

where

R5(n;λ) =
∑
m∼P2

λ(m)R4

(
n−m3

)
,

λ1(m) = γ1(m)− γ2(m) + γ5(m) + γ10(m)− γ12(m)

− γ15(m) + γ16(m) + γ18(m)− γ19(m),

λ2(m) = γ3(m) + γ14(m) + γ20(m),

and

λ3(m) = γ8(m) + γ9(m) + γ17(m).

We remark that λ1(m) is the sum of those γj(m)’s for which we can estimate g(α; γj) using one of the

bounds in Lemma 2.1, while λ2(m) and λ3(m) collect the terms in the decomposition for which we cannot

estimate the induced exponential sums and which contribute, respectively, negative and positive quantities

to ψ(m,X). Accordingly, R5(n;λ1) represents the terms in the decomposition of R5(n) of the first kind

mentioned above, R5(n;λ2) will give rise of the terms of the second kind and some of the third kind, and

R5(n;λ3) contributes terms of the third kind.

Next, we decompose R5(n;λ2). Similarly to (7.6), we have

R5(n;λ2) =
∑

m1,m2∼P2

λ2(m1)ψ(m2, X)R3

(
n−m3

1 −m3
2

)
.

We use the following identity for ψ(m,X):

ψ(m,X) = ψ(m, z)−
∑
m=pj
U≤p≤V

ψ(j, p)−
∑
m=pj
V <p<X

ψ(j, p)−
∑
m=pj
z≤p<U

ψ(j, z)(7.16)

+
∑

m=p1p2j
z≤p2<p1<U

ψ(j, z)−
∑

m=p1p2p3j
z≤p3<p2<p1<U

{ ∑
p2p3≤V

+
∑

p2p3>V

}
ψ(j, p3)

= γ∗1(m)− γ∗2(m)− γ∗3 (m)− γ∗4 (m) + γ∗5 (m)− γ∗6 (m)− γ∗7 (m), say.

The proof of this identity is similar to (and simpler than) that of (7.14), using only three Buchstab de-

compositions; thus, we omit it. The main point is that we only have terms for which we can estimate

g(α; γ∗i )—those with i ∈ {1, 2, 4, 5, 6}—and negative terms—γ∗3 (m) and γ∗7(m). We conclude that

(7.17) R5(n;λ2) = R5(n;λ2, λ
∗
1)−R5(n;λ2, λ

∗
3),
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where

R5(n;λ, ν) =
∑

m1,m2∼P2

λ(m1)ν(m2)R3

(
n−m3

1 −m3
2

)
,

λ∗1(m) = γ∗1(m)− γ∗2(m)− γ∗4 (m) + γ∗5 (m)− γ∗6 (m),

λ∗3(m) = γ∗3(m) + γ∗7(m).

Combining (7.15) and (7.17), we obtain

R5(n) = R5(n;λ1)−R5(n;λ2, λ
∗
1) +R5(n;λ3) +R5(n;λ2, λ

∗
3),

which is the decomposition for R5(n) we have been pursuing in this section. Let f1(α) and f2(α) be the

exponential sums defined in (6.1). We set

(7.18) F5(α) = f1(α)f2(α)2
(
g(α;λ1)f2(α)− g(α;λ2)g(α;λ∗1)

)
,

so that

(7.19)

∫ 1

0

F5(α)e(−nα)dα = R5(n;λ1)−R5(n;λ2, λ
∗
1) ≤ R5(n).

Then, F5(α) satisfies (F1) and (F2). Also, g(α;λ1) and g(α;λ∗1) satisfy (6.2) by construction, and (7.4)

implies Q ≥ P 2ρ, so Lemma 6.1 yields (F3). Therefore, in order to complete the proof of (7.1) for s = 5, it

remains to verify that F5(α) satisfies (F4).

7.2. The case s = 5 completed. We intend to verify that the generating function (7.18) satisfies (F4) by

referring to Proposition 2. Let λ(m) denote any of the functions γj(m) or γ∗j (m) appearing in the definitions

of λ1, λ2 or λ∗1. We note that λ satisfies axioms (A1) and (A2) from §3 by construction and proceed to check

that it satisfies axioms (A3) and (A4) as well.

We start our discussion with (A3). It suffices to show that if P � y � P , A > 0, and χ is a non-principal

character mod q, q ≤ L2A, then

(7.20)
∑
m≤y

λ(m)χ(m)� yL−A,

with an implied constant depending at most on A. To this end, we observe that the left side of (7.20) is

always bounded above by an expression of the form

LK

∣∣∣∣∣∣
∑

J≤j<J1

ψ(j, w)χ(j)

∣∣∣∣∣∣ ,
where

w ≥ z, z ≤ J < J1 ≤ 2J and JK � y.

Thus, (7.20) follows from the estimate ∑
J≤j<J1

ψ(j, w)χ(j)� JL−A,

22



which can be derived by partial summation from [1, Lemma 5].

We now turn toward axiom (A4), which we verify by means of Lemma 2.4. When λ is one of γ1, γ2, γ10,

γ12, γ14, γ15, γ18, γ∗1 , γ∗2 , γ∗4 , γ∗5 , γ∗6 or the portion of γ5 subject to U ≤ p1p2 ≤ V , Lemma 2.4 yields (A4)

with ρ1 = 9/20 and ρ2 = 1− 10ρ. In order to deal with γ16, γ19, γ20 and the remainder of γ5, we first apply

Buchstab’s identity in the reverse. Consider, for example, γ20. We have

γ20(m) =
∑
p1>V

∑
V 1/2<p2<U

p1p2≤W

∑
m=p1p2j

{
ψ(j, V p−12 )− ψ(j, p2)

}

= γ′20(m)− γ′′20(m), say,

and we can apply Lemma 2.4 to both γ′20 and γ′′20. Finally, since γ3 is the characteristic function of the

products p1p2 with p1 ≥ p2 > W , we can estimate g(α; γ3) by combining Lemmas 5.1 and 5.3 in [11]. In all

the cases, we obtain (at least) that λ satisfies axiom (A4) with ρ1 = 9/20 and ρ2 = 1− 10ρ.

We conclude that λ1, λ2 and λ∗1 satisfy axioms (A1)–(A4) from §3. We also note that when ρ1 = 9/20

and ρ2 = 1− 10ρ, (3.11) follows from (7.4). Hence, we can apply Proposition 2 to the integral appearing in

(F4). We obtain

(7.21)

∫
M

F5(α)e(−nα)dα = R(n,L50) +O
(
P 2L−6

)
,

where, in accordance with the notation in §3,

R(n,X) =

∞∑
q=1

B(n, q)

∫ X/(qN)

−X/(qN)

F5(β)e(−nβ)dβ.

We now define the exponential integrals

vi(β) =

∫ 2Pi

Pi

e
(
βy3

)
log y

dy (i = 1, 2)

and the singular integral

J̃(n) =

∫
R
v1(β)v2(β)2 (g(β;λ1)v2(β)− g(β;λ2)g(β;λ∗1)) e(−nβ)dβ.

Recalling the bounds (3.12) and (3.13), we obtain

(7.22) R(n,L50) = S3,5(n)J̃(n) +O
(
P 2L−6

)
,

where S3,5(n) is defined in (3.2).

In order to analyze the singular integral J̃(n), we require approximations for the mean values of λ1, λ2

and λ∗1. We use that there exist functions `1(ρ), `2(ρ) and `∗1(ρ) such that if P2 < y ≤ 2P2,

(7.23)
∑

P2≤m<y

λi(m) = `i · (y − P2)L−1 +O(PL−2) (i = 1, 2)

and

(7.24)
∑

P2≤m<y

λ∗1(m) = `∗1 · (y − P2)L−1 +O(PL−2).
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These asymptotic formulas follow by partial summation from the Prime Number Theorem and the following

lemma, whose proof can be found in [5, Lemma 1].

Lemma 7.1. Let yε ≤ z ≤ y, and let ω(u) be the continuous solution of the differential delay equation(uω(u))′ = ω(u− 1), if u > 2,

ω(u) = u−1, if 1 < u ≤ 2.

Then ∑
m<y

ψ(m, z) = ω

(
log y

log z

)
y

log z
+O

(
y(log y)−2

)
,

with an implied constant depending at most on ε.

The resulting expressions for the `i’s are sums of multiple integrals involving the function ω(·), each of them

accounting for the contribution of one of the γi’s or γ∗i ’s. For example, if P2 ≤ y ≤ 2P2, we have∑
m≤y

γ15(m) = yL−1
(
I15 +O(L−1)

)
,

where

I15 =
1

1− 10ρ

∫∫∫
D15

ω

(
1− u1 − u2 − u3

1− 10ρ

)
du1du2du3
u1u2u3

,

the integration being over u1, u2, u3 subject to1− 10ρ < u3 < u2 < u1 < 2ρ, u2 + u3 > 1− 8ρ,

u1 + u2 + u3 < min(1− 6ρ, (3− 7ρ)/5).

Now, we consider

J̃1(n) =

∫
R
v1(β)v2(β)3g(β;λ1)e(−nβ)dβ.

Changing the order of integration, we obtain

(7.25) J̃1(n) =

∫∫∫
P2≤y1,y2,y3≤2P2

∑
m∼P2

λ1(m)Φ(m,y)
dy1dy2dy3

(log y1)(log y2)(log y3)
,

where

Φ(m,y) =

∫
R

{∫ 8P 3
1

P 3
1

y−2/3e (βy)

log y
dy

}
e
(
−β
(
n− y31 − y32 − y33 −m3

))
dβ.

If N ≤ n < 2N and P2 ≤ m, y1, y2, y3 ≤ 2P2, (7.2) implies

P 3
1 < n− y31 − y32 − y33 −m3 < 8P 3

1 ,

so an appeal to Fourier’s inversion formula gives

Φ(m,y) =

(
n− y31 − y32 − y33 −m3

)−2/3
log (n− y31 − y32 − y33 −m3)

.

24



Hence, (7.23) and partial summation lead to the approximate formula

(7.26)
∑
m∼P2

λ1(m)Φ(m,y) = `1L
−1
∫ 2P2

P2

Φ(y4,y)dy4 +O(P−1L−3).

Combining (7.25) and (7.26), we conclude that

(7.27) J̃1(n) = 1
3`1L

−5J(n) +O(P 2L−6),

where

J(n) =

∫∫∫∫
P2≤y1,...,y4≤2P2

(
n− y31 − · · · − y34

)−2/3
dy1 · · · dy4.

Similarly, we obtain∫
R
v1(β)v2(β)2g(β;λ2)g(β;λ∗1)e(−nβ)dβ = 1

3`2`
∗
1L
−5J(n) +O(P 2L−6),

which in conjunction with (7.27) gives

(7.28) J̃(n) = 1
3 (`1 − `2`∗1)L−5J(n) +O

(
P 2L−6

)
.

Finally, we observe that

P 2 � J(n)� P 2

for N ≤ n < 2N , and that an argument similar to that leading to (5.5) yields

1� S3,5(n)� 1

for n ∈ N3,5. Therefore, (F4) follows from (7.21), (7.22), (7.28) and the inequality

(`1 − `2`∗1)|ρ=5/56+10−6 > 0,

which can be verified by numerical integration. This completes the proof of Theorem 1 in the case s = 5.

7.3. The cases s = 6, 7 and 8. When s = 7 or 8, the proof is essentially the same as in the case s = 5,

using the generating functions

Fs(α) = f1(α)f2(α)s−3
(
g(α;λ1)f2(α)− g(α;λ2)g(α;λ∗1)

)
instead of F5(α) and Lemma 6.3 instead of Lemma 6.1. The case s = 6 is also similar, with Lemma 6.2 in

place of Lemma 6.1. However, since Lemma 6.2 requires upper bounds for two exponential sums instead for

one, we need to sift two pairs of variables instead of one. This forces some changes, which we now describe.

We intend to combine the sieve construction used in §7.1 with a variant of the vector sieve of Brüdern

and Fouvry [3]. Retaining the notation from §7.1, we define the function

Λ−(m1,m2) = λ1(m1)ψ(m2, X)− λ2(m1)λ∗1(m2).

We can now restate the sieve inequality underlying (7.19) as

ψ(m1, X)ψ(m2, X) ≥ Λ−(m1,m2).
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Furthermore, by interchanging the roles of λ2 and λ3 in §7.1, we obtain

ψ(m1, X)ψ(m2, X) ≤ Λ+(m1,m2),

where

Λ+(m1,m2) = λ1(m1)ψ(m2, X) + λ3(m1)λ∗1(m2).

With the functions Λ± in hand, we can state our version of the vector sieve as follows:

(7.29)

4∏
j=1

ψ(mj , X) ≥ Λ+(m)Λ−(m̃) + Λ−(m)Λ+(m̃)− Λ+(m)Λ+(m̃),

where m = (m1,m2) and m̃ = (m3,m4). Accordingly, we set

F6 = F6(α) = f1f2
[
2(g1f2 + g3g

∗
1)(g1f2 − g2g∗1)− (g1f2 + g3g

∗
1)2
]
,

where gi = g(α;λi) and g∗1 = g(α;λ∗1). We can deal with F6(α) similarly to F5(α) (using Lemma 6.2 instead

of Lemma 6.1). The only significant change occurs in the final step of the evaluation of the singular integral.

Because of the change in the sifting functions, the function `1 − `2`∗1 appearing in (7.28) has to be replaced

by

` = `(ρ) = 2(`1 − `2`∗1)(`1 + `3`
∗
1)− (`1 + `3`

∗
1)2,

where `3 is defined analogously to `1 and `2 (i.e., we extend (7.23) to i = 3). Correspondingly, we need to

change the value of the parameter ρ so that `(ρ) > 0. Resorting to numerical integration, we find that we

can choose ρ = 3/35 + 10−6, which leads to the desired conclusion. �

Acknowledgements. This paper was written while the author enjoyed the benefits of a Postdoctoral Fellow-

ship at the University of Toronto. He would like to take this opportunity to express his gratitude to the

Department of Mathematics and especially to Prof. J. B. Friedlander for the support. He would also like

to thank Prof. D. R. Heath-Brown for a discussion, from which the exposition benefited greatly, and to the

anonymous referee for some very helpful suggestions.

References

[1] R. C. Baker, G. Harman, and J. Pintz, The exceptional set for Goldbach’s problem in short intervals, Sieve Methods,

Exponential Sums and their Applications in Number Theory, London Math. Soc. Lecture Notes, vol. 237, Cambridge

University Press, 1997, pp. 1–54.

[2] C. Bauer, M. C. Liu, and T. Zhan, On a sum of three prime squares, J. Number Theory 85 (2000), 336–359.
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