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Abstract. Let Q(x, y) be a primitive positive definite quadratic form with

integer coefficients. Then, for all (s, t) ∈ R2 there exist (m,n) ∈ Z2 such that
Q(m,n) is prime and

Q(m− s, n− t)� Q(s, t)0.53 + 1.

This is deduced from another result giving an estimate for the number of prime
ideals in an ideal class of an imaginary quadratic number field that fall in a

given sector and whose norm lies in a short interval.

1. Introduction

Let K = Q(
√
d) be an imaginary quadratic field of discriminant d < 0, and let

O = OK be its ring of integers. In this paper, we study the distribution of the
prime ideals of O in small regions of a certain type. Our main result is Theorem 2
below, which improves on earlier work by Coleman (see [4, Theorem 2.1] and [7,
Theorem 4]). When combined with in [4, Proposition 2.3], Theorem 2 yields the
following result.

Theorem 1. Let d < 0 be the discriminant of an imaginary quadratic field K, and
let Q(x, y) ∈ Z[x, y] be a positive definite quadratic form with discriminant d. Then,
for every pair (s, t) ∈ R2, there is another pair (m,n) ∈ Z2 for which Q(m,n) is
prime and

(1.1) Q(s−m, t− n)� Q(s, t)0.53 + 1.

The implied constant depends only on K.

In the special case when Q(x, y) = x2 + y2, we get the following

Corollary. For every z ∈ C, one can find a Gaussian prime π 6= z satisfying

|z − π| � |z|0.53 + 1.

If we take (s, t) ∈ Z2 so that Q(s, t) is a prime, Theorem 1 provides a bound on
the gaps between points at which the form Q(x, y) attains prime values. Therefore,
one may compare the above result with the estimates for the difference between
consecutive primes. In such a comparison, the exponent of Q(s, t) on the right side
of (1.1) corresponds to the smallest θ such that, for sufficiently large values of x,
the interval (x − xθ, x] always contains a prime number. Here is how Theorem 1
and recent work preceding it compare with the respective results concerning primes
in short intervals:
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• the exponent 7/12 + ε obtained by Coleman [4, Theorem 1.1] corresponds
to a celebrated result by Huxley [13] (henceforth, ε denotes a sufficiently
small, positive constant, not necessarily the same in each occurrence);
• the exponent 11/20 which follows from [7, Theorem 4] corresponds to the

main result of Heath-Brown and Iwaniec’s paper [12];
• Theorem 1 corresponds to the existence of rational primes in all intervals

(x− x0.53, x] with x ≥ x0, and compares with recent results by Baker and
Harman [1] and by Baker, Harman and Pintz [3] in which the lengths of
the intervals are x0.535 and x0.525, respectively.

Our method is an adaptation to algebraic number fields of the sieve method in-
troduced by the first author [8, 9] and shares many features with [2] and [3]. Our
result is not quite as strong as the result in [3] because we do not have an analogue
for Hecke L-functions of Watt’s mean-value theorem [18].

In order to state the main result we need to establish some notation. We denote
by a, b, . . . the integral ideals of O and reserve p (with or without subscripts) for

prime ideals; also, we write α̂, β̂, . . . for the ideal numbers of K and π̂ for the prime
ideal numbers.

Let w be the number of roots of unity contained in the field K. The Hecke
Grössencharaktere λ(·) is defined on the multiplicative group of the ideal numbers
of K by

λ(µ̂) =
( µ̂
|µ̂|

)w
.

If C is an ideal class, let C−1 denote its inverse in the ideal class group. For each
class C, we choose and fix an ideal a0 ∈ C−1. Then, given an ideal a ∈ C, we can
find an algebraic integer ξa ∈ a0 with (ξa) = aa0. Moreover, ξa is unique up to
multiplication by units, whence arg λ(ξa) is unique mod 2π. Therefore, if C is an
ideal class and x, y, φ0, φ are real numbers subject to the restrictions 0 < φ < 2π
and 0 < y < x, the following set of ideals is well-defined

(1.2) A = {a ∈ C : x− y ≤ Na < x, φ0 ≤ arg λ(ξa) ≤ φ0 + φ}.

Our main theorem can now be stated as follows.

Theorem 2. There is an x0 > 0 such that if x ≥ x0, y ≥ x0.765, φ ≥ x−0.235, and
A is the collection of ideals defined by (1.2), then

(1.3)
∑
p∈A

1� φy

log x
.

One expects that one should actually be able to prove an asymptotic formula for
the left-hand side of (1.3) whenever y � x1/2+ε and φ � x−1/2+ε. However, the
exponents 19/24 + ε and −5/24 + ε obtained in [4] seem to be the best the present
methods can produce if one insists on having an asymptotic formula. In fact, even
assuming the Riemann hypothesis for the Dedekind zeta function ζK(s), we do not
know how to get exponents better than 3/4 + ε and −1/4 + ε, respectively. The
related problem where one only restricts arg λ(ξa) and not Na is studied by the
first and third authors elsewhere [10].
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2. Outline of the method

We consider a set A defined by (1.2) with y ≥ x(θ+1)/2+ε and φ ≥ x(θ−1)/2+ε,

and aim to prove (1.3) when θ ≥ 0.53 − 2ε. Let y1 = x exp(−3 log1/3 x) and let C
be the ideal class appearing in the definition of the set A. We define

(2.1) B = {a ∈ C : x− y1 ≤ Na < x}.
In order to simplify the proof, we will replace the sum on the left side of (1.3)
by
∑

p Ψ(p), where Ψ(·) is a smooth function that approximates the characteristic

function of A from below (see (3.5) for the precise definition of Ψ). Clearly, it
suffices to show that

(2.2)
∑
p

Ψ(p)� φy

log x
.

If z ≥ 2, we define the quantities

S(A, z) =
∑

(a,P(z))=1

Ψ(a) and S(B, z) =
∑
a∈B

(a,P(z))=1

1,

where P(z) is the ideal

P(z) =
∏
Np<z

p.

The left-hand side of (2.2) can then be expressed as S(A, x1/2).
Our programme is as follows. First, we represent S(A, x1/2) as a linear combi-

nation of sifting sums that are easier to handle, say

(2.3) S(A, x1/2) =

k∑
j=1

Sj −
∑̀
j=k+1

Sj .

Here, Sj ≥ 0 and for j ≤ k′ < k and j > k we will be able to prove asymptotic
formulae of the form

(2.4) Sj =
φy

2πy1
S∗j (1 + o(1)),

where S∗j is a sifting function analogous to Sj in which the set B is being sifted

instead. We then decompose S(B, x1/2) following the steps that led us to (2.3)
and combine the two decompositions by means of the asymptotic formulae (2.4).
Discarding the sums Sj , k

′ < j ≤ k, we now get the lower bound

S(A, x1/2) ≥ φy

2πy1

(
S(B, x1/2)−

∑
k′<j≤k

S∗j

)
(1 + o(1)).

It remains to ensure that the right-hand side of this inequality is non-negative, that
is, that not too many sums Sj are discarded.

The plan of the paper is as follows. In Section 3, we establish a connection
between mean-value estimates for Dirichlet polynomials and asymptotic formulae
of the form

(2.5)
∑
a

c(a)Ψ(a) =
φy

2πy1

∑
a∈B

c(a) + error terms.

Section 4 contains auxiliary results about Dirichlet polynomials. In Section 5, we
combine the results from Sections 3 and 4, and prove asymptotic formulae of the
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form (2.4) for a variety of sifting functions Sj . Finally, in Section 6, we construct
the actual decomposition (2.3) and show that the resulting lower bound is indeed
positive.

Notation. We shall write Na ∼ X for the condition X ≤ Na < 2X and Na � X for
the condition c1X ≤ Na < c2X, where c1 and c2 are some absolute constants. We
shall use the letter B to denote a sufficiently large, positive constant, not necessarily
the same in each occurrence; η will stand for a fixed positive number, sufficiently
small in terms of ε. We shall use the following arithmetic functions:

τ(a): the number of ideals dividing the ideal a;
µ(a): the analogue for ideals of the Möbius function:

µ(a) =


1 if a = O,

(−1)k if a is the product of k distinct prime ideals,

0 if p2|a for some p;

ρ(a, z): for real z ≥ 2, we define

ρ(a, z) =

{
1 if (a,P(z)) = 1,

0 otherwise.

3. Reduction of the problem

In this section we demonstrate that asymptotic formulae of the form (2.5) can
be derived from mean-value estimates for Dirichlet polynomials

(3.1) F (s, λm) =
∑
a

c(a)λm(a)(Na)−s,

where λ is the Hecke Grössencharaktere defined above, the summation is over in-
tegral ideals a ∈ C with Na � x, and the coefficients c(a) satisfy

(3.2) |c(a)| ≤ τ(a)B .

Sometimes, when m = 0 in (3.1), we will write simply F (s).
We start by defining the function Ψ(a). Let ∆1 = yx−η, and let ψ1(t) be a

function of the C∞(R) class satisfying:

• ψ1(t) = 1 if x− y + ∆1 ≤ t ≤ x−∆1;
• ψ1(t) = 0 if t 6∈ (x− y, x);
• 0 ≤ ψ1(t) ≤ 1 if x− y ≤ t ≤ x;

• ψ(j)
1 (t)� j2j∆−j1 for j = 1, 2, . . . .

Also, let ∆2 = φx−η, let r = [2/η] + 1, and let ψ2(t) be a 2π-periodic function
satisfying:

• ψ2(t) = 1 if φ0 + ∆2 ≤ t ≤ φ0 + φ−∆2;
• ψ2(t) = 0 if φ0 + φ ≤ t ≤ φ0 + 2π;
• 0 ≤ ψ2(t) ≤ 1 if φ0 ≤ t ≤ φ0 + φ;
• ψ2(t) has the Fourier expansion

(3.3) ψ2(t) = ψ̂2(0) +
∑
m6=0

ψ̂2(m)eimt,
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where ψ̂2(0) = (φ−∆2)/2π and, for m 6= 0,

(3.4) |ψ̂2(m)| ≤ min

(
φ,

2

π|m|
,

2

π|m|

( 2r

|m|∆2

)r)
.

We now define Ψ(a) by

(3.5) Ψ(a) =

{
ψ1(Na)ψ2(arg λ(ξa)), a ∈ C,
0, a 6∈ C.

Let us consider the left-hand side of (2.5). From (3.3) and the definition of ξa,
we get

ψ2(arg λ(ξa)) =
∑
m∈Z

ψ̂2(m)λm(aa0).

Thus, choosing M = [∆−12 xη] + 1, and using (3.4) to estimate the tail of the last
series, we obtain

ψ2(arg λ(ξa)) =
∑
|m|≤M

ψ̂2(m)λm(aa0) +O(x−2).

Hence, ∑
a

c(a)Ψ(a) =
∑
|m|≤M

ψ̂2(m)λm(a0)
∑
a∈C

c(a)λm(a)ψ1(Na) +O(1).

Let

ψ̂1(s) =

∫ ∞
0

ψ1(t)ts−1dt

be the Mellin transform of ψ1(t). By Mellin’s inversion formula, we have

ψ1(t) =
1

2πi

∫ 1
2+i∞

1
2−i∞

ψ̂1(s)t−sds.

Thus, upon noting that ψ1(Na) = 0 unless Na � x, we get∑
a

c(a)Ψ(a) =
1

2πi

∑
|m|≤M

ψ̂2(m)λm(a0)

∫ 1
2+i∞

1
2−i∞

F (s, λm)ψ̂1(s) ds+O(1),

where F (s, λm) is the Dirichlet polynomial (3.1). Now, we observe that r partial
integrations yield the bound

ψ̂1(σ + it)� ∆1x
σ−1

(
xr2

|t|∆1

)r
(r = 1, 2, . . . ).

Applying this estimate with r = [2/η] + 1, we see that

(3.6)
∑
a

c(a)Ψ(a) =
1

2πi

∑
|m|≤M

ψ̂2(m)λm(a0)

∫ 1
2+iT1

1
2−iT1

F (s, λm)ψ̂1(s) ds+O(1),

where T1 = x1+η∆−11 .
Let us now suppose that the following mean-value bounds hold for F (s, λm):

(3.7)
∑

0<|m|≤M

∫ T1

−T1

∣∣∣F ( 12 + it, λm
)∣∣∣ dt� x1/2 exp

(
−B(log x)1/4

)
,
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and

(3.8)

∫ T1

T0

∣∣∣F ( 12 + it, λ0
)∣∣∣ dt� x1/2 exp

(
−B(log x)1/4

)
,

where in (3.8) T0 = exp(log1/3 x). Since∣∣ψ̂1(σ + it)
∣∣ ≤ yxσ−1 and

∣∣ψ̂2(m)
∣∣ ≤ φ,

we infer from (3.6)–(3.8) that

(3.9)
∑
a

c(a)Ψ(a) =
ψ̂2(0)

2πi

∫ 1
2+iT0

1
2−iT0

F (s)ψ̂1(s) ds+O
(
φy exp

(
−B(log x)1/4

))
.

Furthermore, we have

ψ̂1(s) = ψ̂1(1)xs−1 +O
(
|s|y2xσ−2

)
and F ( 1

2 + it)� x1/2(log x)B , so (3.9) yields

(3.10)
∑
a

c(a)Ψ(a) =
φy

4π2i

∫ 1
2+iT0

1
2−iT0

F (s)xs−1ds+O
(
φy exp

(
−B(log x)1/4

))
.

Now, let y1 = x exp(−3 log1/3 x), let ∆3 = y1x
−η, and let ψ3(t) be a function

analogous to ψ1(t) with y1 and ∆3 in place of y and ∆1. Then, by a simpler version
of the above argument, we obtain∑

a∈C
c(a)ψ3(Na) =

y1
2πi

∫ 1
2+iT0

1
2−iT0

F (s)xs−1ds+O
(
y1 exp

(
−B(log x)1/4

))
,

provided that (3.8) holds. On the other hand,∑
a∈C

c(a)ψ3(Na) =
∑
a∈B

c(a) +O
(
x1−η

)
,

so we deduce that

(3.11)
∑
a∈B

c(a) =
y1
2πi

∫ 1
2+iT0

1
2−iT0

F (s)xs−1 ds+O
(
y1 exp

(
−B(log x)1/4

))
.

Upon combining (3.10) and (3.11), we have now completed the proof of the
following result.

Lemma 1. Let the Dirichlet polynomial F (s, λm) be defined by (3.1), and suppose
that its coefficients satisfy (3.2). Also, suppose that inequalities (3.7) and (3.8)
hold. Then,

(3.12)
∑
a

c(a)Ψ(a) =
φy

2πy1

∑
a∈B

c(a) +O
(
φy exp

(
−B(log x)1/4

))
.

Lemma 1 will be our primary tool for proving asymptotic formulae of the form
(2.5), but there is one case in which we will not be able to satisfy its hypotheses,
and will need an alternative device. The next lemma provides such a device.

Lemma 2. Define the Dirichlet polynomial

(3.13) F (s, λm) =
∑
a,b

c(a)λm(ab)N(ab)−s,
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where the coefficients c(a) satisfy (3.2) and the summation is over integral ideals a
and b subject to

(3.14) ab ∈ C, Na ≤ xη, N(ab) � x.

If (3.7) holds, then

(3.15)
∑
a,b:

Na≤xη

c(a)Ψ(ab) =
φy

2πy1

∑
ab∈B
Na≤xη

c(a) +O
(
φy exp

(
−B(log x)1/4

))
.

Proof. As in the proof of Lemma 1, we find that the left-hand side of (3.15) equals∑
|m|≤M

ψ̂2(m)λm(a0)
∑

a,b:(3.14)

c(a)λm(ab)ψ1(N(ab)) +O(1),

where M = [∆−12 xη] + 1. As before, we can estimate the contribution from |m| > 0

using the properties of the Mellin transform ψ̂1(s) and hypothesis (3.7). We obtain∑
a,b:(3.14)

c(a)Ψ(ab) = ψ̂2(0)
∑

a,b:(3.14)

c(a)ψ1(N(ab))

+O
(
φy exp

(
−B(log x)1/4

))
.

(3.16)

We will use the asymptotic formula (see [15, Corollary 1 on p. 417])

(3.17)
∑
a∈C
Na≤X

1 = CK ·X +O(X2/3+η),

where C can be any ideal class and CK is a constant depending only on the field K
(and not on the class C). From (3.16) and (3.17), we deduce

(3.18)
∑

a,b:(3.14)

c(a)Ψ(ab) =
φ

2π

∑
a,b:(3.14)

x−y≤N(ab)<x

c(a) +O
(
φy exp

(
−B(log x)1/4

))
.

Let C1, . . . , Ch be the distinct ideal classes of K. Then, using (3.17) again,

∑
a,b:(3.14)

x−y≤N(ab)<x

c(a) =

h∑
j=1

∑
a∈Cj
Na≤xη

c(a)
∑

b∈CC−1
j

x−y≤N(ab)<x

1

= CKy

h∑
j=1

∑
a∈Cj
Na≤xη

c(a)

Na
+O(x2/3+2η).(3.19)

Substituting this back into (3.18), we have

(3.20)
∑
a,b:

Na≤xη

c(a)Ψ(ab) = CK ·
φy

2π

h∑
j=1

∑
a∈Cj
Na≤xη

c(a)

Na
+O

(
φy exp

(
−B(log x)1/4

))
.

The result follows from (3.20) and (3.19) with y1 in place of y. �
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4. Dirichlet polynomials

In this section we collect estimates for mean and large values of Dirichlet poly-
nomials of the form (3.1). We will use these estimates to satisfy the hypotheses
(3.7) and (3.8) of Lemma 1. We will always assume that the coefficients c(a) (if
present) satisfy (3.2). Also, in this and often in the subsequent sections, we will
use the same letter for a Dirichlet polynomial and for its length; for example, the
summation in polynomial (3.1) will be over ideals with Na � F .

4.1. Estimates for polynomials F (s, λm). Let 2 < T,M ≤ x/4. If S is a set
of pairs (t,m), with |t| ≤ T , |m| ≤ M , we say that S is well-spaced if |t − t′| ≥ 1
whenever (t,m), (t′,m) ∈ S. We define the norm

‖F‖p =


( ∑

(t,m)∈S

∣∣F ( 12 + it, λm
)∣∣p )1/p, 1 ≤ p <∞,

sup
(t,m)∈S

∣∣F ( 12 + it, λm
)∣∣ , p =∞.

Sometimes, we will need to impose the condition

(4.1) ‖F‖∞ � F 1/2 exp
(
−B(log x)1/4

)
.

Lemma 3. Let S be well-spaced; then

(4.2) ‖F‖22 � (M2 + T 2 + F )G log x

where
G = G(F ) =

∑
Na�F

|c(a)|2(Na)−1.

Furthermore, if ∣∣F ( 12 + it, λm
)∣∣ ≥ V

for all (t,m) ∈ S, then the cardinality of S is bounded by

(4.3) |S| �
(
GF

V 2
+
G3F (M2 + T 2)

V 6

)
log4 x.

Proof. The first assertion follows from [14, Lemma 1.4] and [4, Theorem 6.2]. The
second assertion is [4, Lemma 7.3] with θ = 0, α(0) = 1/2, and β(0) = 2. �

The next two lemmas are analogues of [3, Lemma 9] and [2, Lemma 3]. In fact,
if one replaces [2, Lemma 1] by Lemma 3, their proofs are almost identical to the
proofs of those results.

Lemma 4. Let P (s, λm), Q(s, λm), F (s, λm) be Dirichlet polynomials whose co-
efficients satisfy (3.2). Suppose that PQF = x, and that F (s, λm) satisfies (4.1).
Let (M2 +T 2) ≤ x1−θ−η, where 1/2 + η < θ ≤ 7/12, and let g be a positive integer.
Suppose that P = xσ1 , Q = xσ2 , with

|σ1 − σ2| ≤ 2θ − 1,(4.4)

1− (σ1 + σ2) ≤ γ(θ),(4.5)

where

γ(θ) = min

(
4θ − 2,

(8g − 4)θ − (4g − 3)

4g − 1
,

24gθ − (12g + 1)

4g − 1

)
.

Then,

(4.6) ‖FPQ‖1 � x1/2 exp
(
−B(log x)1/4

)
.
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The implied constant depends on η and g.

Lemma 5. Let F (s, λm), P (s, λm), Q(s, λm), R(s, λm) be Dirichlet polynomials
with FPQR = x. Suppose that F , P , Q, R satisfy (3.2), and that F , Q, R satisfy
(4.1). Also, suppose that (M2 + T 2) ≤ x1−θ−η, where 1/2 + η < θ ≤ 7/12. Then,

(4.7) ‖FPQR‖1 � x1/2 exp
(
−B(log x)1/4

)
,

provided that any of the following sets of conditions holds:

(i) P � x1−θ, Q� x(1−θ)/2, R� x(1−θ)/4, F � x2(1−θ)/7;
(ii) P � x1−θ, Q� x(1−θ)/2, R� x(1−θ)/3, F � x2(1−θ)/11;
(iii) P � x1−θ, Q� x(1−θ)/3, R2F � x1−θ, F � x2(1−θ)/5;
(iv) P � x1−θ, Q,R� x(1−θ)/3, QR� x4(1−θ)/7, FQR� x14(1−θ)/13.

Our next result is about polynomials F (s, λm) in which c(a) = 1 for all a.

Lemma 6. Let

(4.8) F (s, λm) =
∑
a∈C
Na�F

λm(a)(Na)−s.

Let M ≤ x, T ≤ x, F ≤ x, and suppose that S contains no pairs (t,m) with m = 0.
Then,

(4.9) ‖F‖44 � V 2(log x)B + |S|F 2V −4(log x)B ,

where V = (M + T ).

Proof. By [17, Theorem 3.19] with c = 1
2 + (log x)−1,

F
(
1
2 + it, λm

)
=

1

2πi

∫ c+iV

c−iV
L
(
w + 1

2 + it, λm, C
)Fw2 − Fw1

w
dw

+O
(
F 1/2V −1(log x)B

)
;

here [F1, F2] is the range of summation in (4.8) and L(s, λm, C) is the Hecke L-
function

L(s, λm, C) =
∑
a∈C

λm(a)(Na)−s.

We now move the contour to [−iV, iV ]. We can prove similarly to [16, Theorem 5]
that if 0 ≤ η ≤ 1

2 , then

L(σ + it, λm, C)�
(
t2 +m2

)(1−σ+η)/2
ζ2(1 + η)

whenever −η ≤ σ ≤ 1 + η. By this estimate with η = (log x)−1, the contribution
from the horizontal segments is

� max
0≤σ≤c

(
(m2 + V 2)(1−2σ)/4FσV −1 log2 x

)
�
(
V −1/2 + F 1/2V −1

)
log2 x.

Since the integrand is an entire function, we obtain

(4.10) F
(
1
2 + it, λm

)
= J(t, λm) +O

((
F 1/2V −1 + V −1/2

)
(log x)B

)
,

where

J(t, λm) =
1

2πi

∫ iV

−iV
L
(
w + 1

2 + it, λm, C
)Fw2 − Fw1

w
dw.
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To complete the proof we raise (4.10) to fourth power, sum over the elements of
S, and estimate

∑
S |J(t, λm)|4 using the approach from [2, Lemma 9] with [4,

Theorem 6.3] in place of [2, Lemma 7]. (Also, we have used that |S| � V 2 to
dispense with one of the arising terms.) �

Lemma 7. Let F (s, λm) be defined by (4.8). If m 6= 0 and F ≥ (m2 + t2), then
|F ( 1

2 + it, λm)| � (log x)B.

Proof. Let [F1, F2] be the range for Na in (4.8), and let ψ be a C∞-function with
the properties:

• ψ(t) = 1 if F1 ≤ t ≤ F2,
• ψ(t) = 0 if t 6∈ (F1 −∆, F2 + ∆),
• 0 ≤ ψ(t) ≤ 1 if F1 −∆ ≤ t ≤ F2 + ∆,
• ψ(j)(t)� j2j∆−j (j = 1, 2, . . . ).

Then, by Mellin’s inversion formula,

(4.11) F
(
1
2 + it, λm

)
=

1

2πi

∫ 2+i∞

2−i∞
L
(
w + 1

2 + it, λm, C
)
ψ̂(w) dw +O(∆F−1/2),

where ψ̂(w) denotes the Mellin transform of ψ.
We define the function Υ(s, λm, C) via the functional equation

(4.12) L(s, λm, C) = Υ(s, λm, C)L(1− s, λ̄m, C−1);

it satisfies the inequality

(4.13) Υ
(
− 1

2 + it, λm, C
)
� (m2 + t2 + 1).

Moving the line of integration in (4.11) to Rew = −1 and then using the functional
equation (4.12) and (4.13), we deduce that

(4.14) F
(
1
2 + it, λm

)
�
∫ ∞
−∞

(m2 + t2 + v2)
∣∣ψ̂(−1 + iv)

∣∣ dv + ∆F−1/2.

Observe that

(4.15) ψ̂(σ + it)� ∆Fσ−1
(
r2F

|t|∆

)r
(r = 1, 2, . . . ).

We now choose ∆ = F 1/2 and V = ∆ log3 x. Using (4.15) with r = 1 when |v| ≤ V
and with r = [log x] when |v| > V , we see that the lemma follows from (4.14). �

Lemma 8. Let P (s, λm) and Q(s, λm) be Dirichlet polynomials satisfying (3.2),
and let F (s, λm) be defined by (4.8). Suppose that PQF = x, (M2+T 2) ≤ x1−θ−6η,
where 1/2 + η < θ ≤ 7/12, and that

max(P, x1−θ) max(Q, x(1−θ)/2) ≤ x(1+θ)/2+2η.

Then (4.6) holds.

Proof. If F > (M2 + T 2), using Lemmas 3 and 7, we have

‖FPQ‖1 ≤ ‖F‖∞‖P‖2‖Q‖2

�
(
M2 + T 2 + P

) 1
2
(
M2 + T 2 +Q

) 1
2 (log x)B

�
(
x1−θ−6η + x(1−θ−6η)/2 max(P,Q)

1
2 + (x/F )

1
2

)
(log x)B

� x1/2−η.
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Otherwise, Lemma 6 yields

(4.16) ‖F‖44 � (M2 + T 2)(log x)B ,

whence

‖FPQ‖1 ≤ ‖P‖2‖Q‖4‖F‖4 = ‖P‖2‖Q2‖1/22 ‖F‖4

�
(
M2 + T 2 + P

) 1
2
(
M2 + T 2 +Q2

) 1
4
(
M2 + T 2

) 1
4 (log x)B

�
(

max(P, x1−θ)
) 1

2
(

max(Q, x(1−θ)/2)
) 1

2x(1−θ−6η)/4(log x)B

� x1/2−η/3. �

We conclude this section with two lemmas that provide bounds of the form (4.1).

Lemma 9. Let z ≥ exp
(

log7/10 x
)

and suppose that for all (t,m) ∈ S, |t| � xB,

0 < |m| � xB. Then, the Dirichlet polynomial

F (s, λm) =
∑

a∈C,Na�F
(a,P(z))=1

λm(a)(Na)−s

satisfies (4.1).

Proof. The lemma can be proved similarly to [2, Lemma 5]—one simply has to
replace the results on Dirichlet L-functions L(s, χ) used in that proof by the corre-
sponding results on Hecke L-functions L(s, λm, C). In particular, we use Coleman’s
zero-free region [5, Theorem 1]. �

Lemma 10. Let xε ≤ F ≤ x, 0 < |m| ≤ x, |t| ≤ x. Then,

(4.17)
∑
a∈C
Na�F

λm(a)(Na)−1/2−it � F 1/2−η,

where η = η(ε) > 0.

Proof. If F > (m2 + t2) the result follows from Lemma 7, and if F ≤ (m2 + t2), we
can apply [5, Theorem 6]. �

4.2. Estimates for polynomials F (s). The estimates from the previous section
provide us with the information needed to satisfy hypothesis (3.7) of Lemmas 1
and 2. The results of the present section, on the other hand, will provide information
of type (3.8).

Let 2 < T ≤ x/4 and let S be a set of real numbers t, |t| ≤ T . Similarly to
Section 4.1, we say that S is well-spaced if |t − t′| ≥ 1 whenever t, t′ ∈ S, and we
define the norm

‖F‖p =


( ∑
t∈S

∣∣F ( 12 + it
)∣∣p )1/p, 1 ≤ p <∞,

sup
t∈S

∣∣F ( 12 + it
)∣∣ , p =∞.

Our first result in this section is an analogue of Lemma 3. It is in fact a corollary
of [2, Lemma 1].
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Lemma 11. Let S be well-spaced, and let F (s) be defined by (3.1) with m = 0.
Also, for an integral ideal a, let d(a) denote the number of distinct ideals with norm
equal to Na. Then

(4.18) ‖F‖22 � (T + F )G log x,

where
G = G(F ) =

∑
Na�F

|c(a)|2d(a)(Na)−1.

Furthermore, if ∣∣F ( 12 + it
)∣∣ ≥ V

for all t ∈ S, then the cardinality of S is bounded by

(4.19) |S| �
(
GF

V 2
+
G3FT

V 6

)
log2 x.

Remark. Using Lemma 11 in place of Lemma 3, we can prove versions of Lemmas 4
and 5 in which the Dirichlet polynomials of the form F (s, λm) have been replaced
by polynomials of the form F (s), (M2 +T 2) has been replaced by T , and the norm
from Section 4.1 has been replaced by the norm defined at the beginning of the
present section. Thus, each time we refer to Lemmas 4 and 5 to satisfy hypothesis
(3.7) of Lemma 1, hypothesis (3.8) will be automatically satisfied as well.

Next, we state variants of Lemmas 6 and 7. The proofs are analogous, but now
the L-function L(s, λm, C) is replaced by ζK(s, C), the zeta-function of the ideal
class C, which has a simple pole at s = 1; hence, the extra terms in the upper
bounds.

Lemma 12. Let

(4.20) F (s) =
∑
a∈C
Na�F

(Na)−s.

Let T ≤ x and F ≤ x. Then,

(4.21) ‖F‖44 � T 2(log x)B + |S|F 2T−4(log x)B + F 2
∑
t∈S

1

1 + |t|4
.

Lemma 13. Let F (s) be defined by (4.20). If F ≥ t2, then∣∣F ( 12 + it, λm
)∣∣� F 1/2

1 + |t|
+ (log x)B .

Lemma 14. Let P (s), Q(s) be Dirichlet polynomials satisfying (3.2), and let F (s)
be given by (4.20). Suppose that PQF = x, that

exp
(

log1/3 x
)
≤ F ≤ x exp

(
− log1/3 x

)
,

that S ⊂ [T/2, T ], and that

exp
(

log1/3 x
)
≤ T ≤ x1−θ,

where 1/2 + η < θ ≤ 7/12. Then (4.6) holds, provided that

max(P, T ) max(Q,T 1/2) ≤ x1−ηT−1.

Proof. The proof is similar to the proof of Lemma 8 with Lemmas 11, 12 and 13 in
place of Lemmas 3, 6 and 7. �
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The final two lemmas of the section are versions of Lemmas 9 and 10. Again,
the changes are due to the pole of ζK(s, C) at s = 1.

Lemma 15. Let z ≥ exp
(

log7/10 x
)

and suppose that for all t ∈ S, we have

exp
(

log1/3 x
)
� |t| � xB. Then the Dirichlet polynomial

F (s) =
∑

a∈C,Na�F
(a,P(z))=1

(Na)−s

satisfies (4.1).

Lemma 16. Let xε ≤ F ≤ x, |t| ≤ x. Then,∑
a∈C
Na�F

(Na)−1/2−it � F 1/2−η +
F 1/2

1 + |t|
,

where η = η(ε) > 0.

5. Asymptotic formulae

In this section we prove asymptotic formulae of the form (2.4) for various choices
of the coefficients c(a). We will frequently have to consider sums of the form∑

A<Np<B

c(p),

and then introduce further prime ideal variables via Buchstab’s identity. When
using only rational primes this leads naturally to sums with conditions expressed
by A < p2 < p1 < B. In our present context we use the ordering of prime ideals
employed by Coleman [6], namely p2 < p1 if Np2 < Np1, or if Np2 = Np1 and
arg(π̂2) < arg(π̂1) where π̂j is the ideal number of pj . With multiple sums it will
become very inconvenient to have conditions of the form:

(5.1) A < Np1, Np2 < B, p2 < p1.

We therefore write, for real A,B, A < p1 < B to mean A < Np1 < B. Thus
(5.1) becomes simply A < p1 < p2 < B—exactly the form used for rational primes.
We will continue to use Np for less complicated expressions, and in places where
its use is unavoidable (for example, later we will need to write (x/N(p1p2p3))

1
2 ).

Furthermore, we will use P(p1) to mean∏
p2<p1

p2,

and we can then define ρ(a, p), S(A, p) and S(B, p) in an analogous fashion to
ρ(a, z), S(A, z) and S(B, z).

We also write w = exp
(

log7/10 x
)

and y1 = x exp
(
− 3 log1/3 x

)
.

Lemma 17. Let 1/2 + η < θ ≤ 7/12, and define

c(a) =
∑

mnl=a
Nm�P,Nn�Q

a(m)b(n)ρ(l, w).

Suppose that a(m), b(n) satisfy (3.2), and that P and Q satisfy the condition

max(P, x1−θ) max(Q, x(1−θ)/2) ≤ x(1+θ)/2.
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Then, (3.12) holds.

Proof. We have

c(a) =
∑
m,n

∑
mnl=a

b|l,b|P(w)

a(m)b(n)µ(b),

where for brevity we have suppressed the size conditions on m and n. We set z = xη

and apply the sieve identity∑
b|l,b|P(w)

µ(b) =
∑

b|l,b|P(w)
Nb<z

µ(b) +O

( ∑
b|l,b|P(w)
z≤Nb<wz

1

)
,

which can be proved similarly to [11, Lemma 15]. We obtain that∑
a

c(a)Ψ(a) =
∑
a

c1(a)Ψ(a) +O

(∑
a

c2(a)Ψ(a)

)
,

where

c1(a) =
∑
m,n

∑
b|P(w)
b<z

∑
mnl=a

l≡0 (mod b)

a(m)b(n)µ(b),

c2(a) =
∑
m,n

∑
b|P(w)
z≤b<wz

∑
mnl=a

l≡0 (mod b)

|a(m)b(n)|.

Hence, it suffices to show that∑
a

c1(a)Ψ(a) =
φy

2πy1

∑
a∈B

c1(a) +O
(
φy exp

(
− (log x)1/4

))
,(5.2)

∑
a

c2(a)Ψ(a) =
φy

2πy1

∑
a∈B

c2(a) +O
(
φy exp

(
− (log x)1/4

))
,(5.3)

∑
a∈B

c2(a) = O
(
y1 exp

(
− (log x)1/4

))
.(5.4)

To prove (5.2), we consider the Dirichlet polynomial

P1(s, λm)Q(s, λm)F1(s, λm),

where

P1(s, λm) =
∑
m

∑
b|P(w)
Nb∼D

a(m)µ(b)λm(mb)(N(mb))−s,

Q(s, λm) =
∑
n

b(n)λm(n)(Nn)−s, F1(s, λm) =
∑

l�FD−1

λm(l)(N l)−s,

with D of the form D = z2−j , 0 ≤ j � log x, and b, l, m, n belonging to fixed ideal
classes. Split the sum on the left-hand side of (5.2) into subsums with Nb ∼ D
and with b, l, m, n in fixed ideal classes with blmn ∈ C. If PQD ≥ xη, we can
apply Lemma 1 to the corresponding subsum. Mean-value estimates of the forms
(3.7) and (3.8) are provided by Lemmas 8 and 14, respectively. If PQD ≤ xη, we
use Lemma 2 and Lemma 8 to satisfy (3.7). Summing the resulting asymptotic
formulae over D and the appropriate ideal classes, we complete the proof of (5.2).
The proof of (5.3) is similar.
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Finally, consider (5.4). Using (3.17), we get

(5.5)
∑
a∈B

c2(a)� y1
∑
m,n

|a(m)b(n)|
N(mn)

∑
b|P(w)
Nb>z

1

Nb
.

Since one can show similarly to [3, Lemma 7] that∑
b|P(w)
Nb≥z

1

Nb
� exp

(
− 0.1η(log x)3/10 log log x

)
,

(5.4) follows from (5.5) and the properties of the coefficients a(m), b(n). �

Lemma 17 is a ‘fundamental lemma’. The next step is to use this lemma to obtain
a similar result in which w is replaced by a larger quantity. We will accomplish this
by means of a combinatorial identity that is a variation of Buchstab’s identity:

(5.6) ρ(l, z1) = ρ(l, z2)−
∑
pb=l

z2≤Np<z1

ρ(b, p) (2 ≤ z2 < z1).

Lemma 18. Let 1/2 + η ≤ θ ≤ 7/12, and define

c(a) =
∑

mnl=a
Nm∼P,Nn∼Q

a(m)b(n)ρ(l, z),

where a(m), b(n) satisfy (3.2). Let 2P = xα, Q = xβ, and let h be the positive
integer satisfying

(5.7) 1/2− h(2θ − 1) ≤ α < 1/2− (h− 1)(2θ − 1).

Define

α∗ = max

(
2h(1− θ)− α

2h− 1
,

2(h− 1)θ + α

2h− 1

)
,

and suppose that

0 ≤ α ≤ 1/2, 0 ≤ β ≤ 1 + θ

2
− α∗ = β∗(α) say.

Then, (3.12) holds whenever z ≤ xν(α), where

(5.8) ν(α) = min

(
2

2h− 1
(θ − α), γ(θ)

)
and γ(θ) is the function appearing on the right side of (4.5).

Notice that ν(α) ≥ 2θ − 1 and that the upper bound for β is ≥ θ/2. We also
remark that for the proof of Theorem 2 we shall take g = 4 in the definition of γ(θ).
This yields γ(θ) = 4θ − 2 for 19/36 ≤ θ ≤ 17/32, in particular for θ = 0.53.

Proof. From (5.6),

c(a) = c′0(a)− c∗(a)
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where

c′0(a) =
∑

mnl=a

a(m)b(n)ρ(l, w),

c∗(a) =
∑

mnp1b1=a
w≤p1<z

a(m)b(n)ρ(b1, p1).

We split c∗(a) into two subsums:

c∗(a) = c′′0(a) + c1(a),

where c′′0(a) and c1(a) are subject to Nm(Np1)1/2 > x1−θ and Nm(Np1)1/2 ≤ x1−θ,
correspondingly. We now use (5.6) to decompose c1(a). In general, if

cj(a) =
∑

mnp1···pjbj=a
w≤pj<···<p1<z

a(m)b(n)ρ(bj , pj)

is subject to

(5.9) N(mp1 · · · pj−1)(Npj)
1/2 ≤ x1−θ,

then (5.6) gives

cj(a) = c′j(a)− c′′j (a)− cj+1(a)

where c′j(a) is obtained from cj(a) by replacing ρ(bj , pj) by ρ(bj , w), and c′′j (a) is
cj+1(a) with condition (5.7) replaced by

N(mp1 · · · pj−1)(Npj)
1/2 ≤ x1−θ < N(mp1 · · · pj)(Npj+1)1/2.

Clearly, this process has to stop after � log x steps, that is, for some j � log x, we
will be left with an empty cj+1(a).

We now show that we can find asymptotic formulae for all sums c′j(a) and c′′j (a).
We consider c′j(a) first. Combining (5.7) and (5.9) by means of a simple argument
(see [3, Lemma 10] for details), we have

N(mp1 · · · pj) ≤ xα
∗
.

As α∗ ≥ 1− θ, we can show that (3.12) holds for c′j(a) by an appeal to Lemma 17
with a(m) replaced by ∑

m,p1,...,pj :(5.9)
w≤pj<···<p1<z

a(m).

To show that c′′j (a) satisfies (3.12) we combine Lemma 1, Lemma 4, and the Remark
after Lemma 11. In the application of Lemma 4, P (s, λm) is obtained by grouping
the variables m, p1, . . . , pj , F (s, λm) corresponds to the summation over pj+1, and
Q(s, λm) comes from grouping the remaining variables. The restriction to dyadic
ranges is not a problem. Inequalities (4.4) and (4.5) follow from the hypotheses of
the lemma and an elementary argument (cf. [3, Lemma 11]), and Lemma 9 provides
the ‘local bound’ (4.1). Thus, Lemma 4 would be applicable if the summation
variables in the polynomials P (s, λm), Q(s, λm), and F (s, λm) were independent of
each other (which unfortunately they are not). We complete the proof of the lemma
by showing how one can use Perron’s formula to remove the interdependencies
between the variables at the cost of multiplying the bounds for some error terms
by a factor of (log x)B .
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Suppose that the summation condition pj+1 < pj and the weight ρ(bj+1, pj+1)
are the only relations between variables that need to be removed (additional sum-
mation conditions can be removed by reiterating the same procedure). We have

ρ(bj+1, pj+1) =
∑

l|(bj+1,P(pj+1))

µ(l) = 1−
∑

2≤p<pj+1

∑
l|P(p)

µ(l),

so we really need to worry only about inequalities like pj+1 < pj . Using Perron’s
formula [9, eq. (15)], we obtain

c′′j (a) =
1

π

∫ Y

−Y

∑
m,n

∑
p1,...,pj ,bj+1

∑∗

pj+1

mnp1···pj+1bj+1=a

a(m)b(n)d(pj , u)(Npj+1)iu
du

u
+O(x−2),

where Y = xB , d(pj , u) � min(1, |u|)(log x)B , and the asterisk means that the
condition pj+1 < pj has been removed. Assume that the last sum is free of unwanted
dependencies between the variables. The contribution from |u| < Y −1 can be
estimated trivially as O(x−2), so it suffices to establish that (3.7) holds for the
Dirichlet polynomial corresponding to the coefficients

c∗j (a) =
1

π

∫ U

U/2

∑
m,n

∑
p1,...,pj ,bj+1

∑∗

pj+1

mnp1···pj+1bj+1=a

a(m)b(n)d(pj , u)(Npj+1)iu
du

u
,

where Y −1 ≤ |U | ≤ Y . Let c∗j (a, u) denote the integrand in the definition of c∗j (a).
For each fixed u, we can use Lemmas 1, 4, and 9 as we intended initially, since
the Dirichlet polynomial corresponding to c∗j (a, u) is of the form P (s)Q(s)F (s− iu)
with P , Q, and F as desired. (It is crucial for this step that the hypotheses of
Lemma 9 do not include a lower bound for the imaginary parts of the elements
of S.) By interchanging the order of averaging over (m, t) and u, we see that the
sequence c∗j (a) satisfies hypothesis (3.7) of Lemma 1.

In order to show that c∗j (a) satisfies (3.8), we need to work more carefully. After
interchanging the integrations over t and u, we partition [T0, T1] into two subsets:

E1(u) =
{
t : |t− u| ≤ exp

(
B(log x)1/4

)}
, E2(u) = [T0, T1]− E1(u).

We can estimate the contribution from E1(u) as before, using Lemma 15 to sat-
isfy (4.1). Let R(s, u) be the Dirichlet polynomial with coefficients c∗j (a, u). The
contribution from E2(u) is

(5.10) �
∫∫ ∣∣∣R( 12 + it, u0

)∣∣∣dtdu
u
,

where u0 ∈ [U/2, U ] is fixed and the integration is over t and u subject to

U/4 ≤ t, u ≤ 2U, |t− u| ≤ exp
(
B(log x)1/4

)
.

We now observe that if we replace (4.1) by the weaker hypothesis

‖F‖∞ � x1/2(log x)B

(which is a direct corollary from (3.2)), we can prove a version of Lemma 4 in which
the right side of (4.6) is replaced by x1/2(log x)B . Hence, the integral in (5.10) is

� T−10 exp
(
B(log x)1/4

)
x1/2(log x)B � x1/2 exp

(
−B(log x)1/4

)
.

This completes the proof that c∗j (a) satisfies (3.8). �
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6. The final decomposition

Write

z(n) = xν(α) where 2j ≤ Nn < 2j+1 = xα.

Also, put ν0 = 2θ − 1, z0 = xν0 . Our initial Buchstab decomposition is as follows:

S(A, x1/2) = S(A, z0)−
∑

z0≤p<x1/2

S(Ap, z(p)) +
∑

z(p1)≤p2<p1<x1/2

S(Ap1p2 , p2)

= S1 − S2 + S3 say.

By Lemma 18 we can give an asymptotic formula for S1 and S2. We can also give
an asymptotic formula for those parts of S3 with Np2 < z(p1p2). To consider the
remainder of S3 we introduce a device familiar from the method applied to rational
primes (see [1, 2, 3, 9]). We start by writing Npj = xαj . Then, using techniques
analogous to the rational prime case (with the Prime Ideal Theorem replacing
the Prime Number Theorem) we may convert sums over primes to integrals. For
example, ∑

z0≤p2<p1<x
1/2

p1p
2
2<x

S(Bp1p2 , p2) = S(B, x1/2)(I + o(1)),

where

I =

∫ 1
2

ν0

∫ min(α1,
1
2 (1−α1))

ν0

w

(
1− α1 − α2

α2

)
dα2dα1

α1α2
2

and w(t) is Buchstab’s function, which is defined for t ≥ 1 as the continuous solution
of the differential delay equation{

w(t) = 1/t if 1 ≤ t ≤ 2,

(tw(t))′ = w(t− 1) if t > 2.

From this definition it follows that

w(t)


= 1/u if 1 ≤ u ≤ 2,

= (1 + log(u− 1))/u if 2 ≤ u ≤ 3,

≤ 1
3 (1 + log 2) if u ≥ 3.

Our method ensures that we will only ever be concerned with upper bounds for
integrals, so we can use the above approximation to w(u) where appropriate.

The expressions which will usually arise in the following have the form

(6.1)
∑

mj∼xαj
S(Am1...mn ,mn),

where all the prime factors of each mj exceed z0, and there may be certain inter-
dependencies between the variables. We write

Gn = {(α1, . . . , αn) ∈ Rn : an asymptotic formula can be obtained for (6.1)}.

In addition we let

D = {(α, β) : ν0 ≤ α ≤ 1
2 , ν0 ≤ β ≤ β

∗(α)}.

The significance of D (D for ‘decomposable’) is that if we have a sum of the form
(6.1) and we can partition α1, . . . , αn into two sets whose sums are α, β with (α, β) ∈
D then we can apply Buchstab’s identity followed by Lemma 18. Usually we will
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need to do this twice, so we want to be able to partition α1, . . . , αn, γ into two sets
whose sums are (α, β) ∈ D for all γ ∈ [ν0, αn].

We treat S3 by considering (α1, α2) belonging to the following disjoint sets whose
union is {(α1, α2) : ν0 ≤ α1 ≤ 1

2 , ν(α1) ≤ α2 ≤ α1}:

T1 = {(α1, α2) : 1
3 ≤ α1 ≤ 1

2 , (1− α1)/2 ≤ α2 ≤ α1};
T2 = {(α1, α2) : θ/2 ≤ α1 ≤ 1− θ, θ/2 ≤ α2 ≤ min(α1, (1− α1)/2)};
A1 = {(α1, α2) : ν0 ≤ α1 ≤ 1

4 , ν(α1) ≤ α2 ≤ α1};
A2 = {(α1, α2) : 1

4 < α1 ≤ 2
5 , ν(α1) ≤ α2 ≤ (1− α1)/3};

A3 = {(α1, α2) : 2
5 < α1 ≤ 1

2 , ν(α1) ≤ α2 ≤ α1/2};
B1 = {(α1, α2) : 1

4 ≤ α1 ≤ 2
5 , (1− α1)/3 < α2 ≤ min(θ/2, α1, 1− 2α1)};

B2 = {(α1, α2) : (2− θ)/4 ≤ α1 ≤ 1
2 ,

max(1− 2α1, α1/2) < α2 ≤ min(θ/2, (1− α1)/2)}.

Region T1 corresponds to products p1p2 with p2 < p1 < x1/2. As the trivial
estimate for the number of such products in B is O(y1(log x)−2), discarding T1 will
not affect the final bound. Although it is possible to apply Buchstab’s identity
twice more to a large part of region T2 (using a two-dimensional sieve as in [3]),
we lose practically nothing in discarding the whole set. The problem which arises
is that one considers products of three prime ideals p1p2p3 counted by S(Ap1p2 , p2)
and one has to decompose both p1 and p3. A large proportion of the resulting
sums is inaccessible to our methods for obtaining asymptotic formulae, and so
the ensuing four-dimensional loss exceeds the original two-dimensional loss. We
therefore discard a sum of size

φy

2π
δS(B, x 1

2 )(1 + o(1))

where

(6.2) δ =

∫
(α1,α2)∈T2

dα2dα1

α1α2(1− α1 − α2)
< 0.2 at θ = 0.53.

The reader should note that both the regions B1 and B2 correspond to products
of three prime ideals and (α1, α2) ∈ B1 ⇔ (1 − α1 − α2, α2) ∈ B2. It therefore
suffices to consider only one of these regions during the calculations.

Now suppose that R is any subset of Aj or Bk. We will show that it is always
possible to apply Buchstab’s identity twice more to a sum

(6.3)
∑

(α1,α2)∈R

S(Ap1p2 , p2).

Since α2 ≤ θ/2 and α1 ≤ 1
2 we can decompose (6.3) as

(6.4)
∑

(α1,α2)∈R

S(Ap1p2
, z(α1, α2))−

∑
(α1,α2)∈R

ν(α1,α2)≤α3≤α2

S(Ap1p2p3
, p3).

Here
ν(α1, α2) = max(ν(α1), ν(α1 + α2)), z(α1, α2) = xν(α1,α2),

with the convention that ν(γ) = 0 for γ > 1
2 . Now Lemma 18 gives an asymptotic

formula for the first sum in (6.4). To consider the second sum we split into two
cases. If α1 + α3 ≤ 1

2 or α2 + α3 ≤ β∗(α1) (call this case F1 for future reference)
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then we can apply Buchstab’s identity once more in a straightforward fashion. On
the other hand, if α1 + α3 >

1
2 and α2 + α3 > β∗(α1) (we will call this region

F2 for future reference) we reverse the rôles of two of the ideals. To be explicit,
S(Ap1p2p3

, p3) counts products of ideals p1p2p3m with p|m ⇒ p > p3. We can
represent this by

S(Ap2p3m, (x/N(p2p3m))1/2).

we now have N(p2m) < x1/2 and Np3 ≤ xθ/2. We can therefore apply Buchstab’s
identity and use Lemma 18. We thus have (with Nm ∼ x1−α1−α2−α3)∑

(α1,α2)∈R
ν(α1,α2)≤α3≤α2

S(Ap1p2p3
, p3)(6.5)

=
∑

(α1,α2,α3)∈F1

S(Ap1p2p3
, p3) +

∑
(α1,α2,α3)∈F2

S(Amp2p3
, (Np2p3m)1/2)

=
∑

(α1,α2,α3)∈F1

S(Ap1p2p3
, z0) +

∑
(α1,α2,α3)∈F2

S(Amp2p3
, z0)

−
∑

(α1,α2,α3)∈F1

ν0≤α4≤α3

S(Ap1p2p3p4
, p4)−

∑
(α1,α2,α3)∈F2

ν0≤α4≤α1/2

S(Amp2p3p4 , p4).

We give asymptotic formulae for the first two sums on the right hand side of (6.5) by
Lemma 18 as indicated above, and possibly for some part of the final two sums we
have (α1, . . . , α4) ∈ G4. Taking into account the possibility that the losses from the
final sums in (6.5) may be larger than the losses from the original two-dimensional
sum, we are left with a corresponding loss

(6.6)

∫
R

min

(
w

(
1− α1 − α2

α2

)
1

α2
, I1(α1, α2) + I2(α1, α2)

)
dα2dα1

α1α2
.

Where

I1(α1, α2) =

∫
R1

w

(
1− α1 − α2 − α3 − α4

α4

)
dα4dα3

α3α2
4

,

I2(α1, α2) = α1

∫
R2

w

(
α1 − α4

α4

)
w

(
1− α1 − α2 − α3

α3

)
dα4dα3

α2
3α

2
4

,

with

R1 = {(α1, . . . , α4) /∈ G4 : (α1, α2, α3) ∈ F1, ν0 ≤ α4 ≤ α3},
R2 = {(α1, . . . , α4) /∈ G4 : (α1, α2, α3) ∈ F2, ν0 ≤ α4 ≤ α1/2}.

Now, (6.6) may already be starting to look a little ungainly, but we can repeat the
ideas used so far and introduce other possibilities to reduce the size of the integral.
Rather than expand (6.6) explicitly (thus sparing the reader a very complicated
expression!) we mention the main two devices for reducing the proportion of S3

discarded.
1) Further decompositions. So long as (α1, . . . , α4, γ) ∈ D for all γ ∈ [ν0, α4] we can
perform two more decompositions to arrive at a six-dimensional integral. Indeed, we
can perform even more Buchstab decompositions for parts of the resulting sums.
The contribution from 8 or more decompositions is extremely small even before
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removing the contribution from (α1, . . . , α8) ∈ G8. This can be seen by noting that∫ λ

ν0

∫ α1

ν0

. . .

∫ α7

ν0

dα8 . . . dα1

α2
8 . . . α1

≤ log8(λ/ν)

8!ν0
.

((8!ν0)−1 ≈ 4.13× 10−4 for θ = 0.53).
2) Expanding S(Ap1...pn , pn). We can make explicit the almost-primes counted by
the sifting function S(Ap1...pn , pn) using Buchstab’s identity in reverse:

S(Ap1...pn , pn) = S(Ap1...pn , (x/Np1 . . . pn)1/2)+∑
pn<pn+1<(x/Np1...pn)1/2

S(Ap1...pn+1
, pn+1).(6.7)

We would only be applying this technique if we could not give an asymptotic formula
for the left hand side of (6.7), so we cannot give a formula for the first term on the
right hand side. However, we may be able to give a formula for some of the second
sum. Clearly we could apply the technique again to this term.

Working in this way leads to the following results for θ = 0.53:

Region Upper bound for loss
A1 0.063
A2 0.183
A3 0.25
B1 0.12
B2 0.12

Combining this with (6.2) gives an overall loss no more than 0.936. Since the loss
is a continuous function of θ, we obtain∑

p∈A
1 ≥ φy

20 log x

for all θ ≥ 0.53− 2ε and for all x > x0(ε), which completes the proof.
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