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In 1937 VINOGRADOV [!] solved Goldbach’s ternary problem. He proved that if N
is a sufficiently large odd integer then the equation

(1) pr+p2+p3=N

has solutions in prime numbers py, p2, P3.
In 1952 PIATETSKI-SHAPIRO [2] considered the inequality

(2) lp$ +---+pi - N|<e

where ¢ > 1 is not an integer and ¢ > 0 is arbitrary small. He proved that if r is
sufficiently large in terms of ¢ then (2) has solutions in prime numoers pi,...,Pr for
all sufficiently large N. He also proved the solvability of (2) in the case ofl<e< %
and r = 5.

Vinogradov’s theorem on (1) gives an argument to expect that if ¢ is close to one

then (2) has solutions when 7 = 3. ToLEV [?] proved this for 1 < ¢ < L.
A natural analogue of Waring’s problem with noninteger degrees is the equation
[a§] +---+[ef]= N
(here and later [z] denote the integer part of z). It was considered by SEGAL [4],
DESHOUILLERS [°] and ARHIPOV and ZHITKOV [6]. An equation of this type with
r=3,1<c¢c< }—g and prime unknowns was considered by TOLEV and LAPORTA .

In [8] TOLEV considered a system of two inequalities of type (2) with 7 = 5 and
degrees close to one.

In this paper we study for solvability in prime numbers py,...,ps the system

| 4o 4 [pE] = N
B [P 4 o+ o] = Ny

where ¢, d are close to one and Ny, N, are sufficiently large integers satisfying some
natural conditions. ‘

'1This work was supported by the National Foundation of the Bulgarian Ministry of Education,
Science and Technology (grant number MM-430/94).
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We define
R=3Inp;...Inps,

where the summation is over primes py, ..., ps satisfying (3).
We use the notation:
¢,d,a, B are fixed real number satisfying

39,
(4) 1<d<c<38’d
l<a<fB<57 ¢,
z,Y,1,11,...,t5 — real numbers; p, py, ..., ps - primes; n, j - integers; ¢ — arbitrary small
positive number not necessary the same in all appearances; A(n) — von Mangoldt’s
: 1 d
function; e(z) = €?™%; X = N¢; § = No/Nf;
S(2,y) = Tpcx Inp- e(z[p] + y[p?)
I(z,y) = [ e(zt® + yt?)dt

(5)‘ | v = [—0:0 [-o:o </01 e(zt® + ytd)dt)5 -e(—z — by)dzdy.

The constants in the O-terms and in the <-symbols depend on ¢,d, o, and €.
We prove the next

Theorem. Suppose that ¢,d,a,3 are real numbers which satisfy (4) and Ny, N,
are sufficiently large integers such that

d
(6) a_<_N2/N1° < B
Then

(7) R=7- X710 (X* exp (~(In X)i*)).

The integral (5) is convergent and its value is a positive real number >> 1.
Corollary. The system (3) has a solution in prime numbers when the conditions

(4) and (6) hold and Ny, N, are sufficiently large.
An outline of the proof. Let > 0 be a sufficiently small number depending on

c,d; 1 = X%—c“", Ty = X797 and let Q1,2 be the sets

= {(z,9): |2| <7,lyl <}
Qo ={(z,y): |z| < 0.5,]y] <0.5}\ Q.

Then

0.5 0.5
(8) R= [ [ $%c,y)-e(-aMs - yNo)dody = R+ o,
-0.5J-0.5

where R; denotes the contribution of Q; to the integral.
If (z,y) € 21 then we obtain

1
S(2,9) = Ticie Txwencx/zimt Am)e(ent +yn?) +0 (X -exp(~n X)?) ,
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where jo = [(In X)%/ln 2].
If X exp (w(ln X )%) <Y < X, then similarly to Lemma 14 of [3] we have

Y A(n)-e(en® +yn?) = /: ’ e(at° + yt)dt + O (X exp (~(In X)37¢)).

Y <n<2Y

We obtain from the last two equalities that
(9) S(z,5) = I(z,9) + O (X - exp(~(n X)4~7) ).

Similarly to Lemmas 8 and 9 of [*] we have

(10) / / |S(z, y)|*dzdy < X*7°7¢ ‘In'? X
2

(11) // (2, y)|'dzdy < X*°"¢ - 1n® X
Q0

It is easy to prove (see [?], p. 36-39) that
i
X 4T
(2,9 < (i)™ -
The last estimate combined with (9)-(11) shows that

Ry = [X) /jo I’(z,y) - e(—zNy — yNo)dzdy + (0] (Xs"c'd exp(—-(ln X)%“)) .
Hence
(12) Ri=~-X°%40 (Xs"c"d exp (-—(ln X)%”s)) .

If (z,y) € Q then similarly to Lemmas 12-14 of [*°] we get

(13) |8(z,)| < In? X - max

(zy)€r + X5 X,

Z A(n)e(zn® + yn?)

n<X

where
3-2¢ 3—2d
F={(z,9): o <X 41, [yl <X + 1}\ Q1.

Using VAUGHAN’s identity (see [1]) and the simplest van der Corput’s estimates of
exponential sums we obtain '

(14) 3 A(n) - e(en® + yn?)| « X5 " X

n<X
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uniformly with respect to (z, y) erl.
The estimates (13) and (14) imply
max [§(z,y)] € X Hm® X
(xvy)€Q2

and similarly to Lemma 14 of [8] we have

0.5 (0.5
/05/05 |S(z, y)|*dedy < X211 x,
From the last two estimates we obtain

|Ry| < X5 ! x

which gives in the case of 1 < ¢ < ?72— that

(15) IR2I & XS—c—d—p

where p = p(c,d) > 0.
Now the asymptotic formula (7) follows from (8), (12) and (15).
Using (4) and (6) we see that the system

it +tE=1
t‘li+---+t§=5

has a solution #y,...,ts such that

0<ty <ty<l1
0 <i3,84,25 < 1.

Similarly to Lemmas 11-13 in chapter 8 of [°] we obtain now that v > 1.

This completes the proof of the Theorem.

Finally the author would like to thank D. I. Tolev for the regular attention and the
helpful discussions.
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