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1. Introduction

Let n be an integer and let b1, . . . , b5 be non-zero integers. In this paper, we
consider the quadratic equation

(1.1) b1p
2
1 + · · ·+ b5p

2
5 = n,

where p1, . . . , p5 are prime unknowns. In order to avoid degenerate cases, we need
to impose certain local conditions. For example, unless

(1.2) b1 + · · ·+ b5 ≡ n (mod 24),

every solution p1, . . . , p5 of (1.1) must contain the primes 2 and 3. Further condi-
tions arise from primes dividing three or more of the coefficients (see [1, §6]). For
our purposes, it suffices to say that the hypotheses of Theorem 1 below preclude
degeneracies from occurring. Our goal is to prove the existence of solutions of (1.1)
that do not grow too rapidly as max{|b1|, . . . , |b5|} → ∞. The main result of the
paper is the following theorem.

Theorem 1. Let b1, . . . , b5 be non-zero integers satisfying

(1.3) gcd(bi, bj , bk) = 1, 1 ≤ i < j < k ≤ 5

and

(1.4) |b1| ≥ · · · ≥ |b5|,
and let n be an integer satisfying (1.2). Also, suppose that 5 divides at most two
of the numbers b1, . . . , b5, n. If b1, . . . , b5 are not all of the same sign, then (1.1) is
soluble in primes p1, . . . , p5 satisfying

(1.5) pj �
√
|n|+ |b1 · · · b4|2+ε.

If b1, . . . , b5 are all positive, then (1.1) is soluble provided that

(1.6) n� b5(b1 · · · b4)4+ε.

The implied constants in (1.5) and (1.6) depend only on ε.

This result improves on earlier work by M. C. Liu and Tsang [5] and by the first
author and J. Y. Liu [1, 2]. M. C. Liu and Tsang obtained a variant of Theorem 1,
in which (1.5) and (1.6) are replaced by the bounds

(1.7) pj �
√
|n|+ max{|b1|, . . . , |b5|}A

and

(1.8) n� max{b1, . . . , b5}A,
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where A is an absolute constant. Their method is similar to the approach used by
Montgomery and Vaughan [6] to estimate the cardinality of the exceptional set in
Goldbach’s problem. In [1, 2], Choi and J. Y. Liu used a different method to prove
(1.7) and (1.8) with A = 25/2 and A = 26, respectively, under the more stringent
hypothesis that the coefficients b1, . . . , b5 are pairwise coprime.

It is natural to ask whether one can improve further on Theorem 1, and if so,
then by how much. While we do not know what the best possible result should
be, it is not difficult to produce lower bounds for the exponents in (1.7) and (1.8).
Indeed, when all the bj ’s are positive the inequality n ≥ b1 is obviously a necessary
condition for the solubility of (1.1). Similarly, if |b1| is sufficiently large, n = o(|b1|),
and b2, . . . , b5 are bounded, then (1.1) has no solution in prime numbers p1, . . . , p5
subject to

pj �
√
|n|+ o(

√
|b1|).

Therefore, at least in the favorable case when b2, . . . , b5 are bounded above by an
absolute constant, the exponents 2 and 4 in (1.5) and (1.6) are within a factor of
(at most) 4 from the best possible exponents.

Theorem 1 is even closer to the limit of the methods employed in its proof.
As in earlier work, since our main tool is the Hardy–Littlewood circle method,
the strength of our results is determined by certain estimates for Weyl sums over
primes. Even if we were to assume that those exponential sums satisfy “fantastic”
bounds, far beyond those we can establish, it is inherent to the circle method that
it cannot yield (1.5) with exponent 1/2 in place of 2 + ε or (1.6) with exponent 1 in
place of 4 + ε. Theorem 1 relies on the estimates obtained recently by the second
author [3] (see Lemma 2.1 below).

Notation. Throughout the paper, the letter p, with or without subscripts, is reserved
for prime numbers; the letter c denotes an absolute constant, not necessarily the
same in all occurrences. As usual in number theory, φ(n) and ω(n) denote Euler’s
totient function and the number of distinct prime divisors of n. We also write e(x) =
e2πix, eq(x) = e(x/q), [a, . . . , b] = lcm[a, . . . , b], and (a, . . . , b) = gcd(a, . . . , b).

2. Preliminaries

We first derive estimates for the generating functions appearing in the proof from
estimates for the exponential sum

(2.1) S(α) =
∑

X<p≤2X

(log p)e
(
αp2

)
.

We start by quoting two results of the second author [3].

Lemma 2.1. Let S(α) be defined by (2.1), and suppose that a ∈ Z, q ∈ N, and
(a, q) = 1. For any fixed ε > 0, we have

(2.2) S(α)� X11/20+εΨ(α)1/2 +X1+εΨ(α)−1/2,

where Ψ(α) = q +X2|qα− a|. Furthermore, if

1 ≤ q ≤ X3/2 and |qα− a| ≤ X−3/2,

we have

(2.3) S(α)� X7/8+ε +X1+εΨ(α)−1/2.
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Proof. (2.2) is the case k = 2 of [3, Theorem 2], and (2.3) is the case k = 2 of [3,
Theorem 3]. �

The next two lemmas generalize (2.2) and (2.3) to S(bα), with b a non-zero
integer.

Lemma 2.2. Let b be a non-zero integer and let S(α) be defined by (2.1). Suppose
that there exist a ∈ Z and q ∈ N satisfying

(2.4) 1 ≤ q ≤ P, (a, q) = 1, |qα− a| < P/(|b|X2),

with P < 1
2X. Then, for any fixed ε > 0, we have

(2.5) S(bα)� X11/20+εΦ(α)1/2 +X1+εΦ(α)−1/2,

where Φ(α) = q1
(
1 + |b|X2|α− a/q|

)
and q1 = q/(b, q).

Proof. By Dirichlet’s theorem on diophantine approximation, there exist integers
a1 and q1 satisfying

(2.6) 1 ≤ q1 ≤ X, (a1, q1) = 1, |q1bα− a1| < X−1.

Combining (2.4) and (2.6), we obtain

|q1ba− qa1| ≤ q1|b||qα− a|+ q|q1bα− a1| ≤ 2PX−1 < 1,

and hence
a1
q1

=
ab

q
and q1 =

q

(q, b)
.

Thus
Φ(α) = q1 +X2|q1bα− a1|,

and the lemma follows from (2.2) with α = bα, q = q1, and a = a1. �

Lemma 2.3. Let b be a non-zero integer and let S(α) be defined by (2.1). Suppose
that there exist a ∈ Z and q ∈ N satisfying

(2.7) 1 ≤ q ≤ |b|X2P−1, (a, q) = 1, |qα− a| < P/(|b|X2),

with P subject to

(2.8) 2|b|X1/4 < P ≤ X.
Then, for any fixed ε > 0, we have

(2.9) S(bα)� X7/8+ε +X1+εΦ(α)−1/2,

where Φ(α) = q1
(
1 + |b|X2|α− a/q|

)
and q1 = q/(b, q).

Proof. By Dirichlet’s theorem, there exist integers a1 and q1 such that

1 ≤ q1 ≤ X3/2, (a1, q1) = 1, |q1bα− a1| < X−3/2.

Hence, by (2.3) with α = bα, q = q1, and a = a1,

(2.10) S(bα)� X7/8+ε +
X1+ε

(q1 +X2|q1bα− a1|)1/2
.

If q1 > X1/4 or |q1bα − a1| > X−7/4, the first term on the right side of (2.10)
dominates the second and (2.9) follows. Otherwise, recalling (2.7) and (2.8), we get

|q1ba− aq1| ≤ q1|b||qα− a|+ q|q1bα− a1|

≤ PX−7/4 + |b|X1/4P−1 < 1.
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Thus
a1
q1

=
ab

q
and q1 =

q

(q, b)
,

and (2.10) turns into (2.9). �

Next we define the singular integral and the singular series of the problem and
record some related results.

Lemma 2.4. Let b1, . . . , b5 be non-zero integers satisfying (1.3). Also, let n be an
integer and N be a natural number, and define

(2.11) I(n) =
1

32

∑
b1m1+···+b5m5=n
N/9<|bj |mj≤N

(m1 · · ·m5)−1/2,

If either

(i) b1, . . . , b5 are all positive, n ≥ 10 max{b1, . . . , b5}, and N = n; or
(ii) b1, . . . , b5 are not all of the same sign and N ≥ 10 max{|n|, |b1|, . . . , |b5|},

then

(2.12) I(n) � N3/2|b1 · · · b5|−1/2.

Proof. This is essentially [1, Lemma 2.2]. �

If q is a positive integer, χ is a Dirichlet character mod q, and a is an integer,
we define the exponential sums

C(χ, a) =
∑

1≤h≤q

χ̄(h)eq
(
ah2
)

and C(q, a) = C(χ0, a),

where χ0 is the principal character mod q; we also use the Gaussian sum

τ(χ, a) =
∑

1≤h≤q

χ̄(h)eq(ah).

Furthermore, for any Dirichlet characters χj mod qj (j = 1, . . . , 5) and for any
positive integer q such that [q1, . . . , q5] | q, we let χ0 be the principal character
mod q and write

B(q) = B(q;χ1, . . . , χ5) =
∑

1≤a≤q
(a,q)=1

eq(−an)C(χ1χ0, ab1) · · ·C(χ5χ0, ab5),

S(b, x) =
∑
q≤x

φ(q)−5A(q), A(q) = B(q;χ0, . . . , χ0),(2.13)

where in the definitions of A(q) and B(q) the dependence on b = (n, b1, . . . , b5) has
been suppressed for brevity. In particular, S(b) = S(b,∞) is the singular series
of the problem.

Lemma 2.5. If (b1, . . . , b5) = 1, the function B(q;χ1, . . . , χ5) has the following
properties.

(a) B(q;χ1, . . . , χ5) is multiplicative in q. That is, if q = q1q2, (q1, q2) = 1, and
χj = χj,1χj,2 with χj,i a character mod qi, then

B(q;χ1, . . . , χ5) = B(q1;χ1,1, . . . , χ5,1)B(q2;χ1,2, . . . , χ5,2).
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(b) For j = 1, . . . , 5, let χj be a primitive character mod pαj , and suppose that
α ≥ θ + max{α1, . . . , α5, θ}, where θ = 2 or θ = 1 according as p = 2 or p > 2.
Then B(pα;χ1, . . . , χ5) = 0.

(c) For j = 1, . . . , 5, let χj be a primitive character mod 2αj , and suppose that
α = max{α1, . . . , α5} ≥ 2. Then B(2α;χ1, . . . , χ5) = 0.

(d) For Dirichlet characters χj mod q, we have

(2.14) B(q;χ1, . . . , χ5) =
∑
ξ21=χ1

· · ·
∑
ξ25=χ5

τ(ξ1, b1) · · · τ(ξ5, b5)τ(ξ1 · · · ξ5, n),

where
∑
ξ2=χ denotes summation over the characters ξ mod q such that ξ2 = χ.

(e) For j = 1, . . . , 5, let χj be a primitive character mod rj, let r = [r1, . . . , r5],
and suppose that r = 2αr0, 2 - r0. Then

B(qr;χ1, . . . , χ5) =


A(q)B(r;χ1, . . . , χ5) if α = 0, (r, q) = 1,

A(q/2)B(2r;χ1, . . . , χ5) if α ≥ 3, (r, q) = 2,

0 otherwise.

(f) We have

B(q;χ1, . . . , χ5)� 32ω(q)q7/2
5∏
j=1

(bj , q)
1/2.

Proof. (a) See [5, Lemma 3.2].

(b) See [5, Lemma 3.4(b)].

(c) For any character χ mod q, we have

C(χ, a) =
1

φ(q)

∑
1≤m≤q

eq(am)
∑

1≤h≤q

χ̄(h)
∑

ξ mod q

ξ2(h)ξ̄(m)(2.15)

=
1

φ(q)

∑
ξ mod q

τ(ξ, a)
∑

1≤h≤q

χ̄(h)ξ2(h) =
∑
ξ2=χ

τ(ξ, a).

Suppose now that χj is primitive mod 2α, α ≥ 2. Since the square of a character
mod 2α has conductor ≤ 2α−1, there is no character ξ mod 2α with ξ2 = χj and
the sum on the right side of (2.15) is empty.

We remark that by the same argument B(pα;χ1, . . . , χ5) = 0, if for some j we
have χj(−1) = −1. In particular, we have B(2α;χ1, . . . , χ5) = 0 if some character
has conductor 4.

(d) If (a, q) = 1, we have τ(χ, ab) = χ(a)τ(χ, b), and (2.15) yields

C(χ, ab) =
∑
ξ2=χ

τ(ξ, ab) =
∑
ξ2=χ

ξ(a)τ(ξ, b).

The desired conclusion follows by applying this identity to the sums C(χi, abi)
appearing in B(q;χ1, . . . , χ5) and then interchanging the order of summation.

(e) This follows from parts (a)–(c) and the above remark about characters of
conductor 4.

(f) This follows from [5, Lemma 3.1(c)] and part (a). Alternatively, one can
deduce the result by combining (2.14) and known estimates for the Gaussian sum
(see [6, Lemmas 5.1 and 5.4]). Moreover, the latter approach yields a sharper
bound, in which the factor q7/2 is replaced by q3(n, q)1/2. �
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Lemma 2.6. Let n, b1, . . . , b5 be integers satisfying (1.2) and (1.3), and suppose
that at most two among them are divisible by 5. Let S(b, x) be defined by (2.13).
Then the infinite series S(b) = S(b,∞) is absolutely convergent and satisfies

(2.16) S(b)� (log logB)−c,

where B = max{10, |b1|, . . . , |b5|}. Furthermore, for any fixed ε > 0, we have

(2.17) |S(b)−S(b, x)| � x−1+εBε.

Proof. These are established in [1, Lemma 7.1]. We remark that references in that
proof to [1, eq. (1.3)] can be replaced by references to (1.3) above. �

Lemma 2.7. For j = 1, . . . , 5, let χj be a primitive character mod rj, let r =
[r1, . . . , r5], and suppose that b1, . . . , b5 satisfy (1.3). Then, for any fixed ε > 0,

(2.18)
∑
q≤x/r

φ(qr)−5B(qr;χ1, . . . , χ5)� r−1/2+ε(log(x+ 2))5.

Proof. Let r′ = r or 2r according as 8 - r or 8 | r. By Lemma 2.5(e), the left side
of (2.18) is

(2.19) φ(r′)−5B(r′;χ1, . . . , χ5)
∑

q≤x/r′
(q,r)=1

φ(q)−5A(q).

In order to bound the sum over q, we need an estimate for A(q) that takes into
account the extra cancelation that occurs on the right side of (2.14) when all the
characters are principal. We first record the inequality |A(p)| ≤ 4p4, which can be
derived from [5, eq. (3.10)] via case-by-case analysis. By parts (a)–(c) of Lemma 2.5,
we then have

(2.20) A(q)�
∏
p|q

|A(p)| � 4ω(q)q4.

Using Lemma 2.5(f) to bound B(r′) and (2.20) to bound the sum over q, we find
that (2.19) is bounded above by

33ω(r)r−3/2
5∏
j=1

(bj , r)
1/2

∑
q≤x/r

5ω(q)q−1.

Hence, the desired result follows from (1.3). �

3. Proof of the theorem

Let N be a parameter with

(3.1) N ≥ |b5||b1 · · · b4|4+ε

that also satisfies hypothesis (i) or (ii) of Lemma 2.4 according as b1, . . . , b5 are all
positive or not. Throughout the proof, we set η = ε/1000 and write

L = logN, Nj = (N/|bj |)1/2, and X = N1 · · ·N5N
−1.

We will use the circle method to show that the quantity

r(n) =
∑

n=b1p
2
1+···+b5p

2
5

N/9<|bj |p2j≤N

(log p1) · · · (log p5)
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is positive. Clearly, this establishes Theorem 1.
We need to introduce some notation. Define the exponential sums

Sj(α) =
∑

Nj/3<p≤Nj

(log p)e
(
αbjp

2
)

(1 ≤ j ≤ 5),

and for any measurable set B ⊆ [0, 1] write

(3.2) r(n,B) =

∫
B

S1(α) · · ·S5(α)e(−nα) dα.

In particular, by orthogonality, we have r(n) = r(n, [0, 1]). Let P be a parameter to
be chosen later. The primary Hardy–Littlewood decomposition of the unit interval
into sets of major and minor arcs is given by

(3.3) M =
⋃
q≤P

⋃
0≤a≤q
(a,q)=1

M(q, a;P ) and m = [0, 1] \M,

where if 1 ≤ Q ≤ N , we define the major arc M(q, a;Q) by

M(q, a;Q) =
{
α ∈ [0, 1] : |qα− a| < QN−1

}
.

We also use a secondary decomposition of the set of major arcs M. Let R = N6η.
We define the sets

(3.4) M0 =
⋃
q≤R

⋃
0≤a≤q
(a,q)=1

M(q, a;R), N = M \M0,

and

N(q) =

{
M(q, 0;P ) \M(q, 0;R) if 1 ≤ q ≤ R,
M(q, 0;P ) if R < q ≤ P.

Let us consider r(n,M). We are going to combine the approaches used to deal
with the major arcs in [1] and in [4]. First, we employ the method in [1] to estimate
r(n,M0). Using Lemma 2.7 above in the place of [1, Lemma 3.1], we can proceed
as in the proof of [1, Theorem 3] to obtain

(3.5) r(n,M0) = S(b, R)I(n) +O
(
XL−1

)
,

with I(n) and S(b, x) given by (2.11) and (2.13) above. Since Lemma 2.7 features
the term r−1/2+ε in place of the term r−1+ε appearing in [1, Lemma 3.1], we need
to replace the terms r−1/5+ε in the definitions of Jj and Kj in [1] by r−1/10+ε.
However, this change does not affect the proofs of Lemmas 4.1 and 5.1 in [1] when
the parameter P in [1] is chosen equal to R = N6η.

Next, we use the approach in [4] to bound r(n,N). When α ∈M(q, a;P ), (2.5)
yields

Sj(α)� N
11/20+η
j (q(1 +N |β|))1/2 +

(q, bj)
1/2N1+η

j

(q(1 +N |β|))1/2
(1 ≤ j ≤ 5),
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with β = α− a/q ∈ N(q). Recalling (1.3), we deduce that

r(n,N) ≤
∑
q≤P

∑
1≤a≤q
(a,q)=1

∫
N(q)

∣∣∣∣S1

(
a

q
+ β

)
· · ·S5

(
a

q
+ β

)∣∣∣∣ dβ(3.6)

�
5∑
k=0

(NX)1+η

(N1 · · ·Nk)9/20

∑
k
,

where for k = 0, 1, . . . , 5,∑
k

=
∑
q≤P

(q, b1 · · · b5)qk−3/2
∫
N(q)

dβ

(1 +N |β|)5/2−k

� N−1
∑
q≤P

(q, b1 · · · b5)
(
P k−3/2 + (R+ q)k−3/2

)
� |b1|ηN−1

(
P k−1/2 +Rk−1/2

)
.

Substituting this bound into the right side of (3.6), we obtain

r(n,N)� X1+2η

{
R−1/2 +

5∑
k=1

P k−1/2(N1 · · ·Nk)−9/20
}
.

Hence,

(3.7) r(n,N)� XN−η,

provided that

(3.8) P ≤ min
1≤k≤5

(N1 · · ·Nk)9/(10(2k−1))−6η.

We now turn to the estimation of r(n,m). When α ∈ m, there exist integers a
and q satisfying (2.7) with b = b5 and X = N5 and such that q + N |qα − a| ≥ P .
Thus, if P satisfies

(3.9) 2|b5|N1/4
5 ≤ P ≤ N5,

we can apply Lemma 2.3 to get

sup
α∈m
|S5(α)| � N

7/8+η
5 +N1/2+ηP−1/2 � N

7/8+3η
5 .

Combining this bound with the inequality (see [1, eq. (2.9)])∫ 1

0

|S1(α) · · ·S4(α)| dα� (N1 · · ·N4)1/2+η,

we obtain

r(n,m) ≤
(

sup
α∈m
|S5(α)|

)∫ 1

0

|S1(α) · · ·S4(α)| dα(3.10)

� N
7/8+3η
5 (N1 · · ·N4)1/2+η � XN−η,

in view of (3.1).
Finally, we are in position to complete the proof. We set

P = (N1 · · ·N5)1/10−6η.
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When (3.1) holds, this choice of P satisfies (3.8) and (3.9), and we conclude from
(2.12), (2.16), (2.17), (3.2)–(3.5), (3.7), and (3.10) that

r(n) = S(b, R)I(n) +O
(
XL−1

)
� X(logL)−c,

which suffices to complete the proof. �
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