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Abstract. We obtain new results concerning the simultaneous distribution

of prime numbers in arithmetic progressions and in short intervals. For ex-
ample, we show that there is an absolute constant δ > 0 such that ‘almost

all’ arithmetic progressions a mod q with q ≤ xδ and (a, q) = 1 contain prime

numbers from the interval (x− x0.53, x].

1. Introduction

It is an old problem in number theory to find the least h = h(x) such that the
interval (x − h, x] contains a prime number for all sufficiently large x. The first
non-trivial result in this direction was obtained by Hoheisel [8] who proved that if

h = x1−(3300)
−1

,

(1.1) π(x)− π(x− h) ∼ h(log x)−1 as x→∞,

π(x) being the number of primes ≤ x. There have been numerous improvements
on Hoheisel’s result, and it is now known that (1.1) holds for x7/12 ≤ h ≤ x, as
proven by Heath-Brown [7]. Furthermore, by pursuing a lower bound of the form

(1.2) π(x)− π(x− h)� h(log x)−1

instead of an asymptotic formula, one can introduce sieve ideas and prove the
existence of prime numbers in intervals (x− h, x] of even smaller length. The best
known result in this direction is due to Baker, Harman and Pintz [3] who established
(1.2) with h = x0.525.

In this paper, we seek similar results for primes in arithmetic progressions. Let
π(x; q, a) be the number of primes p ≤ x with p ≡ a (mod q). If q ≤ (log x)A

for some fixed A > 0, the machinery used to prove results of the forms (1.1) or
(1.2) can be adjusted to produce similar estimates for π(x; q, a)−π(x−h; q, a). For
example, Baker, Harman and Pintz [2, Theorem 3] showed that if q ≤ (log x)A,
(a, q) = 1 and x11/20+ε ≤ h ≤ x(log x)−1, then

(1.3) π(x; q, a)− π(x− h; q, a)� h

φ(q) log x
.

For larger moduli, however, such estimates seem to be beyond the reach of present
methods. The first result for such moduli was obtained by Jutila [11]. Let Λ(n) be
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von Mangoldt’s function. Jutila proved that

(1.4)
∑
q≤Q

max
(a,q)=1

max
h≤z

max
x/2≤y<x

∣∣∣∣∣∣∣∣
∑

y−h<n≤y
n≡a (mod q)

Λ(n)− h

φ(q)

∣∣∣∣∣∣∣∣�
z

(log x)A

for any A > 0 and Q ≤ z2/5x−1/4−ε. Subsequently, a number of authors improved
on Jutila’s result, showing that (1.4) holds for smaller values of z and/or larger
values of Q (see [10, 14, 15, 16, 18, 19]). Currently, (1.4) is known if

(1.5) x3/5+ε ≤ z ≤ x, Q ≤ zx−1/2(log x)−B(A),

or

(1.6) x7/12+ε ≤ z ≤ x, Q ≤ zx−11/20−ε.

The former result was obtained independently by Perelli, Pintz and Salerno [15]
and by Timofeev [19], while the latter is due to Timofeev [19].

It follows from (1.4) that the analogue of (1.1) for primes in arithmetic progres-
sions is true for ‘almost all’ moduli q ≤ Q (i.e., for all but O

(
Q(log x)−A

)
moduli

q ≤ Q). Furthermore, (1.4) includes (via the term q = 1) a statement of the form
(1.1), so any version of (1.4) with z = x7/12−ε would represent an improvement on
the aforementioned result by Heath-Brown [7]. Such a result seems to be out of the
reach of present methods, but we will show in this paper that one can adjust the
ideas used to obtain results of the form (1.2) to prove that (1.3) holds for ‘almost
all’ moduli q ≤ Q when z and Q are subject to (1.9) below. Our method shares
many features with the method used in [1, 2, 3] to deal with primes in short inter-
vals, but unlike [3] we cannot reach intervals of length x0.525 due to the lack of an
analogue for Dirichlet L-functions of Watt’s mean-value theorem [20].

Given an arithmetic function f(n), let us define

(1.7) Ef (y, h; q, a) =
∑

y−h<n≤y
n≡a (mod q)

f(n)− hh−10

φ(q)

∑
y−h0<n≤y

f(n),

where x/2 ≤ y < x and h0 = x exp
(
−3(log x)1/3

)
. Then, our main result reads as

follows.

Theorem. There is an arithmetic function λ(n) with the following properties:

(i) if n is an integer in [2, x), then

λ(n) ≤

{
1 if n is prime,

0 otherwise;

(ii) if x/2 ≤ y < x and h0 = x exp
(
−3(log x)1/3

)
, then

(1.8)
∑

y−h0<n≤y

λ(n)� h0
log x

;

(iii) there is an absolute constant δ > 0 such that if Eλ(y, h; q, a) is defined by
(1.7) with f(n) = λ(n), and if

(1.9) x0.53 ≤ z ≤ x, Q ≤ zx−0.53+δ,
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then for any A > 0

(1.10)
∑
q≤Q

max
(a,q)=1

max
h≤z

max
x/2≤y<x

|Eλ(y, h; q, a)| � z

(log x)A
,

with an implied constant depending at most on A.

Remark 1. The absolute constant δ in the statement of the Theorem can be taken
equal to 0.002 based on work by Lewis [12].

Remark 2. Our methods also yield a function λ(n) which is an upper bound for
the characteristic function of the set of primes and satisfies an inequality opposite
to (1.8), and for which (1.10) holds whenever Q ≤ zx−1/2−ε We, however, do not
pursue this, as it is superseded by the Brun–Tichmarsh inequality; see, for example,
[5, Section 3.4].

Notation. Throughout the paper ε will be a fixed sufficiently small positive number.
We reserve the letter p, with or without indices, for prime numbers; q is reserved
to denote moduli of arithmetic progressions or Dirichlet characters. The letter B
denotes an absolute constant, not necessarily the same in each occurrence; similarly,
η denotes a positive constant, sufficiently small in terms of ε, whose value can change
between two appearances. We write n ∼ N for the condition N/2 ≤ n < N and
n � N for the condition c1N ≤ n < c2N , where c1 and c2 are some absolute
constants. We shall use the following arithmetic functions:

d(n): the number of positive divisors of n;
µ(n): the Möbius function;
ψ(n,w): for real w ≥ 2, we define

(1.11) ψ(n,w) =

{
1 if n has no prime divisor ≤ w,
0 otherwise;

χ0(n): the trivial character with χ0(n) = 1 for all n.

We also write L = log x and Ψ(T ) = min
(
zx−1/2, x1/2T−1

)
. We use

∑
χ mod q

and∑∗
χ mod q

to denote, respectively, summations over all and over the primitive Dirichlet

characters modulo q; when the modulus q is clear from the context, we write simply∑
χ

and
∑∗
χ

. Also, if χ is a Dirichlet character, we define δ(χ) to be equal to 1 or 0

according as χ is principal or not.

2. Dirichlet polynomials

In this section we collect some general results on mean and large values of Dirich-
let polynomials

(2.1) N(s, χ) =
∑
n�N

bnχ(n)n−s,

where χ is a Dirichlet character. Notice that we use the same letter to denote the
polynomial and its length—this will allow us to shorten the statements of some
lemmas.

If T is a set of triples (t, q, χ) with |t| ≤ T , q ∼ Q and χ a primitive character
modulo q, we say that T is well-spaced if |t − t′| ≥ 1 for every two distinct triples
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(t, q, χ) and (t′, q, χ) in T. Similarly, we say that a set of real numbers T is well-
spaced if |t− t′| ≥ 1 for every two distinct elements t and t′ of T. Since we want to
work with both kinds of well-spaced sets simultaneously, we identify a number t in
a well-spaced set of the latter kind with the triple (t, 1, χ0), and we say that a set
T of such triples corresponds to principal characters.

Given a well-spaced set T we define the following norms on the Dirichlet poly-
nomials N(s, χ) of the form (2.1):

‖N‖p =


( ∑

(t,q,χ)∈T

∣∣N( 1
2 + it, χ)

∣∣p )1/p if 1 ≤ p <∞,

sup
(t,q,χ)∈T

∣∣N( 1
2 + it, χ)

∣∣ if p =∞.

Lemma 1. Let T be well-spaced and let N(s, χ) be defined by (2.1). Then,

(2.2) ‖N‖22 � (N +Q2T )GL ,

where

G = G(N) =
∑
n�N
|bn|2n−1.

Furthermore, if ∣∣N( 1
2 + it, χ)

∣∣ ≥ V
for all (t, q, χ) ∈ T, then the cardinality of T is bounded by

(2.3) |T| �
(
NV −2 +G2Q2TNV −6

)
GL 2.

Proof. Inequality (2.2) is a special case of [13, Theorem 7.3]. The second part of
the lemma can be deduced from [13, Theorem 8.2] by Huxley’s dissection method
(see [9, Section 2], for example). �

The next lemma is an analogue of [2, Theorem 4] and [3, Lemma 9]. We omit
its proof, since it is similar to the proofs of those results (using Lemma 1 in place
of [2, Lemma 1]). Similarly, Lemma 3 is a version of [2, Lemma 3].

Lemma 2. Let T be a well-spaced set and define

M(s, χ) =
∑
m�M

amχ(m)m−s, N(s, χ) =
∑
n�N

bnχ(n)n−s,(2.4)

K(s, χ) =
∑
k�K

ckχ(k)k−s,

where KMN � x and the coefficients am, bn, ck satisfy

(2.5) |am| ≤ d(m)B , |bn| ≤ d(n)B , |ck| ≤ d(k)B .

Suppose that Q ≤ zx−θ−η where 1/2 + ε ≤ θ ≤ 7/12. Let g be a positive integer,
and suppose that

(2.6) 1 ≤M/N � x2θ−1, K � xγ ,

where

(2.7) γ = min

(
4θ − 2,

(8g − 4)θ − (4g − 3)

4g − 1
,

24gθ − (12g + 1)

4g − 1

)
.

Suppose also that for any A > 0 K(s, χ) satisfies

(2.8) ‖K‖∞ � QK1/2L −A.
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Then, for any A > 0

(2.9) Ψ(T )‖KMN‖1 � QzL −A,

with an implied constant depending at most on A, g, ε and η. Furthermore, without
assumption (2.8), we have

(2.10) Ψ(T )‖KMN‖1 � QzL B .

Lemma 3. Let T be a well-spaced set, let K(s, χ), M(s, χ) and N(s, χ) be defined
by (2.4) with coefficients am, bn, ck satisfying (2.5), and let R(s, χ) be defined
similarly. Suppose that KMNR � x and that K(s, χ), N(s, χ) and R(s, χ) satisfy
condition (2.8). Suppose also that Q ≤ zx−θ−η where 1/2 + ε ≤ θ ≤ 7/12. Then,
for any A > 0,

(2.11) Ψ(T )‖KMNR‖1 � QzL −A,

provided that any of the following sets of conditions holds:

(i) M � x1−θ, N � x(1−θ)/2, R� x(1−θ)/4, K � x2(1−θ)/7;
(ii) M � x1−θ, N � x(1−θ)/2, R� x(1−θ)/3, K � x2(1−θ)/11;
(iii) M � x1−θ, N � x(1−θ)/3, R2K � x1−θ, K � x2(1−θ)/5;
(iv) M � x1−θ, N � x(1−θ)/3, R� x(1−θ)/3, NR� x4(1−θ)/7,

KNR� x14(1−θ)/13.

Lemma 4. Let T be a well-spaced set and define M(s, χ), N(s, χ) by (2.4) with
MN � x and with coefficients am, bn satisfying (2.5). Suppose that

Q ≤ zx−1/2−η, max(M,N) ≤ zx−η.
Then, for any A > 0

(2.12) Ψ(T )‖MN‖1 � QzL −A + zL B ,

with an implied constant depending at most on A and η.

Proof. We start by dividing T into O(L 2) subsets S such that

(2.13)
∣∣M( 1

2 + it, χ)
∣∣ �Mσ1 ,

∣∣N( 1
2 + it, χ)

∣∣ � Nσ2 ,

for all (t, q, χ) ∈ S. By (2.2),

|S| �
(
M1−2σ1 +Q2TM−2σ1

)
L B ,

|S| �
(
N1−2σ2 +Q2TN−2σ2

)
L B .

Hence,

|S| �
(
M1−2σ1 +Q2TM−2σ1

)1/2 (
N1−2σ2 +Q2TN−2σ2

)1/2
L B

�M−σ1N−σ2
(
x1/2 +QT 1/2 max(M,N)1/2 +Q2T

)
L B .

The lemma follows from this inequality and (2.13). �

Lemma 5. Let T be a well-spaced set and define

(2.14) K(s, χ) =
∑
k∼K

χ(k)k−s,

where K � QT . Suppose that Q ≤ T and, if T corresponds to principal characters,
suppose also that T/2 ≤ |t| ≤ T for all (t, 1, χ0) ∈ T. Then,

(2.15) ‖K‖44 � Q2TL 8.



6 A. KUMCHEV

Proof. We recall the truncated Perron formula

(2.16)
1

2πi

∫ b+iT

b−iT
us
ds

s
= E(u) +O

(
ub

T | log u|

)
,

where b > 0 and E(u) is 0 or 1 according as 0 < u < 1 or u > 1. Assuming, as we
can, that (K − 1

4 ) ∈ Z, we deduce from (2.16) that

K(s, χ) =
1

2πi

∫ c+iT1

c−iT1

L(w + s, χ)
(2K)w −Kw

w
dw +O(K1/2T−1L ).

where s = 1
2 + it, c = 1

2 + L −1 and T1 = 2T . We now use the rectangular contour
with vertices ±iT1, c ± iT1 to move the integration to the line Imw = 0. By [17,
Theorem 3] with η = L −1,

L(σ + it, χ)� (q(|t|+ 2))(1−σ)/2L ,

whenever 0 ≤ σ ≤ 1 and χ is a primitive character modulo q. Hence, the contribu-
tion from the horizontal segments is

� max
0≤σ≤c

(
(QT )(1−2σ)/4KσT−1L

)
�
(
T−1/2 +K1/2T−1

)
L � L .

Moreover, the integrand is regular inside the contour except for a possible simple
pole at w = 1

2 − it with residue � δ(χ)K1/2(1 + |t|)−1. Thus,

(2.17)
∣∣K( 1

2 + it, χ)
∣∣� J1(t, χ) + L +

δ(χ)K1/2

1 + |t|
,

where for v ≥ 0,

Jv(t, χ) =

∫ T1

−T1

∣∣L( 1
2 + i(t+ τ), χ)

∣∣v dτ

1 + |τ |
.

We now raise (2.17) to fourth power, sum the resulting estimate over the elements
of T, and use Hölder’s inequality to get

‖K‖44 � L 3
∑

(t,q,χ)∈T

J4(t, χ) + |T|L 4 +K2
∑

(t,q,χ)∈T

δ(χ)

1 + |t|4
.

Since ∑
(t,q,χ)∈T

J4(t, χ)� L
∑
q∼Q

∑∗

χ

∫ 2T1

−2T1

∣∣L( 1
2 + iu, χ)

∣∣4du,
we can now refer to [13, Theorem 10.1] to complete the proof. �

Lemma 6. Let χ be a Dirichlet character modulo q and define K(s, χ) by (2.14).
Then,

K
(
1
2 + it, χ

)
� δ(χ)K1/2τ−1 +K−1/2(qτ)1/2 log(qτ),

where τ = |t|+ 2.

Proof. This follows from [4, Theorem 1] by partial summation. �

Lemma 7. Let T be a well-spaced set, let K(s, χ) be defined by (2.14), and let
M(s, χ), N(s, χ) be defined by (2.4) with coefficients am, bn subject to (2.5). Sup-
pose that KMN � x, Q ≤ min

(
zx−θ−η, T

)
where 1/2 + ε ≤ θ ≤ 7/12. Suppose

also that

(2.18) max
(
M,Qx1−θ

)
max

(
N,Q1/2x(1−θ)/2

)
≤ Q3/2x(1+θ)/2.
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Furthermore, if T corresponds to principal characters, suppose that MN ≥ xη and
that |t| ≥ exp

(
L 1/3

)
for all triples (t, 1, χ0) ∈ T. Then, for any A > 0

Ψ(T )‖KMN‖1 � QzL −A,

the implied constant depending at most on A, ε and η.

Proof. First, suppose that T does not correspond to principal characters. If K ≤
QT , Lemma 5 yields ‖K‖44 � Q2TL 8, whence

‖KMN‖1 ≤ ‖M‖2‖N‖4‖K‖4 = ‖M‖2‖N2‖1/22 ‖K‖4

�
(
Q2T +M

)1/2(
Q2T +N2

)1/4(
Q2T

)1/4
L B .

If K > QT , combining Lemmas 1 and 6, we get

‖KMN‖1 ≤ ‖K‖∞‖M‖2‖N‖2

�
(
Q2T +M

)1/2(
Q2T +N

)1/2
L B .

Now, suppose that T corresponds to principal characters. We split it into O(L )
subsets S such that U ≤ |t| ≤ 2U for all (t, 1, χ0) ∈ S. We estimate the contribu-
tion of each individual S as before. If K ≤ U , by Lemma 5,

‖KMN‖1 ≤ ‖M‖2‖N‖4‖K‖4 = ‖M‖2‖N2‖1/22 ‖K‖4

�
(
U +M

)1/2(
U +N2

)1/4
U1/4L B

�
(
T +M

)1/2(
T +N2

)1/4
T 1/4L B .

On the other hand, if K > U , Lemmas 1 and 6 give

‖KMN‖1 ≤ ‖K‖∞‖M‖2‖N‖2

�
(
U +M

)1/2(
U +N

)1/2
(K1/2U−1 + 1)L B

� x1/2T
−1/3
0 +

(
T +M

)1/2(
T +N

)1/2
L B ,

where T0 = exp
(
L 1/3

)
. �

The next lemma is a consequence of the Siegel–Walfisz theorem. Its proof can
be found in [2, Lemma 5].

Lemma 8. Let χ be a character modulo q, q ≤ L C with C fixed, and let t be real
with

(2.19) δ(χ) exp
(
L 1/4

)
≤ |t| ≤ xB .

Then, for any A > 0 ∑
k∼K

ψ(k,w)χ(k)k−1/2−it � K1/2L −A,

where w ≥ exp
(
L 9/10

)
, ψ(k,w) is defined by (1.11), and the implied constant

depends at most on A and C.
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3. Sieve estimates

Given an arithmetic function f(k) and a Dirichlet character χ(k), define

(3.1) Ef (y, h;χ) =
∑

y−h<k≤y

f(k)χ(k)− δ(χ)hh−10

∑
y−h0<k≤y

f(k).

In this section we prove inequalities of the form

(3.2)
∑
q∼Q

∑∗

χ

max
h≤z

max
y∼x
|Ef (y, h;χ)| � QzL −A,

when f(k) is a special kind of convolution.

Lemma 9. Let

(3.3) c(k) =
∑

mn`=k
m�M,n�N

ambnψ(`, w),

where w = exp
(
L 9/10

)
, ψ(`, w) is defined by (1.11), and the coefficients am, bn

are subject to (2.5). Suppose that Q ≤ zx−θ−η with 1/2 + ε ≤ θ ≤ 7/12. Suppose
also that M , N satisfy

(3.4) max
(
M,Qx1−θ

)
max

(
N,Q1/2x(1−θ)/2

)
≤ Q3/2x(1+θ)/2.

Then, (3.2) holds for f(k) = c(k) and any A > 0; the implied constant depends at
most on A, ε and η.

Proof. We start by writing

(3.5) c(k) =
∑
m,n

∑
mn`=k

d|`,d|P (w)

ambnµ(d),

where we have suppressed the conditions on m and n for brevity. We aim to express
the right side of (3.5) as a linear combination of O(L ) similar convolutions for each
of which (3.2) follows from Lemmas 4 or 7. We proceed differently according as
Q = 1, 1 < Q ≤ L A+B , or Q ≥ L A+B .

Case 1. Q ≥ L A+B . By a simple splitting-up argument, it suffices to consider
functions c(k) for which d ∼ D on the right side of (3.5). We consider three
subcases.

Case 1.1. MD ≤ Qx1−θ. Introducing in (3.5) new summation variables u = md,
v = `d−1, we can write c(k) in the form

(3.6) c(k) =
∑
nuv=k

u�U,n�N

a′ubn,

where U = MD and the new coefficients a′u satisfy (2.5). Assuming, as we can,
that both y and y − h belong to Z + 1

2 , we combine (3.6) and (2.16) to get

(3.7)
∑

y−h<k≤y

c(k)χ(k) =
1

2πi

∫ 1
2+ix

1
2−ix

S(s, χ)
ys − (y − h)s

s
ds+O

(
xη
)
,

where

S(s, χ) = N(s, χ)U(s, χ)V (s, χ),
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with

U(s, χ) =
∑

u�MD

a′uχ(u)u−s, V (s, χ) =
∑

v�x/(MDN)

χ(v)v−s,

and N(s, χ) given by (2.4). Hence,

(3.8) max
h,y
|Ec(y, h;χ)| � L max

Q≤T≤x
Ψ(T )

∫ T

−T

∣∣S( 1
2 + it, χ)

∣∣dt+ xη.

We now apply Lemma 7 to S(s, χ) with U(s, χ) and V (s, χ) in place of M(s, χ)
and K(s, χ) in that lemma. We get

(3.9) max
Q≤T≤x

Ψ(T )
∑
q∼Q

∑∗

χ

∫ T

−T

∣∣S( 1
2 + it, χ)

∣∣dt� QzL −A,

which in combination with (3.8) completes the proof of (3.2).

Case 1.2. M ≥ Qx1−θ. We use (3.7) with

S(s, χ) = M(s, χ)V (s, χ),

where M(s, χ) is defined by (2.4) and V (s, χ) corresponds to a new summation
variable v = nd`. Using (3.4), we can readily verify the hypotheses of Lemma 4, so
from (2.12),

max
Q≤T≤x

Ψ(T )
∑
q∼Q

∑∗

χ

∫ T

−T

∣∣S( 1
2 + it, χ)

∣∣dt� QzL −A,

which completes the proof.

Case 1.3. M ≤ Qx1−θ ≤MD. In this case, our idea is to use that d is composed
of small primes to write d = d1d2 with d1 such that Qx1−θ−η � Md1 � Qx1−θ;
we then proceed as in Case 1.2 with M(s, χ) and V (s, χ) corresponding the new
variables u = md1 and v = nd2`.

We have c(k) =
∑J
j=1 cj(k), with J ≤ L and

cj(k) =
∑
m,k

∑
p1,...,pj

mnp1···pj`=k

ambn(−1)j ,

where p1, . . . , pj are subject to

pj < · · · < p1 < w, D < p1 · · · pj ≤ 2D, p1 · · · pjM ≥ Qx1−θ.

Let r be the greatest integer such that pr · · · pjM ≥ Qx1−θ. We would like to take
d2 = p1 · · · pr; notice that with this choice we have

Qx1−θw−1 < Md1 ≤ Qx1−θ.

The resulting coefficients, however, are not of the form
∑
uv=k a

′
ub
′
v because of the

conditions

(3.10) D < p1 · · · pj ≤ 2D, pr · · · pjM > Qx1−θ, pr+1 < pr,

so Lemma 4 is not (directly) applicable. We overcome this obstacle by means of
Perron’s formula.
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Let us consider, for example, the last inequality in (3.10). By (2.16), we have

cj(k) =
1

2πi

∑†

mn···=k

(−1)jambn

∫ α+iX

α−iX

(
pr − 1/2

pr+1

)ξ
dξ

ξ
+O(xηX−1),

where α = L −1, X = x3, and
∑†
mn···=k denotes summation over the same variables

and conditions as in cj(k) except for the condition pr+1 < pr, which has been
removed. Hence,

|Ecj (y, h;χ)| �
∫ X

−X
|Ec†(y, h;χ)| dt

|α+ it|
+ x−1

� |Ec†(y, h;χ)|L + x−1,

where

c†(k) =
∑†

mn···=k

(−1)jambn(pr − 1
2 )α+it0pα−it0r+1 .

Clearly, we can remove the other inequalities in (3.10) from the summation condi-
tions in c†(k) by the same technique. This yields a function c‡(k) =

∑
uv=k a

′
ub
′
v

for which we can prove (3.2) as intended (i.e., using (2.16) followed by Lemma 4).

Case 2. Q = 1. By [7, Lemma 15],

(3.11)
∑

d|`,d|P (w)

µ(d) =
∑

d|`,d|P (w)
d<γ

µ(d) +O

( ∑
d|`,d|P (w)
γ≤d<wγ

1

)
.

Substituting (3.11) with γ = xη into (3.5), we get∑
y−h<k≤y

c(k) =
∑

y−h<k≤y

c1(k) +O

( ∑
y−h<k≤y

c2(k)

)
,

where

c1(k) =
∑
m,n

∑
d|P (w)
d<γ

∑
mnd`=k

ambnµ(d),

c2(k) =
∑
m,n

∑
d|P (w)
γ≤d<wγ

∑
mnd`=k

|ambn|.

It therefore suffices to show that if h ≤ z, y ∼ x, then∑
y−h<k≤y

cj(k) = hh−10

∑
y−h0<k≤y

cj(k) +O
(
zL −A

)
(j = 1, 2),(3.12)

∑
y−h0<k≤y

c2(k)� h0L
−A.(3.13)

Let us consider (3.12). If MN ≤ xη, we have∑
y−h<k≤y

c1(k) = h
∑
m,n,d

ambnµ(d)

mnd
+O

(
xη
)

= hh−10

∑
y−h0<k≤y

c1(k) +O
(
xη
)
,



PRIMES IN ARITHMETIC PROGRESSIONS 11

and an obvious modification holds for c2(k). Thus, we can focus on the case MN ≥
xη. As in Case 1.1, we have

(3.14)
∑

y−h<k≤y

cj(k) =
1

2πi

∫ 1
2+ix

1
2−ix

Sj(s, χ0)
ys − (y − h)s

s
ds+O

(
xη
)
,

where Sj(s, χ) has been defined analogously to the polynomial S(s, χ) appearing
in (3.7). If MN ≥ xη, Lemma 7 yields

max
T0≤T≤x

Ψ(T )

∫ T

T0

∣∣Sj( 1
2 + it, χ0)

∣∣dt� zL −A,

where T0 = exp
(
L 1/3

)
. Hence,∑

y−h<k≤y

cj(k) =
h

2πi

∫ 1
2+iT0

1
2−iT0

Sj(s, χ0)ys−1ds+O
(
zL −A

)
,(3.15)

and similarly ∑
y−h0<k≤y

cj(k) =
h0
2πi

∫ 1
2+iT0

1
2−iT0

Sj(s, χ0)ys−1ds+O
(
h0L

−A).(3.16)

Combining (3.15) and (3.16), we complete the proof of (3.12). As to (3.13), by [3,
Lemma 7] we have∑

y−h0<k≤y

c2(k)� h0
∑
m,n

|ambn|
mn

∑
d|P (w)
γ<d≤wγ

1

d
� h0 exp

(
−L 1/10

)
.

Case 3. 1 < Q ≤ L A+B . Using (3.11) with γ = xη, we get∑
y−h<k≤y

c(k)χ(k) =
∑

y−h<k≤y

c1(k)χ(k) +O

( ∑
y−h<k≤y

c2(k)

)
,

with c1(k) and c2(k) as in Case 2. The contribution from c2(k) can be estimated
via (3.12) and (3.13) with A+B in place of A, and the contribution from c1(k) can
be estimated as in Case 1.1. �

Lemma 10. Let c(k) be defined by (3.3) with am, bn subject to (2.5). Let Q ≤
zx−θ−η with 1/2 + ε ≤ θ ≤ 7/12, let M � x1/2, and let h be the least positive
integer such that

(3.17) M ≥ x1/2−h(2θ−1).
Define

(3.18) M∗ = max
(
x2h(1−θ)M−1, x2(h−1)θM

)1/(2h−1)
,

and suppose that

(3.19) NM∗ � x(1+θ)/2.

Suppose also that

(3.20) w ≤ min
(
xγ , (xθM−1)2/(2h−1)

)
,

where γ is defined by (2.7). Then, (3.2) holds for f(k) = c(k) and any A > 0; the
implied constant depends at most on A, g, h, ε and η.
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Note that x1−θ ≤M∗ ≤ x1/2, so the upper bound for N in (3.19) is � xθ/2.

Proof. We recall Buchstab’s identity in the form

(3.21) ψ(n,w1) = ψ(n,w2)−
∑
pm=n

w2≤p<w1

ψ(m, p),

where 2 ≤ w2 < w1. Using (3.21), we can write

c(k) = c′0(k)− c∗(k),

where

c′0(k) =
∑

mn`=k

ambnψ(`, w0),

c∗(k) =
∑

mnp1`1=k
w0≤p1<w

ambnψ(`1, p1),

with w0 = exp
(
L 9/10

)
. We split c∗(n) into two subsums:

c∗(k) = c′′0(k) + c1(k),

where c′′0(k) and c1(k) are subject to mp
1/2
1 > x1−θ and mp

1/2
1 ≤ x1−θ, respectively.

We now use (3.21) to decompose c1(n). In general, if

cj(k) =
∑

mnp1···pj`j=k
w0≤pj<···<p1<w

ambnψ(`j , pj)

is subject to

(3.22) mp1 · · · pj−1p1/2j ≤ x1−θ,

then (3.21) gives

cj(k) = c′j(k)− c′′j (k)− cj+1(k)

where c′j(k) is cj(k) with ψ(`j , w0) in place of ψ(`j , pj) and c′′j (k) is cj+1(k) with
condition (3.22) replaced by

(3.23) mp1 · · · pj−1p1/2j ≤ x1−θ < mp1 · · · pjp1/2j+1.

Clearly, this process has to stop after at most L steps.
Before proceeding further, we take a moment to note two consequences of (3.22)

and (3.23). Inequality (3.22) implies that

pj ≤ (x1−θM−1)2/(2j−1).

If j ≥ h, we can infer from this bound and (3.22) that

mp1 · · · pj ≤ x1−θ(x1−θM−1)1/(2h−1) ≤M∗,

while if j < h, we have

mp1 · · · pj ≤ 2M(xθM−1)2(h−1)/(2h−1) ≤ 2M∗.

Similarly, we get

M2p21 · · · p2jpj+1 �

{
x2−2θ(x1−θM−1)4/(2h−1) if j ≥ h,
M2w2h−1 if j < h.
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As both expressions on the right side of the latter inequality are � x2θ (by (3.17)
and (3.20), respectively), we conclude that (3.23) implies

(3.24) max

(
x

M2p21 · · · p2jpj+1
,
M2p21 · · · p2jpj+1

x

)
� x2θ−1.

We now show that (3.2) holds for f(k) = c′j(k) and f(k) = c′′j (k). We just proved
that mp1 · · · pj ≤ 2M∗. Hence, if f(k) = c′j(k), (3.2) follows from Lemma 9 with
am replaced by

a′u =
∑

mp1···pj=u
m,p1,...,pj :(3.22)
w0≤pj<···<p1<w

am.

We now turn to c′′j (k). As in the proof of Lemma 9, (3.2) can be reduced to
mean-value estimates similar to (3.9). In this case, we would like to work with

S(s, χ) = M1(s, χ)N1(s, χ)K(s, χ),

where M1(s, χ) corresponds to the variable m1 = mp1 · · · pj , K(s, χ) corresponds to
the summation over pj+1, and N1(s, χ) corresponds to the product of the remaining
variables. To do so, however, we first need to disentangle pj+1 from the other
variables. This can be done via Perron’s formula.

As in Case 1.3 in the proof of Lemma 9, we can use (2.16) and a standard
splitting-up argument to write c′′j (k) as the sum of O(L 3) functions of the form

(3.25)
1

2πi

∫ α+ix3

α−ix3

c‡(k; ξ)
dξ

ξ
+O(x−2),

where α = L −1 and

c‡(k; ξ) =
∑

mnp1···pj+1`j+1=k

a(m, p1, . . . , pj)b(n, `j+1)p−ξj+1.

Here, the coefficients a(m, p1, . . . , pj) and b(n, `j+1) satisfy bounds of the form
(2.5), and the summation variables are subject to the conditions in c′′j (k), minus
pj+1 < pj , and plus

Mp1 · · · pj �M1, pj ∼ Pj , pj+1 ∼ K,
where

w0 ≤ K < 2Pj ≤ 2w, M2
1P
−1
j � x1−θ �M2

1K.

Removing more summation conditions leads to a multiple integral in (3.25) and

changes the coefficient of pj+1 in c‡(k; ξ) to p
−L(ξ1,... )
j+1 , where L(ξ1, . . . ) is a linear

form in the integration variables. The result looks messier than (3.25), but can be
dealt with just as easily. Thus, we shall assume through the rest of the proof that
pj+1 < pj is the only condition that needs to be removed.

If Q > 1, it suffices to show that

max
Q≤T≤x

Ψ(T )

∫ α+ix3

α−ix3

∑
q∼Q

∑∗

χ

∫ T

−T

∣∣Sξ( 1
2 + it, χ)

∣∣dt |dξ|
|ξ|
� QzL −A,

where

Sξ(s, χ) =
∑

m1�M1

∑
p∼K

∑
n1�x/(M1K)

a∗m1
b∗n1

p−ξχ(m1n1p)(m1n1p)
−s,



14 A. KUMCHEV

with m1 = mp1 · · · pj , p = pj+1, n1 = n`j+1, and with coefficients

|a∗m1
| � d(m1)B , |b∗n1

| � d(n1)B .

We now invoke Lemma 2 with M(s, χ), N(s, χ) and K(s, χ) corresponding to the
summations over m1, n1 and p, respectively. These polynomials satisfy hypotheses
(2.6) of Lemma 2 because of (3.20) and (3.24), so the proof will be completed if we
show that ∑

p∼K
χ(p)p−

1
2−it−ξ � QK1/2L −A−B .

This bound follows from Lemma 8 and partial summation if Q ≤ L A+B , and is
trivial otherwise.

On the other hand, if Q = 1, we need to show that

(3.26) max
T0≤T≤x

Ψ(T )

∫ α+ix3

α−ix3

∫ T

T0

∣∣Sξ( 1
2 + it, χ0)

∣∣dt |dξ|
|ξ|
� zL −A,

where T0 = exp
(
L 1/3

)
and Sξ(s, χ) is as above. The portion of the integral in

(3.26) for which |t + Im ξ| ≥ exp(L 1/4) can be estimated via Lemma 2 as before
(we need the extra restriction because of the left-hand side inequality in (2.19)).
Hence, to finish the proof, we need to bound the portion of the integral on the left
side of (3.26) for which

(3.27) |t+ τ | ≤ exp
(
L 1/4

)
.

It does not exceed

(3.28) max
T0≤T≤x

Ψ(T )

∫ T

T0

∣∣Sξ0( 1
2 + it, χ0)

∣∣ ∫
(3.27)

dτ

|τ |
dt,

where ξ0 is a fixed number of the form α+ iτ0. The inner integral is� exp(−L 1/4)
and Lemma 2 yields

max
T0≤T≤x

Ψ(T )

∫ T

T0

∣∣Sξ0( 1
2 + it, χ0)

∣∣dt� zL B .

Thus, (3.28) is � zL −A, which completes the proof of (3.26). �

4. Proof of the Theorem

4.1. From (3.2) to (1.10). In this section we demonstrate that, modulo two mild
arithmetic constraints, any arithmetic function f(n) which satisfies (3.2) for all
A > 0 and Q ≤ Q0 also satisfies

(4.1)
∑
q≤Q0

max
(a,q)=1

max
h≤z

max
x/2≤y<x

|Ef (y, h; q, a)| � z

(log x)A
,

where Ef (y, h; q, a) is defined by (1.7). By the orthogonality of the Dirichlet char-
acters modulo q, we have

Ef (y, h; q, a) =
1

φ(q)

∑
χ

χ̄(a)Ef (y, h;χ),
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whenever (a, q) = 1; here Eλ(y, h;χ) is defined by (3.1). Hence, the left side of
(4.1) does not exceed

(4.2)
∑
q≤Q0

1

φ(q)

∑
χ

max
y,h
|Ef (y, h;χ)|.

For a non-principal character χ mod q, let χ∗ denote the primitive character (say,
mod g, g|q) inducing χ; for χ principal, we write χ∗ = χ0 and g = 1. We then have

Ef (y, h;χ) = Ef (y, h;χ∗) +O(R1(χ) +R2(χ)),

where

R1(χ) =
∑

y−h<n≤y
(n,q)>1,(n,g)=1

|f(n)|, R2(χ) = δ(χ)hh−10

∑
y−h0<n≤y
(n,q)>1

|f(n)|.

Suppose that |f(n)| � d(n)B and that

(4.3) f(n) = 0 if n has a prime divisor p < D.

Using (4.3), we obtain∑
q≤Q0

1

φ(q)

∑
χ

max
h,y

R1(χ)

�
∑

D≤d≤Q0

∑
q≤Q0

q≡0 (mod d)

1

φ(q)

∑
g|q

(g,d)=1

∑∗

χ mod g

max
h,y

∑
y−h<md≤y

xη

� xη
∑

D≤d≤Q0

(z
d

+ 1
) ∑
q≤Q0d−1

1

φ(qd)

∑
χ mod q

1

� xη
∑

D≤d≤Q0

(z
d

+ 1
) Q0

dφ(d)
� zxηQ0D

−2 + xηQ0D
−1.

Furthermore, a similar (and simpler) argument gives∑
q≤Q0

1

φ(q)

∑
χ

max
h,y

R2(χ)� zxηD−1.

Thus, (4.2) is bounded above by∑
q≤Q0

1

φ(q)

∑
χ

max
y,h
|Ef (y, h;χ∗)|+ zx−η,

provided that

(4.4) D ≥ xη and Q0 ≤ min
(
D2x−η, Dzx−η

)
.

Using the elementary bound ∑
q≤Q

q≡0 (mod d)

1

φ(q)
� L

φ(d)
,

we conclude that if f(n) is as above and if (4.4) holds, then the left side of (4.1) is

� L
∑
q≤Q0

1

φ(q)

∑∗

χ

max
h,y
|Ef (y, h;χ)|+ zx−η,
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and therefore if (3.2) holds for any A > 0 and Q ≤ Q0, we also obtain (4.1) for all
A > 0.

4.2. The contsruction of λ(n). We derive λ(n) from ψ(n, x1/2) using Buchstab’s
identity (3.21). Applying (3.21) several times, we shall write ψ(n, x1/2) in the form

(4.5) ψ(n, x1/2) =

k∑
j=1

cj(n)−
∑̀
j=k+1

cj(n),

with non-negative arithmetic functions cj(n). The actual decomposition will de-
pend on a parameter θ ∈ ( 1

2+ε, 7
12 ] and the functions cj(n) will possess the following

properties:

) cj(n)� d(n)B (1 ≤ j ≤ `);
) cj(n) = 0 if n has a prime divisor p < x2θ−1 (1 ≤ j ≤ `);
) given any A > 0 we have∑

q∼Q

∑∗

χ

max
h≤z

max
y∼x
|Ecj (y, h;χ)| � QzL −A,

for Q ≤ zx−θ and j = 1, . . . , r, k + 1, . . . , `, with r < k;
) if y ∼ x, h0 = x exp

(
−3(log x)1/3

)
, and θ ≥ 0.53− δ,∑

y−h0<n≤y

k∑
j=r+1

cj(n) ≤ (β + o(1))
h0

log x
,

where β < 1 is an absolute constant.

We define λ(n) by

(4.6) λ(n) =

r∑
j=1

cj(n)−
∑̀
j=k+1

cj(n).

Since ψ(n, x1/2) vanishes on [2, x1/2) and equals the characteristic function of the
prime numbers on [x1/2, x), this function has property (i) from the statement of
the Theorem. Also, by (4.5)

∑
y−h0<n≤y

λ(n) =
∑

y−h0<n≤y

ψ(n, x1/2)−
k∑

j=r+1

cj(n)

 ,

so property (ii) follows from the Prime Number Theorem and ) above, provided
that θ ≥ 0.53 − δ. Finally, the discussion in Section 4.1 and )–) above imply
(1.10) for

(4.7) Q ≤ min
(
x4θ−2−η, zx−θ−η

)
.

Observe that, in view of the work by Timofeev [19] and Perelli, Pintz and Salerno
[15] mentioned in the Introduction, we need to consider only the case z ≤ x3/5+η.
In that case, the right side of (4.7) equals zx−θ for θ ≥ 0.52 + η, so property (iii)
from the statement of the Theorem follows by taking θ = 0.53− δ.

Thus, to complete the proof it remains to find an identity of the form (4.5) with
functions cj(n) subject to )–) above. We shall use a variant of the identity applied
by Harman, Lewis and the author [6, Section 6] to study the distribution of prime
ideals of imaginary quadratic fields in small regions.
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Given an integer m < x1/2, we write

w(m) = min
(
xγ , (xθm−1)2/(2h−1)

)
,

where γ is defined by (2.7) with g = 4 (which is the optimal choice for g when
169/321 ≤ θ ≤ 103/193); we also set w(m) = 0 if m ≥ x1/2. We start the
decomposition by applying (3.21) twice to obtain

ψ(n, x1/2) = ψ(n,w0)−
∑
n=mp

w0≤p<x1/2

ψ(m,w(p)) +
∑

n=mp1p2
w(p1)≤p2<p1<x1/2

ψ(m, p2)

= c1(n)− ck+1(n) + b1(n) say;

here w0 = x2θ−1. As the right side of (3.20) is ≥ x2θ−1, Lemma 10 yields (3.2) for
c1(n) and ck+1(n) as well as for the portion of b1(n) with p2 < w(p1p2), which we
denote by c2(n).

We split the remainder of b1(n) into subsums b2(n), . . . , b8(n) subject to the
conditions

b2(n): (4.8), p1p
2
2 ≥ x;

b3(n): (4.8), p1p
2
2 < x, p2 > xθ/2;

b4(n): (4.8), p1 ≤ x1/4;
b5(n): (4.8), x1/4 < p1 ≤ x2/5, p1p

3
2 < x;

b6(n): (4.8), x2/5 < p1 < x1/2, p1 > p22;
b7(n): (4.8), p2 ≤ xθ/2, p21p2 < x ≤ p1p32;
b8(n): (4.8), p2 ≤ xθ/2, p1p

2
2 < x ≤ p21p2, p1 < p22;

where

(4.8) w(p1, p2) := max (w(p1), w(p1p2)) ≤ p2 < p1 < x1/2.

We set cr+1(n) = b2(n) and cr+2 = b3(n). Since b2(n) and b3(n) counts almost-
primes p1p2 and p1p2p3, respectively, the Prime Number Theorem yields

(4.9)
∑

y−h0<n≤y

b2(n)� h0

log2 x

and

(4.10)
∑

y−h0<n≤y

b3(n) =
β3h0
log x

+O

(
h0

log2 x

)
,

where

β3 = β3(θ) =

∫ 1−θ

θ/2

∫ min(u1,(1−u1)/2)

θ/2

du1du2
u1u2(1− u1 − u2)

.

We shall refer to β3 as the loss from b3(n).
We can decompose two more times each of b4(n), . . . , b8(n). We have

bj(n) =
∑

n=p1p2m

ψ(m,w(p1, p2))−
∑

n=p1p2p3m
w(p1,p2)≤p3<p2

ψ(m, p3)

= bj,1(n)− bj,2(n) say,

where p1 and p2 are subject to the summation conditions in bj(n). Since p1 < x1/2

and p2 ≤ xθ/2, we can apply Lemma 10 to bj,1(n) (with m and n corresponding to
the summations over p1 and p2, respectively). Hence, we can include bj,1(n) among
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c2(n), . . . , cr(n). We decompose bj,2(n) further. Let bj,3(n) be the portion of bj,2(n)
subject to

(4.11) p1p3 < x1/2 or p∗1p2p3 ≤ x(1+θ)/2,
where p∗1 is defined by (3.18), and let bj,4(n) be the remainder of bj,2(n). We write

bj,3(n) =
∑

n=p1p2p3m

ψ(m,w0)−
∑

n=p1p2p3p4m
w0≤p4<p3

ψ(m, p4)

= bj,5(n)− bj,6(n) say,

where p1, p2 and p3 are subject to all the summation conditions in bj,3(n). In order
to decompose bj,4(n) we reverse the roles of m and p1. We have

bj,4(n) =
∑

n=p1p2p3m
p1,p2,p3,m:(j,4)

ψ(m, p3) =
∑

n=kp2p3m
k,p2,p3,m:(j,4)

ψ(m, p3)ψ(k, (x/p2p3m)1/2)

=
∑

n=kp2p3m
k,p2,p3,m:(j,4)

ψ(m, p3)ψ(k,w0)−
∑

n=kp2p3p4m
kp4,p2,p3,m:(j,4)

w0≤p4<(x/p2p3m)1/2

ψ(m, p3)ψ(k, p4)

= bj,7(n)− bj,8(n) say.

We include bj,5(n) and bj,7(n) among ck+2(n), . . . , c`(n). We prove that they satisfy
(3.2) by applying Lemma 10—in the application to bj,5(n) we have m, n correspond-
ing to p1p3, p2 or p1, p2p3 depending on whether the first or second condition in
(4.11) holds; in the application to bj,7(n) we have m, n corresponding to p2m and

p3 (this choice is admissible since p1p3 ≥ x1/2 ⇒ p2m < x1/2).
We now turn to bj,6(n) and bj,8(n). First of all, we can prove (3.2) for subsums of

bj,6(n) and bj,8(n) in which we can group the variables p1, . . . , p4, k,m to produce
four new variables with sizes satisfying any of conditions (i)–(iv) of Lemma 3.
Indeed, if cj(n) is such a subsum, we can show that it satisfies (3.2) by recalling
(3.7)–(3.9) and estimating (3.9) using Lemma 3 instead of Lemma 7; the required
bounds of the form (2.8) follow from Lemma 8 and unwanted interdependencies
between the new variables can be removed via Perron’s formula, as in the final
stage of the proof of Lemma 10. We can therefore include such portions of bj,6(n)
and bj,8(n) among c2(n), . . . , cr(n). Let bj,9(n) be the remainder of bj,6(n) and
bj,8(n). We split bj,9(n) into two—a part allowing two further decompositions
along the same lines as bj(n) and the remainder. We include the latter among
cr+3(n), . . . , ck(n) and decompose the former. The decomposition yields more terms
cj(n) that can be treated via Lemma 10 and a six-dimensional sum similar to bj,6(n)
and bj,8(n). For a significant part of this six-dimensional sum we can prove (3.2) via
Lemma 3 as discribed above; again, this subsum becomes one of c2(n), . . . , cr(n).
The remaining part of the six-dimensional sum is treated similarly to bj,9(n)—
a part of it goes to cr+3(n), . . . , ck(n) and another part (possibly empty) can be
decomposed two more times to yield sums accessible via Lemma 10 and an eight-
dimensional sum, which (if it appears) we include among cr+3(n), . . . , ck(n).

The final step of the proof is to show that after implementing the above program
we are left with coefficients cr+1(n), . . . , ck(n) satisfying ) above. We have

(4.12)
∑

y−h0<n≤y

cj(n) =
δjh0
log x

+O

(
h0

log2 x

)
,
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where δj is a constant. The proofs of (4.12) for different values of j rely on the re-
peated use of the Prime Number Theorem, partial summation and the approximate
formula ∑

u1<n≤u

ψ(n,w) =
u− u1
logw

ω

(
log u

logw

)
+O

(
u− u1
log2 u

+ ue−
√
log u

)
,

where u/2 ≤ u1 < u, uε ≤ w ≤ u1−ε and ω(t) is Buchstab’s function defined as the
continuous solution of the differential delay equation{

w(t) = 1/t if 1 ≤ t ≤ 2,

(tw(t))′ = w(t− 1) if t > 2.

The constants δj in (4.12) are expressed as multidimensional integrals involving ω(t)
and similar in appearance to β3 above (in fact, by (4.10), β3 = δr+2). In general,
these integrals are very difficult or even impossible to calculate exactly, but we are
content with precise enough upper bounds, which we can obtain using numerical
integration. As the arising integrals are exactly the same as those appearing in
the numeric part of a recent work by Harman, Lewis and the author [6], we can
quote the bounds obtained in that paper. On writing βi for the loss from all cj(n),
r < j ≤ k, descending from bi(n), we have the following upper bounds for the losses
from b2(n), . . . , b8(n) when θ = 0.53.

j 2 3 4 5 6 7 8
βj ≤ 0 0.20 0.07 0.19 0.25 0.12 0.12

As the bounds are continuous in θ, it follows from here that
∑
βj < 1 for θ ≥

0.53 − δ, where δ is a positive absolute constant. The value δ = 0.002 quoted in
the Remark following the statement of the Theorem is the consequence of the more
precise estimation of those integrals achieved by Lewis [12], where he showed that,
in fact,

∑
βj < 1 for θ ≥ 0.528. �
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[17] H. Rademacher, On the Phragmen–Lindelöf theorem and some applications, Math. Z. 72

(1959/60), 192–204.

[18] S. J. Ricci, Mean-value theorems for primes in short intervals, Proc. London Math. Soc. (3)
37 (1978), 230–242.

[19] N. M. Timofeev, Distribution of arithmetic functions in short intervals in the mean with

respect to progressions, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 341–362, in Russian.
[20] N. Watt, Kloosterman sums and a mean value for Dirichlet polynomials, J. Number Theory

53 (1995), 179–210.

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S
3G3

E-mail address: kumchev@math.toronto.edu


