Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences Tome 49, N° 1, 1996

MATHEMATIQUES Théorie des nombres

ON A SYSTEM OF TWO DIOPHANTINE EQUATIONS WITH PRIME NUMBERS¹

A. Kumchev

(Submitted by Corresponding Member S. Troyanski on September 12, 1995)

In 1937 VINOGRADOV [1] solved Goldbach's ternary problem. He proved that if N is a sufficiently large odd integer then the equation

$$(1) p_1 + p_2 + p_3 = N$$

has solutions in prime numbers p_1, p_2, p_3 .

In 1952 PIATETSKI-SHAPIRO [2] considered the inequality

$$|p_1^c + \dots + p_r^c - N| < \varepsilon$$

where c>1 is not an integer and $\varepsilon>0$ is arbitrary small. He proved that if r is sufficiently large in terms of c then (2) has solutions in prime numbers p_1, \ldots, p_r for all sufficiently large N. He also proved the solvability of (2) in the case of $1 < c < \frac{3}{2}$ and r=5.

Vinogradov's theorem on (1) gives an argument to expect that if c is close to one then (2) has solutions when r = 3. Tolev [3] proved this for $1 < c < \frac{15}{14}$.

A natural analogue of Waring's problem with noninteger degrees is the equation $[x_1^c] + \cdots + [x_r^c] = N$

(here and later [x] denote the integer part of x). It was considered by SEGAL $[^4]$, DESHOUILLERS $[^5]$ and ARHIPOV and ZHITKOV $[^6]$. An equation of this type with $r=3,\,1< c<\frac{17}{16}$ and prime unknowns was considered by Tolev and Laporta $[^7]$.

In [8] Tolev considered a system of two inequalities of type (2) with r=5 and degrees close to one.

In this paper we study for solvability in prime numbers p_1, \ldots, p_5 the system

(3)
$$[p_1^c] + \cdots + [p_5^c] = N_1; \\ [p_1^d] + \cdots + [p_5^d] = N_2$$

where c,d are close to one and N_1,N_2 are sufficiently large integers satisfying some natural conditions.

¹This work was supported by the National Foundation of the Bulgarian Ministry of Education, Science and Technology (grant number MM-430/94).

We define

$$R = \sum \ln p_1 \dots \ln p_5$$

where the summation is over primes p_1, \ldots, p_5 satisfying (3).

We use the notation:

 c, d, α, β are fixed real number satisfying

(4)
$$1 < d < c < \frac{39}{38}; \\ 1 < \alpha < \beta < 5^{1-\frac{d}{c}},$$

 $x, y, t, t_1, \ldots, t_5$ - real numbers; p, p_1, \ldots, p_5 - primes; n, j - integers; ε - arbitrary small positive number not necessary the same in all appearances; $\Lambda(n)$ - von Mangoldt's function; $e(x) = e^{2\pi i x}$; $X = N_1^{\frac{1}{c}}$; $\delta = N_2/N_1^{\frac{d}{c}}$; $S(x,y) = \sum_{p \le X} \ln p \cdot e(x[p^c] + y[p^d])$

$$S(x,y) = \sum_{p \le X} \ln p \cdot e(x[p^c] + y[p^d])$$

 $I(x,y) = \int_0^X e(xt^c + yt^d)dt$

(5)
$$\gamma = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\int_{0}^{1} e(xt^{c} + yt^{d}) dt \right)^{5} \cdot e(-x - \delta y) dx dy.$$

The constants in the O-terms and in the \ll -symbols depend on c, d, α, β and ε .

We prove the next

Theorem. Suppose that c, d, α, β are real numbers which satisfy (4) and N_1, N_2 are sufficiently large integers such that

(6)
$$\alpha \le N_2/N_1^{\frac{d}{c}} \le \beta.$$

Then

(7)
$$R = \gamma \cdot X^{5-c-d} + O\left(X^{5-c-d} \cdot \exp\left(-(\ln X)^{\frac{1}{3}-\epsilon}\right)\right).$$

The integral (5) is convergent and its value is a positive real number $\gg 1$.

Corollary. The system (3) has a solution in prime numbers when the conditions

(4) and (6) hold and N_1, N_2 are sufficiently large. An outline of the proof. Let $\eta > 0$ be a sufficiently small number depending on $c,d; \tau_1=X^{\frac{3}{4}-c-\eta}, \tau_2=X^{\frac{3}{4}-d-\eta}$ and let Ω_1,Ω_2 be the sets

$$\Omega_1 = \{(x, y) : |x| < \tau_1, |y| < \tau_2\};
\Omega_2 = \{(x, y) : |x| < 0.5, |y| < 0.5\} \setminus \Omega_1.$$

Then

(8)
$$R = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} S^5(x,y) \cdot e(-xN_1 - yN_2) dx dy = R_1 + R_2,$$

where R_j denotes the contribution of Ω_j to the integral.

$$S(x,y) = \sum_{j \le j_0} \sum_{X/2^j < n \le X/2^{j-1}} \Lambda(n) e(xn^c + yn^d) + O\left(X \cdot \exp(-\ln X)^{\frac{1}{2}}\right),$$

where $j_0 = [(\ln X)^{\frac{1}{2}}/\ln 2]$. If $X \exp\left(-(\ln X)^{\frac{1}{2}}\right) \leq Y \leq X$, then similarly to Lemma 14 of [3] we have

$$\sum_{Y < n \leq 2Y} \Lambda(n) \cdot e(xn^c + yn^d) = \int_Y^{2Y} e(xt^c + yt^d) dt + O\left(X \exp\left(-(\ln X)^{\frac{1}{3} - \epsilon}\right)\right).$$

We obtain from the last two equalities that

(9)
$$S(x,y) = I(x,y) + O\left(X \cdot \exp\left(-(\ln X)^{\frac{1}{3}-\epsilon}\right)\right).$$

Similarly to Lemmas 8 and 9 of [8] we have

(11)
$$\iint_{\Omega_1} |I(x,y)|^4 dx dy \ll X^{4-c-d} \cdot \ln^8 X$$

It is easy to prove (see [9], p. 36-39) that

$$|I(x,y)| \ll \left(\frac{X}{|x|+|y|}\right)^{\frac{1}{d+1}} \cdot$$

The last estimate combined with (9)-(11) shows that

$$R_1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I^5(x,y) \cdot e(-xN_1 - yN_2) dx dy + O\left(X^{5-c-d} \exp\left(-(\ln X)^{\frac{1}{3}-\epsilon}\right)\right).$$

Hence

(12)
$$R_1 = \gamma \cdot X^{5-c-d} + O\left(X^{5-c-d} \exp\left(-(\ln X)^{\frac{1}{3}-\varepsilon}\right)\right).$$

If $(x,y) \in \Omega_2$ then similarly to Lemmas 12-14 of [10] we get

(13)
$$|S(x,y)| \ll \ln^2 X \cdot \max_{(x,y) \in \Gamma} \left| \sum_{n < X} \Lambda(n) e(x n^c + y n^d) \right| + X^{\frac{15+2c}{18}} \ln^3 X,$$

where

$$\Gamma = \left\{ (x,y): \ |x| < X^{\frac{3-2c}{18}} + 1, \ |y| < X^{\frac{3-2d}{18}} + 1 \right\} \setminus \Omega_1.$$

Using VAUGHAN's identity (see [11]) and the simplest van der Corput's estimates of exponential sums we obtain

(14)
$$\left| \sum_{n \le X} \Lambda(n) \cdot e(xn^c + yn^d) \right| \ll X^{\frac{15+2c}{18}} \ln^7 X$$

uniformly with respect to $(x, y) \in \Gamma$. The estimates (13) and (14) imply

$$\max_{(x,y)\in\Omega_2} |S(x,y)| \ll X^{\frac{15+2c}{18}} \ln^9 X$$

and similarly to Lemma 14 of [8] we have

$$\int_{-0.5}^{0.5} \int_{-0.5}^{0.5} |S(x,y)|^4 dx dy \ll X^2 \ln^{10} X.$$
 From the last two estimates we obtain

$$|R_2| \ll X^{\frac{51+2c}{18}} \ln^{19} X$$

which gives in the case of $1 < c < \frac{39}{38}$ that

$$(15) |R_2| \ll X^{5-c-d-\rho}$$

where $\rho = \rho(c,d) > 0$.

Now the asymptotic formula (7) follows from (8), (12) and (15). Using (4) and (6) we see that the system

$$t_1^c + \dots + t_5^c = 1$$

$$t_1^d + \dots + t_5^d = \delta$$

has a solution t_1, \ldots, t_5 such that

$$0 < t_1 < t_2 < 1$$

 $0 \le t_3, t_4, t_5 \le 1$.

Similarly to Lemmas 11-13 in chapter 8 of [9] we obtain now that $\gamma \gg 1$. This completes the proof of the Theorem.

Finally the author would like to thank D. I. Tolev for the regular attention and the helpful discussions.

REFERENCES

[1] Виноградов И. М. ДАН СССР, 16, 1937, 291-294. [2] Пятецкий-Шапиро И. И. Мат. Сб., 30, 1952, 105-120. [3] TOLEV D. I. Acta Arith., 61, 1992, 289-306. [4] СЕГАЛ Б. И. Теорема Варинга для степеней с дробными и иррациональными показателями, 5, Тр. физ.-мат. ин-та им. В. А. Стеклова АН СССР, 1933, 73-86. [5] DESHOUILLERS J.-M. Probleme de Waring avec exposants non entiers, Bull. Soc. math. France, fasc. 101, 1973, 285-295. [⁶] Архипов Г. И., А. Н. Житков. Изв. АН СССР, сер. матем., 48, 1984, 1138-1150. [⁷] Лапорта М., Д. И. Толев. Об одном уравнении с простыми числами, Мат. Заметки, **57**, 1995, 926-929. [8] Tolev D. I. Acta Arith., 69, 1995, 387-400. [9] АРХИПОВ Г. И., А. А. КАРАЦУБА, В. Н. ЧУБАРИКОВ. Теория кратных тригонометрических сумм. Москва, Наука, 1987. [10] БУРИЕВ К. Аддитивные задачи с простыми числами, канд. дис. Москва, МГУ, 1989. [11] VAUGHAN R. C. Mathematica, **24**, 1977, 135-141.

> Department of Mathematics University of Plovdiv 24, Tzar Asen Str. 4000 Plovdiv, Bulgaria