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CHAPTER 1

Elementary Number Theory: A Review

As we said already in the Introduction, the focus of this course is a theorem from
number theory known as the law of quadratic reciprocity. Thus, it should not come as a
surprise that we shall need certain facts from elementary number theory. In this chapter, we
review some of the basics of arithmetic: the definition of divisibility, the greatest common
divisor of two integers, the definition and basic properties of prime numbers, and properties
of congruences. It is very likely that you are familiar with much of the material in the
chapter from earlier courses, so we aim mainly to refresh your knowledge, fill any potential
gaps in it, and set up the notation and terminology for future reference. The pace of the
exposition is thus rather brisk, and several proofs are left as exercises.

1.1. Divisibility

Number theory studies the properties of the integers, and that study usually starts with
the notion of divisibility of one integer by another.

Definition 1.1. If a, b ∈ Z and b , 0, we say that b divides a and write b | a, if a = bq for
some q ∈ Z. If b does not divide a, we write b - a. When b | a, we may also say that b is a
divisor of a, b is a factor of a, or a is a multiple of b.

Example 1.2. We have 3 | 15 and 6 | 324, but 100 - 2010.

Given two integers a and b , 0, we sometimes want to divide a by b even though b
may not be a divisor of a: say, we may want to divide 37 candy bars among 4 children.
This problem leads to the concept of “division with a quotient and a remainder.” It is
summarized by the following theorem, known as the quotient-remainder theorem or the
division algorithm.

Theorem 1.3 (Quotient-remainder theorem). If a, b ∈ Z and b > 0, then there exist unique
integers q and r such that

a = bq + r, 0 ≤ r < b.

Proof. “Existence.” Let q be the largest integer m with m ≤ a/b and let r = a − bq.
Then

q ≤ a/b =⇒ 0 ≤ a − bq = r.

Furthermore, since q is the largest integer not exceeding a/b, we have

a/b < q + 1 =⇒ a < bq + b =⇒ r = a − bq < b.

“Uniqueness.” Suppose that q1, q2, r1 and r2 are integers such that

a = bq1 + r1 = bq2 + r2, 0 ≤ r1, r2 < b.

Then
bq1 + r1 = bq2 + r2 =⇒ r1 − r2 = b(q2 − q1).

1
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On the other hand,
0 ≤ r1, r2 < b =⇒ −b < r1 − r2 < b.

Hence,
−b < b(q2 − q1) < b =⇒ −1 < q2 − q1 < 1.

Since q2 − q1 is an integer, we conclude that q2 − q1 = 0. Thus, q1 = q2 and

bq1 + r1 = bq2 + r2 =⇒ r1 = r2. �

1.2. The greatest common divisor of two integers

Definition 1.4. Let a and b be integers, not both 0. The greatest common divisor of a and
b, denoted gcd(a, b) or (a, b), is the largest natural number d such that d | a and d | b.

Example 1.5. The positive divisors of 2 are 1 and 2, and the positive divisors of 6 are 1,
2, 3 and 6. Thus, (2, 6) = 2.

The positive divisors of 4 are 1, 2 and 4, and the positive divisors of 6 are 1, 2, 3 and
6. Thus, (4, 6) = 2.

The positive divisors of −4 are 1, 2 and 4, and the positive divisors of 0 are all natural
numbers. Thus, (−4, 0) = 4.

If a , 0, then any positive divisor of a is ≤ |a|. Moreover, |a| (which is either a or −a)
is a divisor of a, so |a| is the largest positive divisor of a. Thus, (a, 0) = |a|. �

In the above example, we computed (a, 0) for all a , 0. We want to find a method for
computing the gcd of any two numbers. The next lemma reduces that problem to the case
when a and b are natural numbers.

Lemma 1.6. If a and b are integers and b , 0, then (a, b) = (a, |b|).

Lemma 1.7. Let b, q, and r be integers, and suppose that b and r are not both 0. Then

(bq + r, b) = (r, b).

Proof. Let a = bq + r, d1 = (a, b), and d2 = (r, b). By the definition of (r, b), d2 | r
and d2 | b, so b = d2m and r = d2n for some m, n ∈ Z. Hence,

a = bq + r = (d2m)q + d2n = d2(mq + n).

Since mq + n is an integer, it follows that d2 | a. Since d2 is a positive divisor of b, we
conclude that d2 is a natural number that divides both a and b. Then d2 does not exceed
the largest natural number that divides both a and b: that is, d2 ≤ d1.

Next, by the definition of (a, b), d1 | a and d1 | b, so a = d1n and b = d1m for some
n,m ∈ Z. Hence,

r = (bq + r) − bq = a − bq = d1n − (d1m)q = d1(n − mq).

Since n − mq is an integer, it follows that d1 | r. Since d1 is a positive divisor of b, we
conclude that d1 is a natural number that divides both r and b. Then d1 does not exceed the
largest natural number that divides both r and b: that is, d1 ≤ d2.

We proved that d1 ≤ d2 and d2 ≤ d1. Therefore, d1 = d2. �

We can use Lemma 1.7 to calculate the gcd of any two positive integers. We illus-
trate the main idea by an example, and then prove a theorem that describes the method in
general.
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Example 1.8. Let us use Lemma 1.7 to calculate (216, 51). We apply Lemma 1.7 repeat-
edly as follows:

(216, 51) = (4 · 51 + 12, 51) = (12, 51) = (12, 4 · 12 + 3) = (12, 3) = 3.

It seems plausible that we should be able to proceed similarly to Example 1.8 to com-
pute (a, b) for general a and b. The following theorem, known as the Euclidean algorithm,
establishes that this is indeed the case.

Theorem 1.9 (Euclidean algorithm). Let a and b be integers, with 0 < b < a.
i) If b | a, then (a, b) = b.

ii) If b - a, then there exist integers q1, r1, q2, r2, . . . , rm, qm+1 such that

a = bq1 + r1, 0 < r1 < b;
b = r1q2 + r2, 0 ≤ r2 < r1;

r1 = r2q3 + r3, 0 ≤ r3 < r2;

...

rm−2 = rm−1qm + rm, 0 ≤ rm < rm−1;
rm−1 = rmqm+1;

and (a, b) = rm.

Proof. i) This part is an easy consequence of the definition of greatest common divi-
sor.

ii) We use induction on a to prove the statement:
If b is an integer such that 0 < b < a and b - a, then there exist integers
q1, r1, q2, r2, . . . , rm, qm+1 such that

a = bq1 + r1, 0 < r1 < b;
b = r1q2 + r2, 0 ≤ r2 < r1;

r1 = r2q3 + r3, 0 ≤ r3 < r2;

...

rm−2 = rm−1qm + rm, 0 ≤ rm < rm−1;
rm−1 = rmqm+1; rm = (a, b).

The base case of the induction is a = 3. When a = 3, the only admissible value of b is
b = 2, and the above statement holds with m = 1, q1 = r1 = 1, q2 = 2:

3 = 2 · 1 + 1, 0 < 1 < 2; 2 = 1 · 2; 1 = (3, 2).

Now, suppose that the above statement holds for all integers a with 2 < a < n, and
consider the case a = n. Let b be an integer with 0 < b < n and b - n. By Theorem 1.3,
there exist integers q, r such that

n = bq + r, 0 ≤ r < b.

Furthermore, since b - n, the remainder r cannot be 0, so we can strengthen the above
inequality to get

n = bq + r, 0 < r < b. (1.1)
If r | b, then b = rq′ for some integer q′, and Lemma 1.7 and part i) give

(n, b) = (bq + r, b) = (r, b) = r.
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Hence, the above statement for the pair n, b holds with m = 1, q1 = q, r1 = r, and q2 = q′.
Next, suppose that r - b. Since 0 < r < b < n and r - b, we can apply the inductive
hypothesis to the pair b, r: there exist integers q1, r1, q2, r2, . . . , rm, qm+1 such that

b = rq1 + r1, 0 < r1 < r;
r = r1q2 + r2, 0 ≤ r2 < r1;

r1 = r2q3 + r3, 0 ≤ r3 < r2;

...

rm−2 = rm−1qm + rm, 0 ≤ rm < rm−1;
rm−1 = rmqm+1; rm = (b, r).

Combining these conditions with (1.1), we find that the integers q, r, q1, r1, q2, . . . , rm, qm+1
have all the desired properties relative to the pair n, b, with the possible exception of (n, b) =

rm. To verify the latter property, we use Lemma 1.7 and the identity (b, r) = rm above:

(n, b) = (bq + r, b) = (r, b) = rm. �

The Euclidean algorithm is very effective for computational purposes. However, it
does not relate (a, b) directly to a and b. The next theorem provides exactly such a relation.

Theorem 1.10. Let a and b be integers, not both 0, and let d = (a, b). Then d is the least
positive integer in the set

S =
{

ax + by | x, y ∈ Z
}
.

In particular, there exist integers x, y such that d = ax + by.

There are two standard ways to prove Theorem 1.10: one based on the well-ordering
axiom of the natural numbers, the other based on the Euclidean algorithm. Both proofs
are sketched in the exercises (cf. Exercises 1.4 and 1.5). We now state several important
consequences of Theorem 1.10, which we will use numerous times throughout the course.

Theorem 1.11. If a, b, c are integers such that (a, b) = (a, c) = 1, then (a, bc) = 1.

Proof. Suppose that a, b and c are integers such that (a, b) = (a, c) = 1. Then by
Theorem 1.10, there exist integers x, y, u, v such that

ax + by = (a, b) = 1, au + cv = (a, c) = 1.

Hence,

1 = ax + by = ax + by(1) = ax + by(au + cv) = a(x + byu) + (bc)(yv).

Since x + byu and yv are integers, this shows that 1 is a positive integer from the set

S =
{

am + (bc)n | m, n ∈ Z
}
.

Since there is no positive integer less than 1, it follows that 1 is the least positive integer
in S. By Theorem 1.10, the least positive integer in S is (a, bc), so we conclude that
(a, bc) = 1. �

Corollary 1.12. If k ≥ 2 and a, b1, . . . , bk are integers such that

(a, b1) = (a, b2) = · · · = (a, bk) = 1,

then (a, b1b2 · · · bk) = 1.

Theorem 1.13. If a, b, c are integers such that a | bc and (a, b) = 1, then a | c.

Theorem 1.14. If a, b, c are integers such that a | c, b | c and (a, b) = 1, then ab | c.
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1.3. Prime numbers and the fundamental theorem of arithmetic

We now recall the definition of prime and composite numbers.

Definition 1.15. An integer p > 1 is called a prime number, or simply a prime, if its only
positive divisors are 1 and p. An integer n > 1 which is not prime is called a composite
number. The numbers 0 and 1 are neither prime, nor composite.

Example 1.16. The integers 2, 3, 13 and 89 are prime; 4, 6, 51 and 837 are composite.

The next theorem provides a necessary and sufficient condition for primality that is
often more useful in number-theoretic proofs than the definition of a prime.

Theorem 1.17. A positive integer p > 1 is prime if and only if p has the property:

(∀a, b ∈ Z)(p | ab =⇒ p | a or p | b). (1.2)

Proof. “⇒”. Suppose that p is a prime number and a and b are integers such that
p | ab. If p | a, statement (1.2) is true. Now, suppose that p - a. By the definition of
a prime, the only positive divisors of p are 1 and p. Hence, (p, a) is 1 or p. However,
(p, a) , p, because p - a. Hence, (p, a) = 1. Since p | ab and (p, a) = 1, it follows from
Theorem 1.13 that p | b. Therefore, (1.2) is true again.

“⇐”. Suppose that p > 1 has property (1.2). We must show that p is prime. Suppose
that p is composite. Then p has a positive divisor other than 1 and p: p = ab, where
a, b ∈ N and 1 < a < p. In particular, since a < p, we conclude that p - a. Note also that

p = ab, a > 1 =⇒ b < p =⇒ p - b.

However, since p | p = ab, it follows from property (1.2) that p | a or p | b; a contradiction.
Therefore, p is prime. �

The importance of prime numbers comes from the next theorem, which says roughly
that one can use multiplication to build any integer n > 1 from primes, and that there is
essentially a unique way to do so. In other words, one can view the primes as the basic
building blocks of the integers under multiplication.

Theorem 1.18 (Fundamental theorem of arithmetic). Let n > 1 be an integer. Then n has
a unique factorization of the form

n = p1 p2 · · · pk, p1 ≤ p2 ≤ · · · ≤ pk,

where p1, p2, . . . , pk are prime numbers.

1.4. Congruence modulo m

Definition 1.19. Let m ∈ N, with m > 1, and let a, b ∈ Z. We say that a is congruent to b
modulo m, and write a ≡ b (mod m), if m | (a − b).

Theorem 1.20. Let a, b,m ∈ Z and m > 1. Then a ≡ b (mod m) if and only if there exists
an integer k such that a = b + mk.

Proof. By the definitions of congruence and divisibility,

a ≡ b (mod m) ⇐⇒ m | (a − b)
⇐⇒ a − b = mk

⇐⇒ a = b + mk,

where k ∈ Z. �
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The next theorem summarizes some basic properties of congruences. Properties i)–iii)
demonstrate that congruence modulo m is an equivalence relation on the integers. Proper-
ties iv)–vi) introduce the basic arithmetic operations with congruences.

Theorem 1.21. Let m ∈ N and a, b, c, d ∈ Z. Then:
i) a ≡ a (mod m);

ii) if a ≡ b (mod m), then b ≡ a (mod m);
iii) if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m);
iv) if a ≡ b (mod m) and c ≡ d (mod m), then a + c ≡ b + d (mod m);
v) if a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m);

vi) if ac ≡ bc (mod m) and (c,m) = d, then a ≡ b (mod m/d).

Proof. i) Since m | 0 = (a − a), we have a ≡ a (mod m).
ii) By Theorem 1.20, a = b + km for some integer k, whence

b = a − km = a + (−k)m.

Since −k is also an integer, it follows from Theorem 1.20 that b ≡ a (mod m).
iii) By Theorem 1.20,

a ≡ b (mod m) =⇒ a = b + km, b ≡ c (mod m) =⇒ b = c + lm,

where k, l ∈ Z. Hence,

a = b + km = (c + lm) + km = c + (l + k)m = c + nm,

where n = l + k is also an integer. Thus, a ≡ c (mod m), by Theorem 1.20.
iv) By Theorem 1.20,

a ≡ b (mod m) =⇒ a = b + km, c ≡ d (mod m) =⇒ c = d + lm,

where k, l ∈ Z. Hence,

a + c = (b + km) + (d + lm) = (b + d) + (k + l)m = (b + d) + nm,

where n = k + l is also an integer. Thus, a + c ≡ b + d (mod m), again by Theorem 1.20.
v) By Theorem 1.20,

a ≡ b (mod m) =⇒ a = b + km, c ≡ d (mod m) =⇒ c = d + lm,

where k, l ∈ Z. Hence,

ac = (b + km)(d + lm) = (bd) + (kd + lb + klm)m = (bd) + nm,

where n = kd + lb + klm is also an integer. Thus, by Theorem 1.20, ac ≡ bd (mod m).
vi) By Theorem 1.20,

ac ≡ bc (mod m) =⇒ ac = bc + km,

where k ∈ Z. Moreover, because (c,m) = d, there exist u, v ∈ Z such that cu + mv = d.
Combining these two identities, we find that

ac = bc + km =⇒ acu = bcu + kmu

=⇒ a(d − mv) = b(d − mv) + kmu

=⇒ ad = bd − bmv + kmu + amv = bd + nm

=⇒ a = b + n(m/d),

where n = −bv + ku + av is also an integer. Thus, yet another appeal to Theorem 1.20 gives
a ≡ b (mod m/d). �
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Since congruence modulo m is an equivalence relation on Z, it partitions the integers
into equivalence classes called residue (or congruence) classes modulo m. The equivalence
class [a] of an integer a under congruence modulo m is denoted [a]m, that is,

[a]m =
{

n ∈ Z | n ≡ a (mod m)
}
.

We denote the set of all residue classes modulo m by Zm. When the modulus m is clear
from the context, we often write the congruence class [a]m just as [a]. We make use of this
convention in the next two examples.

Example 1.22. When m = 2, there are only two residue classes: the set {0,±2,±4, . . . } of
the even integers is the residue class [k]2 of any even integer k; and the set {±1,±3, . . . } of
the odd integers is the residue class [k]2 of any odd integer k. Thus, Z2 = {[0], [1]}.

Example 1.23. When m = 3, there are three residue classes:

[0] = [3] = [6] = · · · = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . . },
[−2] = [1] = [4] = · · · = {. . . ,−8,−5,−2, 1, 4, 7, 10, . . . },
[−1] = [2] = [5] = · · · = {. . . ,−7,−4,−1, 2, 5, 8, 11, . . . }.

Thus, Z3 = {[0], [1], [2]}.

The next theorem generalizes the last two examples.

Theorem 1.24. Let m ∈ N and m > 1. Then [0], [1], . . . , [m − 1] is a complete list of
distinct residue classes modulo m.

Proof. First, we must show that the congruence class [n]m of every integer n appears
in the above list. By Theorem 1.3 with a = n and b = m, there exist integers q and r such
that n = mq + r and 0 ≤ r < m. By Theorem 1.20 and the definition of congruence class,

n = mq + r =⇒ n ≡ r (mod m) =⇒ n ∈ [r].

This proves that the congruence classes [n] and [r] are not disjoint (they both contain n).
Thus, [n] = [r]. Since r is one of the numbers 0, 1, . . . ,m − 1, this proves that [n] is one of
the residue classes in the above list.

Next, suppose that [a] = [b] for some integers a, b ∈ {0, 1, . . . ,m − 1}. Then a ∈ [b],
so

a ≡ b (mod m) =⇒ m | (a − b) =⇒ a − b = mq,

for some q ∈ Z. On the other hand,

0 ≤ a, b < m =⇒ −m < a − b < m =⇒ −1 < q < 1.

Hence, q = 0. We conclude that a − b = 0, which proves that a = b. Hence, the residue
classes [0], [1], . . . , [m − 1] are distinct. �

Remark. You may be familiar with the concept of a “binary operation” on a set. Proper-
ties iv) and v) in Theorem 1.21 can be used to justify the definition of the following two
operations on Zm: given residue classes [a] and [b] modulo m, we define the sum [a] + [b]
and the product [a][b] by

[a] + [b] = [a + b], [a][b] = [ab]. (1.3)



8 1. ELEMENTARY NUMBER THEORY: A REVIEW

1.5. Complete and reduced systems modulo m

Definition 1.25. A complete system of residues modulo m is a system of integers a1, . . . , as

such that {[a1], . . . , [as]} = Zm and ai . a j (mod m) when i , j.

Example 1.26. By Theorem 1.24, the numbers 0, 1, . . . ,m − 1 form a complete residue
system modulo m. Another such system is 1, 2, . . . ,m. When m is an odd integer, the
numbers 0,±1, . . . ,± 1

2 (m − 1) also form a complete system of residues modulo m.

By Theorem 1.24, Zm contains m residue classes, so any complete residue system
modulo m must contain exactly m integers, which must be pairwise incongruent modulo m.
The next theorem demonstrates that the converse is also true: any m incongruent integers
modulo m form a complete residue system modulo m.

Theorem 1.27. If a1, . . . , am are integers such that ai . a j (mod m) when i , j, then
a1, . . . , am is a complete system of residues modulo m.

Proof. For j = 1, . . . ,m, we write

a j = mq j + r j, 0 ≤ r j < m.

We claim that r1, . . . , rm are a permutation of 0, 1, . . . ,m − 1. Indeed, r1, . . . , rm are m
integers from the set {0, 1, . . . ,m − 1}. Thus, either each number from this set appears
among r1, . . . , rm, or some number appears twice: say, ri = r j = r for some i , j. But in
the latter case, we have

ai − a j = (mqi + r) − (mq j + r) = m(qi − q j) =⇒ ai ≡ a j (mod m),

which contradicts our assumption about the ai’s. This establishes our claim. Now, since
a j = mq j + r j, we have

a j ≡ r j (mod m) =⇒ [a j] = [r j],

and we conclude that {
[a1], . . . , [am]

}
=
{

[r1], . . . , [rm]
}
.

Since [r1], . . . , [rm] are a permutation of [0], [1], . . . , [m − 1], this proves the theorem. �

Corollary 1.28. If a, b are integers, with (a,m) = 1, and r1, . . . , rm is a complete system
modulo m, then

ar1 + b, ar2 + b, . . . , arm + b
is also a complete system modulo m.

Definition 1.29. A reduced system of residues modulo m is a system of integers a1, . . . , as

such that {
[a1], . . . , [as]

}
=
{

[x]m | (x,m) = 1
}

and ai . a j (mod m) when i , j. That is, the residue class [x] of every integer x, with
(x,m) = 1, appears among [a1], . . . , [as] exactly once.

Example 1.30. If p is a prime number, the integers 1, 2, . . . , p − 1 form a reduced residue
system modulo p. Indeed, if (x, p) = 1, then by Theorem 1.24, [x] = [r] for some r with
0 ≤ r ≤ p − 1. Furthermore, if r = 0, we get

x ≡ 0 (mod p) =⇒ p | x,

which contradicts our assumption that (x, p) = 1. Hence, r > 0, that is r is one of the
integers 1, 2, . . . , p − 1.

Similarly, it can be shown that if p > 2 is prime, the integers ±1,±2, . . . ,± 1
2 (p − 1)

form a reduced system of residues modulo p.
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Theorem 1.31. If r1, . . . , rs is a reduced system modulo m and (a,m) = 1, then ar1, . . . , ars

is also a reduced system modulo m.

Theorem 1.32 (Fermat’s little theorem). If p is a prime number and (a, p) = 1, then

ap−1 ≡ 1 (mod p).

Proof. By Example 1.30 and Theorem 1.31, the integers a, 2a, . . . , (p − 1)a form a
reduced residue system modulo p. Hence, the classes [a], [2a], . . . , [(p − 1)a] modulo p
form a permutation of the classes [1], [2], . . . , [p − 1]. In particular, the product of the
classes in the first list equals the product of the classes in the second:

[a][2a] · · · [(p − 1)a] = [1][2] · · · [p − 1].

Using (1.3), we deduce

[a(2a) · · · ((p − 1)a)] = [1 · 2 · · · (p − 1)] =⇒ [ap−1(p − 1)!] = [(p − 1)!].

Rewriting the last identity as a congruence modulo p, we get

ap−1(p − 1)! ≡ (p − 1)! (mod p). (1.4)

By Corollary 1.12 with a = p, k = p − 1 and b j = j, we get (p, (p − 1)!) = 1, so the result
follows from (1.4) and part vi) of Theorem 1.21. �

1.6. Exercises
Exercise 1.1. Use the Euclidean algorithm to find the gcd’s: (102, 222); (981, 1234); (20785, 44350).

Exercise 1.2. Prove Lemma 1.6.

Exercise 1.3. Let (a, b) = d, a = da1 and b = db1. Prove that (a1, b1) = 1.

Exercise 1.4. The purpose of this exercise is to deduce Theorem 1.10 from the well-ordering axiom of the natural
numbers: Every non-empty subset of N has a unique least element.

(a) Let a and b be integers, not both zero. Show that the set

S =
{

ax + by | x, y ∈ Z, ax + by > 0
}

is a non-empty subset of N. Deduce that S has a least element c.
(b) Let d = (a, b). Show that d divides all the elements of S. Deduce that d | c.
(c) By the quotient-remainder theorem, there exist integers q and r such that a = cq + r and 0 ≤ r < c.

Show that r can be expressed in the form r = au + bv, with u, v ∈ Z. Deduce that r = 0, and so c | a.
(d) Argue similarly to part (c) to show that c | b. Deduce that c | d.
(e) Combine parts (b) and (d) to show that c = d.

Exercise 1.5. The purpose of this exercise is to deduce Theorem 1.10 from the Euclidean algorithm.

(a) Let S ⊂ N, and let d ∈ S divides all the elements of S . Show that d is the least element of S .
(b) Let a, b ∈ N, with b < a, and let d = (a, b). Show that d divides all the elements of

S =
{

ax + by | x, y ∈ Z, ax + by > 0
}
.

(c) Let b | a. Use part (a) to show that b is the least element of the set S in part (b).
(d) Let b - a. Use induction on m to show that each of the remainders r1, . . . , rm in the Euclidean

algorithm is an element of S. In particular, rm = d is an element of S. Use parts (a) and (b) to deduce
that d is the least element of S.

Exercise 1.6. Use mathematical induction to prove Corollary 1.12.

Exercise 1.7. Prove Theorem 1.13.

Exercise 1.8. Prove Theorem 1.14.

Exercise 1.9. If a, b ∈ Z and b > 0, prove that there exist unique integers q and r such that

a = bq + r, 1 ≤ r ≤ b.
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Exercise 1.10. Let p be a prime number and k be an integer with 1 ≤ k ≤ p−1. Prove that p divides the binomial
coefficient

(p
k

)
=

p!
k!(p−k)! .

Exercise 1.11. Prove Theorem 1.31.

Exercise 1.12. Use mathematical induction to show that if n is a positive integer, then 4n ≡ 1 + 3n (mod 9).

Exercise 1.13. Find the least positive residue modulo 47 of: 210; 247; 22010. [Hint. 47 is prime, so Fermat’s
little theorem may be of help.]

Exercise 1.14. Let (m, n) = 1. Use Theorem 1.27 to prove that if x runs through a complete residue system
modulo m and y runs through a complete residue system modulo n, the sums nx + my run through a complete
system of residues modulo mn.

Exercise 1.15. Let k ≥ 2 and m1,m2, . . . ,mk be pairwise relatively prime integers (i.e., (mi,m j) = 1 whenever
i , j). Define M = m1m2 · · ·mk and M j = M/m j =

∏
i, j mi for j = 1, 2, . . . , k. Use mathematical induction to

prove that if x1, x2, . . . , xk run through complete systems of residues modulo m1,m2, . . . ,mk , respectively, then
the sums M1 x1 + M2 x2 + · · · + Mk xk run through a complete system of residues modulo M. [Hint. The previous
exercise provides the base of the induction and should also help with the inductive step.]

The next couple of exercises review some of the divisibility tests and their proofs. When a0, a1, . . . , ak are
digits (i.e., integers between 0 and 9), the integer with those decimal digits is denoted (akak−1 . . . a1a0)10, i.e.,

(akak−1 . . . a1a0)10 = ak10k + ak−110k−1 + · · · + a110 + a0. (1.5)

Most divisibility tests use congruences to simplify the right side of (1.5).

Exercise 1.16. In this exercise, we prove the tests for divisibility by 2, 5, 3, 9 and powers of 2 and 5. Let
n = (ak . . . a1a0)10.

(a) Compare the two sides of (1.5) modulo 2 to show that: 2 | n if and only if 2 | a0, i.e., if 2 divides the
units digit of n.

(b) Compare the two sides of (1.5) modulo 5 to show that: 5 | n if and only if 5 | a0, i.e., if 5 divides the
units digit of n.

(c) Compare the two sides of (1.5) modulo 9 to show that: 9 | n if and only if 9 | (a0 + a1 + · · ·+ ak), i.e.,
if 9 divides the sum of the digits of n. [Hint. 10 j ≡ 1 (mod 9) for all j ∈ N.]

(d) Use part (c) to show that: 3 | n if and only if 3 divides the sum of the digits of n.
(e) Compare the two sides of (1.5) modulo 4 to show that: 4 | n if and only if 4 | (a1a0)10, i.e., if 4

divides the two-digit number formed from the last two digits of n.
(f) Compare the two sides of (1.5) modulo 8 to show that: 8 | n if and only if 8 | (a2a1a0)10, i.e., if 8

divides the three-digit number formed from the last three digits of n.
(g) Compare the two sides of (1.5) modulo 25 to show that: 25 | n if and only if 25 | (a1a0)10, i.e., if 25

divides the two-digit number formed from the last two digits of n.
(h) Generalize parts (e)–(g) to state and prove divisibility tests by powers of 2 and 5.

Exercise 1.17. In this exercise, we prove the tests for divisibility by 7, 11, 13, 27 and 37. Let n = (ak . . . a1a0)10.
(a) Compare the two sides of (1.5) modulo 11 to show that: 11 | n if and only if 9 | (a0 − a1 + a2 − · · · ),

i.e., if 11 divides the alternating sum of the digits of n. [Hint. 10 j ≡ (−1) j (mod 11) for all j ∈ N.]
(b) Compare the two sides of (1.5) modulo 999 to show that: 999 | n if and only if 999 divides the sum

(a0a1a2)10 + (a3a4a5)10 + (a6a7a8)10 + · · · .

(c) Note that 999 = 27 · 37. Use this and part (b) to obtain divisibility tests modulo 27 and 37.
(d) Compare the two sides of (1.5) modulo 1001 to show that: 1001 | n if and only if 1001 divides the

alternating sum
(a0a1a2)10 − (a3a4a5)10 + (a6a7a8)10 − · · · .

(e) Note that 1001 = 7 · 11 · 13. Use this and part (e) to obtain divisibility tests modulo 7 and 13.



CHAPTER 2

The Law Of Quadratic Reciprocity

In this chapter, we state the law of quadratic reciprocity and some related theorems
and describe their importance for the solution of quadratic congruences in one unknown.

2.1. Polynomial congruences

A polynomial congruence (in one variable) is a congruence of the form

anxn + · · · + a1x + a0 ≡ 0 (mod m), (2.1)

where a0, a1, . . . , an are given integers and x is an integer unknown. If x0 is a solution of
(2.1) and x1 ≡ x0 (mod m), then by parts iv) and v) of Theorem 1.21,

anxn
1 + · · · + a1x1 + a0 ≡ anxn

0 + · · · + a1x0 + a0 ≡ 0 (mod m),

that is, x1 is also a solution of (2.1). Consequently, if an integer x0 is a solution of (2.1), all
the integers in the congruence class [x0] are also solutions. Thus, we usually describe the
solutions of a polynomial congruence modulo m as a collection of residue classes modulo
m.

Example 2.1. Consider the congruence

2x4 − 3x2 + x + 7 ≡ 0 (mod 5).

Since there are only five congruence classes modulo 5 and each of them either is a solution
of the above congruence, or is not, we may simply perform an exhaustive search for the
solutions:

2 · 04 − 3 · 02 + 0 + 7 = 7 . 0 (mod 5);

2 · 14 − 3 · 12 + 1 + 7 = 7 . 0 (mod 5);

2(−1)4 − 3(−1)2 + (−1) + 7 = 5 ≡ 0 (mod 5);

2 · 24 − 3 · 22 + 2 + 7 = 29 . 0 (mod 5);

2(−2)4 − 3(−2)2 + (−2) + 7 = 25 ≡ 0 (mod 5).

Hence, the solutions of this congruence are the integers x in the congruence classes

x ≡ −1 (mod 5) and x ≡ −2 (mod 5).

Clearly, the method used to solve the above example can be applied to any explicit
congruence, and it will eventually find all the solutions of the congruence. However, this
method has two significant weaknesses. First, it can be extremely inefficient—just try to
apply it to the congruence

2010x2010 + · · · + 3x3 + 2x2 + x + 31415926 ≡ 0 (mod 1010).

Furthermore, even when the method can be applied in reasonable time (as in Example 2.1),
it still provides no insight into the structure of the solutions. These shortcomings of the

11
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brute force method from Example 2.1 have led to the development of more sophisticated
techniques for solving polynomial congruences. The ensuing theory of polynomial congru-
ences shares many features with the theory of polynomial equations over the real numbers
that you are familiar with. For example, you should be familiar with the following result
from algebra:

If f (x) is a polynomial with real coefficients of degree n, then the equa-
tion f (x) = 0 has at most n distinct roots.

There is a similar result for polynomial congruences modulo a prime modulus p. We state
it here for future reference. The proof is sketched in the exercises.

Theorem 2.2 (Lagrange). Let p be a prime number and f (x) = anxn + · · · + a1x + a0 be
a polynomial with integer coefficients such that p - an. Then the congruence f (x) ≡ 0
(mod p) has at most n solutions modulo p.

2.2. Linear congruences

A linear congruence (in one variable) is a congruence of the form

ax ≡ b (mod m), (2.2)

where x is an integer unknown. It turns out that it is almost as easy to describe the solutions
of a linear congruence as it is to describe the solutions of a linear equation. First, we
consider the case when (a,m) = 1.

Theorem 2.3. Let a, b ∈ Z and m ∈ N, and let (a,m) = 1. Then the linear congruence
(2.2) has a unique solution modulo m.

Proof. By Theorem 1.10, there exist u, v ∈ Z such that au + mv = 1. Multiplying both
sides of this identity by b, we obtain

aub + mvb = b =⇒ a(ub) = b + m(−vb) =⇒ a(ub) ≡ b (mod m).

That is, ub is a solution of (2.2).
Moreover, if x and y are two solutions of (2.2), then by part vi) of Theorem 1.21,

ax ≡ b ≡ ay (mod m) =⇒ x ≡ y (mod m),

that is, any two solutions of (2.2) must belong to the same congruence class modulo m. �

Let (a,m) = 1. In the special case b = 1, the unique solution modulo m of the
congruence ax ≡ 1 (mod m) is called the inverse of a modulo m and is denoted by a∗, i.e.,
a∗ denotes any integer such that aa∗ ≡ 1 (mod m). By the above theorem, a∗ is determined
up to congruence modulo m.

The next theorem extends Theorem 2.3 to linear congruences (2.2), where a and m are
not necessarily coprime.

Theorem 2.4. Let a, b ∈ Z and m ∈ N, and let (a,m) = d. If d - b, then the congruence
(2.2) has no solutions. If d | b, then (2.2) has exactly d incongruent solutions modulo m,

x ≡ x0 + r(m/d) (mod m) (r = 0, 1, . . . , d − 1). (2.3)

Proof. Let a = da1 and m = dm1. We note that then (a1,m1) = 1, by Exercise 1.3. By
Theorem 1.20, for each solution x of (2.2), we can find a k ∈ Z such that

ax = b + km =⇒ b = ax − km = d(a1x − km1) =⇒ d | b.

Therefore, the condition d | b is necessary for the existence of solutions of (2.2). This
establishes the first part of the theorem.
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Now, suppose that d | b and b1 = b/d. By part vi) of Theorem 1.21, (2.2) is equivalent
to the congruence

a1x ≡ b1 (mod m1).
Since (a1,m1) = 1, the last congruence has a unique solution modulo m1 by Theorem 2.3.
Hence, the solutions of (2.2) are the integers in some congruence class x ≡ x0 (mod m1).
Let x0 + km1, k ∈ Z, be one of these solutions. By the quotient-remainder theorem, there
exist integers q, r such that k = dq + r. Hence,

x0 + km1 = x0 + rm1 + q(dm1) ≡ x0 + rm1 (mod m).

Therefore, any solution of (2.2) belongs to one of the congruence classes (2.3). Conversely,
any integer x that belongs to one of the congruence classes (2.3) satisfies x ≡ x0 (mod m1),
and therefore, x is a solution of (2.2). �

Example 2.5. Consider the congruences 10x ≡ 5 (mod 12) and 10x ≡ 6 (mod 12). The
first congruence has no solution, because (10, 12) = 2 and 2 - 5. The second congruence
has solutions. By parts v) and vi) of Theorem 1.21,

10x ≡ 6 (mod 12) =⇒ 5x ≡ 3 (mod 6),

and

5x ≡ 3 (mod 6) =⇒ −5x ≡ −3 (mod 6) =⇒ x ≡ 3 (mod 6).

Thus, the second congruence has two incongruent solutions modulo 12:

x ≡ 3 (mod 12), x ≡ 9 (mod 12).

2.3. Quadratic congruences. Quadratic residues and nonresidues

Next, it is natural to consider the quadratic congruence

ax2 + bx + c ≡ 0 (mod m),

where (a,m) = 1. A variation of the classic trick of completing of the square can be
used to reduce any quadratic congruence to congruence of the form x2 ≡ d (mod m) (see
Exercise 2.11), so we shall focus on such congruences.

Definition 2.6. Let a,m ∈ Z, with m > 1 and (a,m) = 1. We say that a is a quadratic
residue modulo m if the congruence x2 ≡ a (mod m) has a solution; we say that a is a
quadratic nonresidue modulo m if it is not a quadratic residue.

Example 2.7. Consider the case m = 7: 2 is a quadratic residue modulo 7, but 3 and 5 are
not. In fact, the square of any integer is congruent modulo 7 to the square of one of the
numbers 0,±1,±2,±3. Hence, for any x ∈ Z,

x2 ≡ 0, 1, 2 or 4 (mod 7).

Therefore, the quadratic residues modulo 7 are 1, 2 and 4, and the quadratic nonresidues
are 3, 5 and 6; 0 is neither residue nor nonresidue.

Example 2.8. The only quadratic residue modulo 8 is 1. Indeed, the square of any integer
is congruent modulo 8 to the square of one of the numbers 0,±1,±2,±3 or 4. Hence, for
any x ∈ Z,

x2 ≡ 0, 1 or 4 (mod 8).
Therefore, the quadratic residue modulo 8 is 1, and the quadratic nonresidues are 3, 5 and
7; 0, 2, 4 and 6 are neither residues nor nonresidues.
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Lemma 2.9. Let p > 2 be a prime and a be a quadratic residue modulo p. Then the
congruence

x2 ≡ a (mod p) (2.4)

has exactly two solutions modulo p.

Proof. Since a is a quadratic residue, there is an integer b such that b2 ≡ a (mod p).
Furthermore, we have (−b)2 = b2 ≡ a (mod p), so −b is also a solution of (2.4). These
two solutions are distinct modulo p. Indeed, if they were not, we would have

b ≡ −b (mod p) =⇒ 2b ≡ 0 (mod p) =⇒ b ≡ 0 (mod p),

by part vi) of Theorem 1.21 (note that (2, p) = 1). Hence a ≡ b2 ≡ 0 (mod p), which
contradicts our assumption that a is a quadratic residue. Therefore, congruence (2.4) has
at least two distinct solutions modulo p. On the other hand, by Theorem 2.2, (2.4) has at
most two distinct solutions modulo p. It follows that (2.4) has exactly two distinct solutions
modulo p. �

Compare the above lemma with Example 2.8: the congruence x2 ≡ 1 (mod 8) has not
two but four solutions modulo 8. This demonstrates that the primality of p is crucial for
the conclusion of Lemma 2.9.

Theorem 2.10. Let p be an odd prime. There are 1
2 (p−1) quadratic residues and 1

2 (p−1)
quadratic nonresidues modulo p.

Proof. If a is a quadratic residue, then (2.4) has solutions x ≡ ±b (mod p) for some
integer b ∈

{
1, 2, . . . , 1

2 (p − 1)
}

. Hence, every quadratic residue is congruent to one of the
integers

12, 22, . . . , 1
4 (p − 1)2. (2.5)

These integers are clearly quadratic residues modulo p. Moreover, the integers (2.5) are
pairwise distinct modulo p. Indeed, if i2 ≡ j2 (mod p), with 1 ≤ i < j ≤ 1

2 (p − 1),
then i,−i, j and − j are all solutions of (2.4) with a = i2; since those four numbers are
incongruent modulo p, this contradicts Theorem 2.2. Therefore, the integers (2.5) are
exactly the quadratic residues modulo p. So, there are 1

2 (p − 1) quadratic residues modulo
p. Since there are p − 1 reduced residue classes modulo p, we deduce that

#(quadratic nonresidues) = (p − 1) − #(quadratic residues)

= (p − 1) − 1
2 (p − 1) = 1

2 (p − 1). �

2.4. The Legendre symbol

Definition 2.11. Let p be an odd prime and (a, p) = 1. The Legendre symbol
(

a
p

)
is defined

by (
a
p

)
=

{
+1 if a is a quadratic residue modulo p,
−1 if a is a quadratic nonresidue modulo p.

Note that the sign of the Legendre symbol
(

a
p

)
tells us whether the congruence (2.4)

has two solutions or no solution at all, just as the sign of a real number a tells us whether
the equation x2 = a has two real solutions or no solution at all. Thus, we now proceed to
study Legendre symbols. Our main objective will be to find an efficient way of computing
the Legendre symbol

(
a
p

)
for a given odd prime p and an integer a.
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Theorem 2.12 (Euler’s criterion). Let p be an odd prime and (a, p) = 1. Then(
a
p

)
≡ a(p−1)/2 (mod p).

Proof. Suppose first that a is a quadratic residue and a ≡ b2 (mod p), with (b, p) = 1.
Then

a(p−1)/2 ≡
(
b2)(p−1)/2

= bp−1 ≡ 1 (mod p),

by Fermat’s little theorem. Therefore, a(p−1)/2 ≡
(

a
p

)
(mod p).

Now, suppose that a is a quadratic nonresidue. We just showed that every quadratic
residue is a solution of the polynomial congruence

x(p−1)/2 − 1 ≡ 0 (mod p). (2.6)

The degree of this congruence is (p − 1)/2, so by Theorem 2.2, it has at most (p − 1)/2
solutions modulo p. Since there are exactly (p − 1)/2 quadratic residues modulo p, we
conclude that the solutions of (2.6) are exactly the quadratic residues modulo p. In partic-
ular, a is not a solution of (2.6): that is, p -

(
a(p−1)/2 − 1

)
. On the other hand, by Fermat’s

little theorem,

ap−1 − 1 ≡ 0 (mod p) =⇒
(
a(p−1)/2 − 1

)(
a(p−1)/2 + 1

)
≡ 0 (mod p).

Since p -
(
a(p−1)/2 − 1

)
, we deduce that

a(p−1)/2 + 1 ≡ 0 (mod p) =⇒ a(p−1)/2 ≡ −1 =

(
a
p

)
(mod p). �

Corollary 2.13. Let p be an odd prime. Then(
−1
p

)
=

{
+1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

Theorem 2.14. Let p be an odd prime and (a, p) = (b, p) = 1. Then:

i) if a ≡ b (mod p), then
(

a
p

)
=
(

b
p

)
;

ii)
(

a
p

)(
b
p

)
=
(

ab
p

)
.

Proof. i) Using Theorem 2.12 and the hypothesis a ≡ b (mod p), we get(
a
p

)
≡ a(p−1)/2 ≡ b(p−1)/2 ≡

(
b
p

)
(mod p).

Since
(

a
p

)
= ±1 and

(
b
p

)
= ±1,(

a
p

)
−

(
b
p

)
= 2, 0 or − 2.

Since p ≥ 3 must divide this difference, we deduce that(
a
p

)
−

(
b
p

)
= 0. �

Corollary 2.15. Let p be an odd prime. The product of two quadratic residues or of
two quadratic non-residues (modulo p) is a quadratic residue; the product of a quadratic
residue and a quadratic non-residue is a quadratic non-residue.
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2.5. Quadratic reciprocity

We can now state the main theorem of this course. Gauss, who was the first to give a
complete proof of the quadratic reciprocity law (actually, he found at least eight different
proofs), called it Theorema Aureum (i.e., golden theorem). To this day, it is considered one
of the crown jewels of elementary number theory.

Theorem 2.16 (Quadratic reciprocity law). Let p and q be distinct odd primes. Then(
p
q

)(
q
p

)
= (−1)

1
2 (p−1)· 12 (q−1) =

{
+1 if p or q ≡ 1 (mod 4),
−1 if p ≡ q ≡ 3 (mod 4).

The law of quadratic reciprocity is usually complemented with a formula for the Le-
gendre symbol

(
2
p

)
, which we state in the next theorem.

Theorem 2.17. If p is an odd prime, then(
2
p

)
= (−1)(p2−1)/8 =

{
+1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

Combining Theorems 2.16 and 2.17, Corollary 2.13 and the two properties of Le-
gendre symbols in Theorem 2.14, we can easily compute Legendre symbols. The next
example illustrates the usual strategy.

Example 2.18. The number 9973 is prime. Let us determine whether 19920 is a quadratic
residue modulo 9973. We need to compute

(
19920
9973

)
. First, we use Theorem 2.14 to replace

the number 19920 in the top position of the Legendre symbol by a smaller number:(
19920
9973

)
=

(
19920 − 9973

9973

)
=

(
9947
9973

)
=

(
9947 − 9973

9973

)
=

(
−26
9973

)
.

Using Corollary 2.13 and Theorem 2.17, we get(
−1

9973

)
= +1, because 9973 ≡ 1 (mod 4);(

2
9973

)
= −1, because 9973 ≡ 5 (mod 8).

Thus, by part ii) of Theorem 2.14,(
−26
9973

)
=

(
−1

9973

)(
2

9973

)(
13

9973

)
= (+1)(−1)

(
13

9973

)
= −

(
13

9973

)
.

Now, since 13 ≡ 1 (mod 4), the quadratic reciprocity law yields(
13

9973

)(
9973

13

)
= 1 =⇒

(
13

9973

)
=

(
9973

13

)
.

Again, we use part i) of Theorem 2.14 to replace 9973 by a smaller number:(
9973

13

)
=

(
873
13

)
=

(
93
13

)
=

(
2

13

)
= −1,

because of Theorem 2.17. Therefore,(
19920
9973

)
=

(
−26
9973

)
= −

(
13

9973

)
= −

(
9973
13

)
= 1,

and 19920 is a quadratic residue modulo 9973. �
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The purpose of the remainder of this course is to explain several different proofs of the
quadratic reciprocity law. There are many such proofs. In fact, they are so numerous that
Dr. Franz Lemmermeyer has set up a special website:

http://www.rzuser.uni-hd.de/˜hb3/frchrono.html,
with a list of all known (to him) proofs of Theorem 2.16. At the time of this writing (Febru-
ary, 2010), the website lists 233 proofs. Not all those proofs are completely different—and
some are just minor modifications of others, but there is still a great variety of methods.
Our discussion will focus on two main groups of proofs, which rely on Theorems 2.19
and 2.21 below.

Theorem 2.19 (Gauss’ lemma). Let p be an odd prime and (a, p) = 1. Let µ be the number
of least positive residues of the integers a, 2a, 3a, . . . , 1

2 (p − 1)a modulo p that are greater
than p/2. Then

(
a
p

)
= (−1)µ.

Example 2.20. Let p = 13 and a = 7. Then the integers in the statement of Gauss’
lemma are 7, 14, 21, 28, 35 and 42. Their least positive residues modulo 13 are 7, 1, 8, 2, 9
and 3, of which three are greater than 13/2. Hence, µ = 3 and Gauss’ lemma states that(

7
13

)
= (−1)3 = −1.

In the next theorem, i =
√
−1 is the imaginary unit. We shall review complex numbers

and the meaning of the complex exponential e2πin2/m in the next lecture.

Theorem 2.21 (Gauss sum formula). Let m ∈ N. Then
m∑

n=1

e2πin2/m =
1 + i−m

1 + i−1

√
m.

2.6. Exercises
Exercise 2.1. Solve the linear congruences: 102x ≡ 5 (mod 22); 7x ≡ 3 (mod 5); 24x ≡ 6 (mod 39).

Exercise 2.2. The purpose of this exercise is to establish Theorem 2.2. Let f (x) = an xn + · · · + a1 x + a0 be a
polynomial with integer coefficients of degree n ≥ 1.

(a) Let r be an integer. Synthetic division gives f (x) = (x − r)gr(x) + f (r), where gr(x) is a polynomial
of degree n − 1. Prove that gr(x) also has integer coefficients and that its leading coefficient is an.

(b) Suppose that p is a prime and r and s are integers such that r . s (mod p) and f (r) ≡ f (s) ≡ 0
(mod p). Let gr(x) be the polynomial with integer coefficients from part (a). Prove that gr(s) ≡ 0
(mod p).

(c) Use mathematical induction on n to prove Theorem 2.2.
[Hint. Theorem 2.3 provides the base of the induction. Your inductive hypothesis should be that the
theorem is true for all polynomials of degree n − 1, where n ≥ 2. Then the inductive step should
establish the theorem for a generic f (x) of degree n. Let r, r2, . . . , rk be the solutions of f (x) ≡ 0
(mod p). Use part (b) to show that r2, . . . , rk are solutions of gr(x) ≡ 0 (mod p), where gr(x) is the
polynomial from part (a); then apply the inductive hypothesis to gr(x).]

Exercise 2.3. Evaluate the Legendre symbols:
( 3

53

)
;
( 15

101

)
;
( 105

1009

)
;
( 1973

2011

)
.

Exercise 2.4. Prove Corollary 2.13.

Exercise 2.5. Prove part ii) of Theorem 2.14.

Exercise 2.6. Use Gauss’ lemma with a = 2 to prove Theorem 2.17.

Exercise 2.7. Let p and q be two distinct primes and (a, pq) = 1.
(a) Prove that if a is a quadratic residue modulo pq, then a is a quadratic residue modulo p and modulo

q.
(b) Prove that if y2 ≡ a (mod p) and y2 ≡ a (mod q), then y2 ≡ a (mod pq).
(c) Show that there exist integers u and v such that pu + qv = 1.

http://www.rzuser.uni-hd.de/~hb3/frchrono.html
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(d) Let y = psu + qrv, where u and v are the integers from part (c). Prove that y ≡ r (mod p) and y ≡ s
(mod q).

(e) Prove that if a is a quadratic residue modulo p and modulo q, then a is a quadratic residue modulo
pq.
[Hint. Let r be a solution of x2 ≡ a (mod p) and s be a solution of x2 ≡ a (mod q). Use part (d) to
construct an integer y such that y2 ≡ a (mod p) and y2 ≡ a (mod q). Then apply part (b).]

(f) Prove that if a is a quadratic residue modulo pq, then the congruence x2 ≡ a (mod pq) has four
solutions.
[Hint. Every solution y of x2 ≡ a (mod pq) arises from a solution r of x2 ≡ a (mod p) and a solution
s of x2 ≡ a (mod q) via the procedure outlined in the hint to part (e). Since the latter congruences
have two solutions each, the congruence modulo pq has four solutions.]

Exercise 2.8. The purpose of this exercise is to establish Gauss’ lemma. Let p be an odd prime and (a, p) = 1,
and let µ be the number from the statement of Gauss’ lemma.

(a) For each j = 1, 2, . . . , 1
2 (p− 1), ja is congruent to one of the numbers ±1,±2, . . . ,± 1

2 (p− 1): that is,
ja ≡ ε jr j (mod p), where 1 ≤ r j ≤

1
2 (p − 1) and ε j = ±1. Prove that (−1)µ = ε1ε2 · · · ε(p−1)/2.

(b) Prove that r1, r2, . . . , r(p−1)/2 are pairwise distinct.
(c) Prove that r1r2 · · · r(p−1)/2 =

( 1
2 (p − 1)

)
!.

(d) Use parts (a) and (c) to prove that a(p−1)/2( 1
2 (p − 1)

)
! ≡ (−1)µ

( 1
2 (p − 1)

)
! (mod p).

(e) Deduce Gauss’ lemma from part (d) and Euler’s criterion. [Hint. p -
( 1

2 (p − 1)
)
!.]

Exercise 2.9. This exercise establishes Wilson’s theorem: If p is a prime, then (p − 1)! ≡ −1 (mod p).
(a) Use Theorems 2.2 and 2.3 to show that the numbers 2, 3, . . . , p − 2 can be partitioned into 1

2 (p − 3)
pairs a, a∗ such that aa∗ ≡ 1 (mod p).

(b) Use part (a) to deduce that (p − 1)! ≡ 1(p−3)/2(p − 1) ≡ −1 (mod p).

Exercise 2.10. Use the quadratic reciprocity law to prove that if p is an odd prime, then(
3
p

)
=

{
+1 if p ≡ ±1 (mod 12),
−1 if p ≡ ±5 (mod 12).

Exercise 2.11. Consider the congruence ax2 + bx + c ≡ 0 (mod p), where p is a prime and a, b and c are integers
with p - a.

(a) Let p = 2. Determine which quadratic congruences modulo 2 have solutions. [Hint. There are only
four congruences to worry about.]

(b) Let p be an odd prime and let d = b2 − 4ac. Show that the congruence ax2 + bx + c ≡ 0 (mod p) is
equivalent to the congruence y2 ≡ d (mod p), where y = 2ax + b.

(c) Use part (b) to show that if p | d, then the congruence ax2 +bx+c ≡ 0 (mod p) has only one solution
modulo p.

(d) Use part (b) to show that if d is a quadratic residue modulo p, then the congruence ax2 + bx + c ≡ 0
(mod p) has two incongruent solutions modulo p.

(e) Use part (b) to show that if d is a quadratic nonresidue modulo p, then the congruence ax2 +bx+c ≡ 0
(mod p) has no solution modulo p.

Exercise 2.12. Let m > 1 be an odd integer, and let m = p1 p2 · · · pk be its unique factorization as a product of
primes (cf. Theorem 1.18). The Jacobi symbol

(
·
m

)
modulo m is defined for all integers a such that (a,m) = 1 by( a

m

)
=

(
a
p1

)(
a
p2

)
· · ·

(
a
pk

)
,

where the factors
( a

p j

)
on the right side are Legendre symbols.

(a) Use Corollary 2.13 to show that
(
−1
m

)
= (−1)(m−1)/2.

(b) Use Theorem 2.14 to show that
( a

m

)( b
m

)
=
( ab

m

)
and that

( a
m

)
=
( b

m

)
whenever a ≡ b (mod m).

(c) Use the quadratic reciprocity law to show that if m, n ∈ N and (m, n) = 1, then( n
m

)(m
n

)
= (−1)

1
2 (m−1)· 12 (n−1).



CHAPTER 3

Complex Numbers

In this chapter, we review the definition and the properties of the complex numbers.
We also extend the definitions of some of some elementary functions from real to complex
argument and give a brief overview of some of the properties of the extended functions.
Most likely, some of the material in this chapter will be familiar from earlier classes and
some will be new (although those who have taken a course in complex analysis will likely
find nothing new).

3.1. Definition and algebraic properties

We start with the definition of a complex number. In lower-level courses, one usually
encounters complex numbers as expressions of the form a + ib, where a, b ∈ R and i is a
non-real “number” such that i2 = −1 (hence, we often say “...where i =

√
−1”). What one

usually does not encounter is any explanation where the number i comes from and why it
exists in the first place. Here, we will give a more systematic treatment of the definition of
a complex number. Our definition may seem strange at first, but eventually it will lead us
to the same concept and also will reveal the mystery behind the “imaginary unit” i.

A complex number z is an ordered pair (x, y), with x, y ∈ R. The set of all complex
numbers is denoted by C, that is,

C =
{

(x, y) | x, y ∈ R
}
.

The components x and y of the complex number z = (x, y) are called real and imaginary
parts of z and are denoted x = Re z and y = Im z, respectively.

We define the algebraic operations addition, +, and multiplication, × (also denoted ‘·’
or not at all), of two complex numbers z1 = (x1, y1) and z2 = (x2, y2) as follows:

z1 + z2 := (x1 + x2, y1 + y2), z1 · z2 := (x1x2 − y1y2, x1y2 + x2y1). (3.1)

We call the complex number (0, 1) the imaginary unit and denote it by i. Further, for
x ∈ R, we identify x and the complex number (x, 0), that is, we write x = (x, 0). With these
conventions, we can use (3.1) to express a complex number z = (x, y) in the form

z = (x, y) = (x, 0) + (0, 1) · (y, 0) = x + iy.

Henceforth, we will always write the complex number z = (x, y) as z = x + iy. That is,

C =
{

x + iy | x, y ∈ R
}
,

with addition and multiplication given by

z1 + z2 := (x1 + x2) + i(y1 + y2), z1z2 := (x1x2 − y1y2) + i(x1y2 + x2y1). (3.2)

Note that with these definitions, the imaginary unit i satisfies the relation i2 = −1. This is
where the phrase “...where i =

√
−1” comes from.

19
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Combining the two definitions (3.2) with the algebraic properties of real numbers,
we can extend many of those properties to complex numbers. Proposition 3.1 below lists
several such properties. We note that the properties of complex numbers listed in the
proposition establish that C with the two operations defined above is a field.

Proposition 3.1. Let z = x + iy, z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3 be complex
numbers. Then:

i) z1 + z2 = z2 + z1;
ii) (z1 + z2) + z3 = z1 + (z2 + z3);

iii) the number zero, 0 = 0 + i0, satisfies z + 0 = z;
iv) the number (−z) = (−x) + i(−y) satisfies z + (−z) = 0;
v) z1z2 = z2z1;

vi) (z1z2)z3 = z1(z2z3);
vii) the number one, 1 = 1 + i0, satisfies z · 1 = z;

viii) if z , 0, there is a number z−1 satisfying zz−1 = 1;
ix) (z1 + z2)z = z1z + z2z.

Proof. The proofs of these properties use the properties of the real numbers. For
example, consider v). We have

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1) by (3.2)
= (x2x1 − y2y1) + i(x2y1 + x1y2) by the properties of R
= z2z1 by (3.2).

We also remark that the number z−1 in viii) is given by

z−1 =
x

x2 + y2 + i
−y

x2 + y2 . �

3.2. Geometric interpretation, moduli and conjugates

It is natural to associate with every complex number z = x + iy the point (x, y) in
the xy-plane. When the plane is used to represent geometrically the complex numbers in
this fashion, it is usually referred to as the complex plane. Oftentimes, it is also useful
to visualize the number z = x + iy as the vector from the origin to the point (x, y). For
example, the sum of z1 + z2 is represented this way by the sum of the vectors representing
z1 and z2 (see Figure 3.1).

The vector interpretation is also helpful in extending the notion of absolute value of a
real number to C. We define the modulus, |z|, of a complex number z = x + iy by

|z| =
√

x2 + y2.

z2

z1

z1 + z2

Figure 3.1. Geometric interpretation of the addition



3.2. GEOMETRIC INTERPRETATION, MODULI AND CONJUGATES 21

The complex conjugate of z is the number z̄ = x − iy. Sometimes, we will refer to |z1 − z2|

as the distance between z1 and z2 (since it represents the length of the line segment with
endpoints z1 and z2).

Example 3.2. The distance between z1 = 1 − i and z2 = 3 + 2i is

|z1 − z2| = | − 2 − 3i| =
√

(−2)2 + (−3)2 =
√

13.

Proposition 3.3. If z, z1 and z2 are complex numbers, then:

i) |z|2 = zz̄, Re z = 1
2 (z + z̄), Im z = 1

2i (z − z̄), ¯̄z = z;
ii) z1 ± z2 = z̄1 ± z̄2, z1z2 = z̄1z̄2, z1/z2 = z̄1/z̄2;

iii) |z1z2| = |z1| · |z2|, |z1/z2| = |z1|/|z2|;
iv) z = z̄ if and only if z ∈ R.

Theorem 3.4 (Triangle inequality). For any pair of complex numbers z1 and z2, we have

|z1 + z2| ≤ |z1| + |z2|. (3.3)

Two alternative formulations of the triangle inequality are

|z1 − z2| ≤ |z1| + |z2|, |z1 − z2| ≥ ||z1| − |z2||. (3.4)

Each of the three inequalities in (3.3) and (3.4) can be used to prove the other two (see the
exercises).

Proof. Since both sides of (3.3) are non-negative, it suffices to show that

|z1 + z2|
2 ≤ (|z1| + |z2|)2. (3.5)

Using the properties in Proposition 3.3, we can represent the left side of (3.5) as

|z1 + z2|
2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z̄1 + z̄2)

= z1z̄1 + z1z̄2 + z2z̄1 + z2z̄2 = |z1|
2 + 2 Re(z1z̄2) + |z2|

2,

while the right side of (3.5) equals

|z1|
2 + 2|z1z2| + |z2|

2 = |z1|
2 + 2|z1z̄2| + |z2|

2.

Hence, (3.5) is equivalent to the inequality

|z1|
2 + 2 Re(z1z̄2) + |z2|

2 ≤ |z1|
2 + 2|z1z̄2| + |z2|

2 ⇐⇒ Re(z1z̄2) ≤ |z1z̄2|.

The last inequality follows from the observation that

Re z ≤ |Re z| ≤ |z| ∀z ∈ C. �

Example 3.5. Suppose that |z| ≤ 1 and bound the expression |z2 +3| from above and below.

Solution. By the triangle inequality with z1 = z2 and z2 = 3,

|z2 + 3| ≤ |z|2 + |3| ≤ 1 + 3 = 4,

while by the second inequality in (3.4),

|z2 + 3| ≥
∣∣3 − |z|2∣∣ ≥ 3 − |z|2 ≥ 3 − 1 = 2. �
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3.3. Exponential form

Let z = x + iy be a nonzero complex number and let (r, θ) be the polar coordinates of
the point (x, y). Since x = r cos θ and y = r sin θ, we can express z in the form

z = r(cos θ + i sin θ). (3.6)

Clearly, r = |z|. It is also clear that the number θ is determined up to a shift by a multiple
of 2π, that is, if θ satisfies (3.6), so does any number of the form θ + 2nπ, n ∈ Z. Any such
number θ is called an argument of z and the set of all the arguments of z is denoted arg z:
that is,

arg z =
{
θ + 2nπ | n ∈ Z

}
.

We also define the principal argument of z, Arg z, as the unique argument of z lying in the
interval −π < θ ≤ π.

Definition 3.6. If θ ∈ R, we define

eiθ = exp(iθ) = cos θ + i sin θ.

In particular, we can write (3.6) in exponential form, z = reiθ.

Example 3.7. If z = −1 + i, we have

Arg z = 3π
4 , arg z =

{
3π
4 + 2nπ | n ∈ Z

}
, z =

√
2e3πi/4.

Proposition 3.8. If z1 = r1eiθ1 and z2 = r2eiθ2 are complex numbers in exponential form,
then:

i) z1 = z2 if and only if r1 = r2 and θ1 = θ2 + 2nπ;
ii) z1z2 = r1r2ei(θ1+θ2);

iii) z1/z2 = (r1/r2)ei(θ1−θ2);
iv) zn

1 = rn
1einθ1 for all n ∈ Z.

Proof. ii) It suffices to consider the case r1 = r2 = 1. We have

eiθ1 eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)
= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + cos θ2 sin θ1)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2). �

Example 3.9 (De Moivre’s formula). By part iv) of Proposition 3.8,

(cos θ + i sin θ)n = cos nθ + i sin nθ.

Comparing this identity and the expansion for the left side that follows from the binomial
formula, we can derive formulas for cos nθ and sin nθ. For example, when n = 2, we have

cos 2θ + i sin 2θ = (cos θ + i sin θ)2 = (cos2
θ − sin2

θ) + i(2 sin θ cos θ),

whence
cos 2θ = cos2

θ − sin2
θ, sin 2θ = 2 sin θ cos θ.

Example 3.10. We can use the exponential form of
√

3− i to compute quickly
(√

3− i
)−6.

We have
√

3 − i = 2e−πi/6, so(√
3 − i

)−6
=
(
2e−πi/6)−6

= 2−6eπi = − 1
64 .
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3.4. Roots of complex numbers

Definition 3.11. A complex number w is called an nth root of z ∈ C if wn = z. We will
write z1/n for the set of all nth roots of a complex number z: that is,

z1/n =
{

w ∈ C | wn = z
}
.

The notation n
√

r will be reserved for nth roots of non-negative real numbers, that is, if
r ≥ 0, n

√
r is the unique real number x ≥ 0 satisfying the equation xn = r.

The number 0 has only one nth root—itself. If z = reiθ , 0, a number w = ρeiφ is an
nth root of z if

ρ
neinφ = reiθ ⇐⇒ ρ

n = r and nφ = θ + 2kπ for some k ∈ Z

⇐⇒ ρ =
n√r and φ = (θ + 2kπ)/n for some k ∈ Z.

We observe that among the values of eiφ there are exactly n distinct, which we can obtain
by letting k run through n consecutive integers, say, k = 1, 2, . . . , n or k = 0, 1, . . . , n − 1.
Therefore, z has exactly n nth roots:

n√r eiθ/n, n√r ei(θ+2π)/n, n√r ei(θ+4π)/n, . . . , n√r ei(θ+2(n−1)π)/n.

Example 3.12. We have (−2)1/4 =
4√2 exp

(
i(π/8 + kπ/2)

)
, k = 1, 2, 3, 4.

Example 3.13. We have

41/2 =
{√

4ei(π+kπ) | k = 1, 2
}

=
{

2e2πi, 2e3πi} = {2,−2}.

3.5. The complex exponential

Definition 3.14. We define the (complex) exponential function, denoted ez or exp z, by

ex+iy = exeiy = ex(cos y + i sin y).

Notice that the exponential function defined above agrees with the real exponential
function for real arguments: exp(x + i0) = ex, where the right side represents the real
exponential function from calculus.

Proposition 3.15. The complex exponential function has the following properties:
i) ez1 ez2 = ez1+z2 and ez1/ez2 = ez1−z2 for all z1, z2 ∈ C.

ii) |ez| = eRe z for all z ∈ C.
iii) ez+2πi = ez for all z ∈ C, that is, the exponential function is 2πi-periodic.
iv) The equation ez = c has infinitely many solutions for every c , 0.
v) If m ∈ N and a, b ∈ Z satisfy a ≡ b (mod m), then e2πia/m = e2πib/m.

vi) If a and m are integers and (a,m) = 1, then the list e2πia/m, e2πi2a/m, . . . , e2πima/m

is a permutation of the list e2πi/m, e2πi2/m, . . . , e2πim/m = 1.

Proof. i)–iii). These follow from the definition, the properties of the real exponential
function (from calculus), and the properties of eiy in Proposition 3.8.

iv) Writing z = x + iy and c = reiθ, we can express the equation ez = c in the form

exeiy = reiθ.

By part i) of Proposition 3.8, the latter equation is equivalent to

ex = r, y = θ + 2nπ (n ∈ Z) ⇐⇒ x = ln r, y = θ + 2nπ (n ∈ Z).

That is, the given equation has infinitely many solutions

zn = ln |c| + i(Arg c + 2nπ) (n ∈ Z).
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vi) By Corollary 1.28, when k runs through the integers 1, 2, . . .m, the product ak
runs through a complete system of residues modulo m. That is, the numbers in the list
a, 2a, . . . ,ma can be rearranged as n1, n2, . . . , nm so that nk ≡ k (mod m). Then, by part
v), e2πink/m = e2πik/m, so rearranging the numbers in the list e2πia/m, e2πi2a/m, . . . , e2πima/m as
e2πin1/m, e2πin2/m, . . . , e2πinm/m yields the desired result. �

3.6. Trigonometric and hyperbolic functions of a complex argument

We define the (complex) sine and cosine functions, denoted sin z and cos z, by

sin z =
eiz − e−iz

2i
and cos z =

eiz + e−iz

2
.

We also define the functions tan z, cot z, sec z, csc z in the usual way:

tan z =
sin z
cos z

, cot z =
cos z
sin z

, sec z =
1

cos z
, csc z =

1
sin z

.

We define the (complex) hyperbolic sine and hyperbolic cosine functions, denoted
sinh z and cosh z, by

sinh z =
ez − e−z

2
and cosh z =

ez + e−z

2
.

We also define the functions tanh z, coth z, sech z, csch z by

tanh z =
sinh z
cosh z

, coth z =
cosh z
sinh z

, sech z =
1

cosh z
, csch z =

1
sinh z

.

We note that, with the exception of sin z and cos z, all these functions are defined (at
least formally) by extending their known definitions from calculus to the complex case.
The definitions of sin z and cos z, on the other hand, extend Euler’s formulas

sin x =
eix − e−ix

2i
and cos x =

eix + e−ix

2

from the real to the complex case.

Proposition 3.16. The following properties hold true:

i) sin(z1 +z2) = sin z1 cos z2 +cos z1 sin z2, cos(z1 +z2) = cos z1 cos z2−sin z1 sin z2;
ii) sin2 z + cos2 z = 1;

iii) the trigonometric functions are 2π-periodic; the functions tan z and cot z are π-
periodic;

iv) sinh z = −i sin(iz), cosh z = cos(iz);
v) sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2, cosh(z1 + z2) = cosh z1 cosh z2 +

sinh z1 sinh z2;
vi) cosh2 z − sinh2 z = 1;

vii) the hyperbolic functions are 2πi-periodic; the functions tanh z and coth z are πi-
periodic.
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Proof. i) By part i) of Proposition 3.15, we have

cos z1 cos z2 − sin z1 sin z2

=

(
eiz1 + e−iz1

2

)(
eiz2 + e−iz2

2

)
−

(
eiz1 − e−iz1

2i

)(
eiz2 − e−iz2

2i

)
=

ei(z1+z2) + ei(z1−z2) + ei(z2−z1) + e−i(z1+z2)

4
+

ei(z1+z2) − ei(z1−z2) − ei(z2−z1) + e−i(z1+z2)

4

=
ei(z1+z2) + e−i(z1+z2)

2
= cos(z1 + z2).

iii) and vii). The 2π-periodicity of the trigonometric functions and the 2πi-periodicity
of the hyperbolic functions are corollaries of their definitions and the 2πi-periodicity of
exp z. For example,

sec(z + 2π) =
2

exp(iz + 2πi) + exp(−iz − 2πi)
=

2
exp(iz) + exp(−iz)

= sec z.

iv) These are straightforward from the definitions of sin z, cos z, sinh z, and cosh z. For
example,

−i sin(iz) = (−i)
ei(iz) − e−i(iz)

2i
= −

e−z − ez

2
= sinh z.

v and vi). These (and many other) identities can be deduced from the corresponding
identities for trigonometric functions by means of the identities iv). For example,

cosh2 z − sinh2 z = [cos(iz)] − [(−i) sin(iz)]2 = cos2(iz) + sin2(iz) = 1, by ii). �

If f (z) is a trigonometric or a hyperbolic function, the equation f (z) = c has infinitely
many solutions for all but at most two exceptional complex numbers c. The exceptional
values of c exist when f (z) is one of the functions tan z, cot z, sec z, csc z, tanh z, coth z, sech z
or csch z; there are no exceptional values for sin z, cos z, sinh z and cosh z. In the next exam-
ple, we illustrate this in the case f (z) = tan z. Note that unlike the real case (the equation
tan x = y has solutions for every value of y), in the complex case the equation tan z = c can
fail to have a solution.

Example 3.17. The equation tan z = c, where c ∈ C, has infinitely solutions if and only if
c , ±i.

Solution. Since

tan z =
e2iz − 1

i(e2iz + 1)
,

the equation tan z = c is equivalent to e2iz = w, where w is a solution of

w − 1
w + 1

= ci. (3.7)

When c , −i, the last equation has a unique solution

w =
1 + ci
1 − ci

,

whereas when c = −i, (3.7) has no solution. When c = i, the solution of (3.7) is w = 0 and
the resulting equation for z, e2iz = 0, has no solution. When c , ±i, we have w , 0. We
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write w in exponential form, w = reiθ and find

e2iz = reiθ ⇐⇒ e−2y+2ix = reiθ

⇐⇒ e−2y = r, 2x = θ + 2nπ (n ∈ Z)

⇐⇒ y = − 1
2 ln r, x = 1

2θ + nπ (n ∈ Z)

⇐⇒ z = 1
2θ + nπ − i

2 ln r (n ∈ Z). �

The next example illustrates that over the complex numbers we can solve the equation
sin z = c for any complex number c. You should compare this with the equation sin x = c,
where c ∈ R and x is a real variable—the latter has no solutions when |c| > 1.

Example 3.18. We now solve the equation sin z = 4. By the substitution w = eiz, this
equation reduces to

w − w−1

2i
= 4 ⇐⇒ w2 − 8iw − 1 = 0.

This quadratic equation has two complex roots

w1,2 =
8i +

(
(−8i)2 + 4

)1/2

2
=
(
4 ±
√

15
)
i =
(
4 ±
√

15
)
eπi/2.

Hence, by the proof of part iv) of Proposition 3.15, we obtain two infinite families of
solutions of sin z = 4:

eiz = w1 ⇐⇒ iz = ln
(
4 +
√

15
)

+ i(π/2 + 2nπ) (n ∈ Z)

⇐⇒ z = π/2 + 2nπ − i ln
(
4 +
√

15
)

(n ∈ Z);

eiz = w2 ⇐⇒ iz = ln
(
4 −
√

15
)

+ i(π/2 + 2nπ) (n ∈ Z)

⇐⇒ z = π/2 + 2nπ − i ln
(
4 −
√

15
)

(n ∈ Z).

Notice that similarly to the real case, we obtain the solutions in our two infinite series differ
one from another by a multiple of 2π, the period of the sine function. �

3.7. The complex logarithm and power functions

Definition 3.19. We define the logarithm log z for all nonzero complex numbers z as the
set of solutions w of the equation ew = z, that is,

log z = ln |z| + i arg z,

where ln x is the natural logarithm, defined for x > 0 as ln x =
∫ x

1 t−1dt.

Note that log z is not a function but a relation—it is the inverse relation of the expo-
nential function viewed as a relation on C. In order to deal with the complex logarithm as
a function, we introduce the notion of a “branch”. If D is a region in the complex plane, a
function F : D→ C is called a branch of the logarithm if for each z ∈ D, F(z) is one of the
values of log z.

Example 3.20. The simplest example of a branch of the logarithm is the function

Log z = ln |z| + i Arg z (−π < Arg z < π),

known as the principal branch of the logarithm.

Proposition 3.21. The logarithms log z and Log z have the following properties:
i) For every z , 0, we have elog z = z, but not necessarily log (ez) = z.
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ii) If | Im z| < π, then Log (ez) = z.
iii) If z1, z2 , 0, then

log(z1z2) = log z1 + log z2, log
(

z1

z2

)
= log z1 − log z2.

iv) If −π < arg z1, arg z2 < π, then the identities

Log(z1z2) = Log z1 + Log z2 and Log
(

z1

z2

)
= Log z1 − Log z2

may fail.

Note that together parts i) and ii) establish that Log z is the inverse function of the
restriction of exp z to the horizontal strip −π < Im z < π.

Proof. i) The first part is the definition of log z. The second part is obvious, since the
function log(ez) is an infinite set, whereas the function w = z has a single value.

ii) This follows from the definition of Log z.
iii) The left-hand side of the identity is

log(z1z2) = ln |z1z2| + i arg(z1z2) = (ln |z1| + ln |z2|) + i arg(z1z2),

and the right-hand side is

log z1 + log z2 = (ln |z1| + i arg z1) + (ln |z2| + i arg z2)
= (ln |z1| + ln |z2|) + i(arg z1 + arg z2).

Thus, it suffices to show that

arg(z1z2) = arg z1 + arg z2. (3.8)

Suppose that z1 = r1eiθ1 and z2 = r2eiθ2 . Then z1z2 = r1r2ei(θ1+θ2), so the left side of (3.8)
is the set {

θ1 + θ2 + 2nπ | n ∈ Z
}
. (3.9)

The right side of (3.8), on the other hand, is the set of all possible sums of a value of arg z1
and a value of arg z2. That is, the right side of (3.8) is{

(θ1 + 2kπ) + (θ2 + 2mπ) | k,m ∈ Z
}
. (3.10)

Therefore, (3.8) claims that the sets (3.9) and (3.10) are equal. Now, if φ = θ1 +θ2 +2nπ is
an element of (3.9), then φ is also an element of (3.10): take k = 0 and m = n. Conversely,
if φ = (θ1 + 2kπ) + (θ2 + 2mπ) is an element of (3.10), then φ is also an element of (3.9):
simply take n = k + m. This proves that the sets (3.9) and (3.10) are equal.

iv) Consider, for example, z1 = z2 = i. Then Log z1 = Log z2 = πi
2 , but Log(z1z2) is

not even defined. �

Definition 3.22. If z , 0 and a ∈ C, we define za by

za = exp(a log z).

Note that za may have more than one value, because log z has infinitely many values.
Whether these infinitely many values yield a single value, a finite number of values, or an
infinite number of values of za depends on a. Writing log z in the form

log z = ln |z| + i(Arg z + 2nπ) (n ∈ Z),

we find that

za = exp
[
a(ln |z| + i(Arg z + 2nπ))

]
= exp

[
a(ln |z| + i Arg z)

]
exp(2πina) (n ∈ Z).
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Hence, the number of distinct values of za is equal to the number of distinct values of
exp(2πina) as n runs through Z. Four different cases can occur:

1) If a ∈ Z, then e2πina = 1 for all n ∈ Z, so za has a single value. In fact, if a = k,
the power function zk equals the monomial zk.

2) If a ∈ Q−Z (i.e., a = p/q, with q > 1 and (p, q) = 1), then za has q distinct values.
Indeed, by part vi) of Proposition 3.15, the numbers e2πip/q, e2πi2p/q, . . . , e2πiqp/q

can be rearranged as e2πi/q, e2πi2/q, . . . , e2πiq/q = 1. The latter are q distinct values.
On the other hand, if n is any other integer, we can write it in the form n = kq+ r,
where k, r ∈ Z and 1 ≤ r ≤ q (see Exercise 1.9). Hence,

e2πina = e2πi(kq+r)p/q = e2πirp/q,

and the latter number is among the q numbers found earlier.
3) If a is irrational, all the values of za are distinct. Indeed, if

e2πina = e2πima for some m , n,

then

2πina = 2πima + 2πik for some k ∈ Z =⇒ a =
k

n − m
∈ Q.

4) If a is not real, all the values of za are again distinct, since each number e2πina has
a different modulus.

Example 3.23. Let us evaluate the expressions (1 − i)i and (2i)1/3. We have

(1 − i)i = exp
(
i log(1 − i)

)
= exp

(
i(ln |1 − i| + i arg(1 − i))

)
.

Since |1 − i| =
√

2 and arg(1 − i) = − π4 + 2kπ, k ∈ Z, we obtain

(1 − i)i = exp
(
i
(

ln
√

2 + i(− π4 + 2kπ)
))

= e
π
4−2kπ+i ln

√
2 (k ∈ Z).

Next, we have

(2i)1/3 = exp
(

1
3 log(2i)

)
= exp

(
1
3 (ln |2i| + i arg(2i))

)
.

Since |2i| = 2 and arg(2i) = π
2 + 2kπ, k ∈ Z, we obtain

(2i)1/3 = exp
(

1
3

(
ln 2 + i( π2 + 2kπ)

))
= e

1
3 ln 2ei( π6 + 2

3 kπ) =
3√
2ei( π6 + 2

3 kπ) (k ∈ Z).

Finally, note that the exponential ei( π6 + 2
3 kπ) takes on only three distinct values: eπi/6, e5πi/6

and e3πi/2. We conclude that

(2i)1/3 =
3√
2ei( π6 + 2

3 kπ) (k = 0, 1, 2).

3.8. Gauss sums

In this section, we use the properties of the complex exponentials covered earlier in
the chapter to compute the modulus of the Gauss sum. The main result is the following
theorem.

Theorem 3.24. Let m ∈ N be odd and let (a,m) = 1. Define

G(m, a) =

m∑
x=1

e2πiax2/m.

Then |G(m, a)|2 = m.

The proof of the theorem uses two lemmas.
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Lemma 3.25. Let m ∈ N and a ∈ Z. Then
m∑

x=1

e2πiax/m =

{
m if m | a,
0 if m - a.

Lemma 3.26. Let f (x) = anxn + · · · + a1x + a0 be a polynomial with integer coefficients
and let r1, r2, . . . , rm be a complete system of residues modulo m. Then

m∑
k=1

e2πi f (rk)/m =

m∑
k=1

e2πi f (k)/m.

Proof. Let s1, s2, . . . , sm be a permutation of r1, r2, . . . , rm such that sk ≡ k (mod m).
Then

m∑
k=1

e2πi f (rk)/m =

m∑
k=1

e2πi f (sk)/m,

because the sum on the right is simply a rearrangement of the sum on the left. Furthermore,

sk ≡ k (mod m) =⇒ ansn
k + · · · + a1sk + a0 ≡ ankn + · · · + a1k + a0 (mod m).

Thus, part v) of Proposition 3.15 gives e2πi f (sk)/m = e2πi f (k)/m, whence
m∑

k=1

e2πi f (sk)/m =

m∑
k=1

e2πi f (k)/m.

�

Proof of Theorem 3.24. We have

|G(m, a)|2 =

(
m∑

x=1

e2πiax2/m

) m∑
y=1

e2πiay2/m

 (by Proposition 3.3)

=

(
m∑

x=1

e2πiax2/m

) m∑
y=1

e2πiay2/m

 (by Exercise 3.15)

=

(
m∑

x=1

e2πiax2/m

) m∑
y=1

e−2πiay2/m

 (by Exercise 3.20)

=

m∑
x=1

m∑
y=1

e2πiax2/me−2πiay2/m =

m∑
x=1

m∑
y=1

e2πia(x2−y2)/m.

Next, in the sum over y, we change the summation variable to z = x + y. When y runs
through the numbers 1, 2, . . . ,m, z runs through the numbers x + 1, x + 2, . . . , x + m. Also,

x2 − y2 = (x − y)(x + y) = (2x − (x + y))(x + y) = 2xz − z2.

Hence,

|G(m, a)|2 =

m∑
x=1

x+m∑
z=x+1

e2πia(2xz−z2)/m. (3.11)

Now, since x + 1, x + 2, . . . , x + m is a complete residue system modulo m, we can use
Lemma 3.26 to get

x+m∑
z=x+1

e2πia(2xz−z2)/m =

m∑
z=1

e2πia(2xz−z2)/m.
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Substituting this in the right side of (3.11), we obtain

|G(m, a)|2 =

m∑
x=1

m∑
z=1

e2πia(2xz−z2)/m =

m∑
z=1

m∑
x=1

e2πia(2xz−z2)/m

=

m∑
z=1

e−2πiaz2/m
m∑

x=1

e2πi(2az)x/m.

By Lemma 3.25 with 2az in place of a, the sum over x equals m when m | 2az and 0
otherwise. Since (m, a) = 1, it follows from Theorem 1.13 that if m | 2az, then m | 2z.
Moreover, since m is odd, if m | 2z, then m | z. In particular, the only number among
2az, 1 ≤ z ≤ m, that is divisible by m is 2am. Therefore, the sum over x vanishes when
z = 1, 2, . . . ,m − 1 and equals m when z = m. We conclude that

|G(m, a)|2 = me−2πiam2/m +

m−1∑
z=1

0e−2πiaz2/m = me−2πiam = m.

�

3.9. Exercises

Exercise 3.1. Evaluate the expressions: (2 + 3i)(5 − 2i);
3 − 2i
2 + 3i

;
3 + 6i
2 − i

.

Exercise 3.2. Find the complex numbers z such that z2 = 2 + i. [Hint. Let z = x + iy. The equation z2 = 2 + i is
equivalent to a system of two equations in the unknowns x and y. Solve that system to find z.]

Exercise 3.3. Solve the quadratic equation z2 + (2 + i)z + (2 + i) = 0.

Exercise 3.4. Prove parts vi), viii) and ix) of Proposition 3.1.

Exercise 3.5. Prove Proposition 3.3.

Exercise 3.6. (a) Use the triangle inequality to prove the two inequalities in (3.4).
(b) Use the first inequality in (3.4) to prove the triangle inequality.
(c) Use the second inequality in (3.4) to prove the triangle inequality.

Exercise 3.7. Suppose that |z| ≤ 2. Use the triangle inequality to bound the expression 2z3 − 4z − 3 − i from
above.

Exercise 3.8. Suppose that |z| ≤ 1
2 . Use the second inequality in (3.4) to show that∣∣2z3 − 4z − 3 − i

∣∣ ≥ √10 − 5
2 .

Exercise 3.9. Write the given complex numbers in exponential form: 3i; −2;
√

3 − i; 2 + 2i; −4 + 3i.

Exercise 3.10. Use De Moivre’s formula to derive formulas for: sin 3θ; cos 3θ; sin 4θ; cos 4θ.

Exercise 3.11. Let θ ∈ R. Prove Euler’s formulas:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Exercise 3.12. Describe geometrically the following sets in the complex plane:{
z ∈ C | |z − i| = 3

}
;
{

z ∈ C | |z| ≥ 1
}

;
{

z ∈ C | 1 < |z − 2| < 2
}
.

Exercise 3.13. Describe geometrically the following sets in the complex plane:{
z ∈ C | Arg z = π/4

}
;
{

z ∈ C | π/3 < Arg z ≤ 2π/3
}

;
{

z ∈ C | 0 < Arg(z − 2 + i) < 3
4π
}
.

Exercise 3.14. Describe geometrically the following sets in the complex plane:{
z ∈ C | Im(z − i) < 2

}
;
{

z ∈ C | Re(z − 2 + i) > 1
}

;{
z ∈ C | Re(z − 1 − i) < 2 < Im(z − 1 − i)

}
.

Exercise 3.15. Use Proposition 3.3 and mathematical induction to prove that for all n ≥ 1,

z1 + z2 + · · · + zn = z̄1 + z̄2 + · · · + z̄n, z1z2 · · · zn = z̄1 z̄2 · · · z̄n.
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Exercise 3.16. Solve the equations: sin z = 2; sinh z = −2i; e2z = −1 + i.

Exercise 3.17. Let a ∈ R. Describe geometrically the sets{
ez | Re z = a

}
;
{

ez | Im z = a
}

;
{

ez | |z| = a
}
.

Exercise 3.18. Prove parts i)–iii) and v) of Proposition 3.15.

Exercise 3.19. Prove parts ii), iv), v) and vii) of Proposition 3.16.

Exercise 3.20. Prove the identities:

ez = ez̄, sin z = sin z̄, cos z = cos z̄, tan z = tan z̄, sinh z = sinh z̄, cosh z = cosh z̄.

Exercise 3.21. Evaluate the expressions: (1 − i)4i; (−1 + i
√

3)3/2; Log(1 − i).

Exercise 3.22. Find all the solutions of the equations: sin z = cosh 3; cosh z = i.

Exercise 3.23. Prove Lemma 3.25.

Exercise 3.24. Let m ∈ N be even and (a,m) = 1, and let G(m, a) be the sum in Theorem 3.24. Modify the proof
of Theorem 3.24 to prove that

|G(m, a)|2 =

{
2m if m ≡ 0 (mod 4),
0 if m ≡ 2 (mod 4).

Exercise 3.25. The purpose of this exercise is to provide an easy proof of the trigonometric identities

sin θ + sin 2θ + · · · + sin nθ =
sin
( 1

2 nθ
)

sin
( 1

2 (n + 1)θ
)

sin
( 1

2θ
) (θ , 2kπ), (∗)

cos θ + cos 2θ + · · · + cos nθ =
sin
(
(n + 1

2 )θ
)

2 sin
( 1

2θ
) −

1
2

(θ , 2kπ). (∗∗)

(a) Prove that 1 + eiθ + ei2θ + · · · + einθ =
ei(n+1)θ − 1

eiθ − 1
.

(b) Use Euler’s formula for the sine function to show that
ei(n+1)θ − 1

eiθ − 1
=

einθ/2 sin
( 1

2 (n + 1)θ
)

sin
( 1

2θ
) .

(c) Use parts (a) and (b) to show that

eiθ + ei2θ + · · · + einθ =
einθ/2 sin

( 1
2 (n + 1)θ

)
sin
( 1

2θ
) − 1.

(d) Prove the identities (∗) and (∗∗) by comparing the real and imaginary parts of the two sides of the
identity in part (c).

Exercise 3.26. Prove the identities:
(a) arcsin x = −i Log

(
ix +

√
1 − x2

)
, where −1 ≤ x ≤ 1;

(b) arctan x =
i
2

Log
(

i + x
i − x

)
, where x ∈ R.

Exercise 3.27. Let n ∈ N. An nth root of unity is a solution of the equation zn = 1, i.e., one of the n values of
11/n. A primitive nth root of unity is an nth root of unity which is not an mth root of unity for any m < n. For
example, −1 is a primitive second root of unity, but 1 is not, since it is also a first root of unity. Also, i and −i are
primitive fourth roots of unity, but 1 and −1 are not, since they are also second roots of unity.

(a) Prove that ζ is an nth root of unity if and only if ζ = e2πik/n for some integer k.
(b) Prove that if ζ is a non-primitive nth root of unity, then ζm = 1 for some positive integer m with m | n.

[Hint. Let m be the least positive integer such that ζ is an mth root of unity. Write n in the form
n = mq + r, with 0 ≤ r < m, and show that r = 0. Deduce that m | n.]

(c) Prove that ζ is a primitive nth root of unity if and only if ζ = e2πik/n for some integer k with (k, n) = 1.
(d) Prove that if (a, n) = 1, the numbers 1, e2πia/n, e2πi2a/n, . . . , e2πi(n−1)a/n are a complete list of nth roots

of unity.





CHAPTER 4

Algebra Over The Complex Numbers

4.1. Roots of polynomials with complex coefficients

Recall that a zero (or a root) of the polynomial f (z) = anzn + · · ·+ a1z + a0 is a number
α such that f (α) = 0. If α is a root of a polynomial f (z) of degree n, we can use long
division to express f (z) in the form

f (z) = (z − α)g(z), (4.1)

where g(z) is a polynomial of degree n − 1.

Example 4.1. Let f (z) = z6 + 3z2 + 4. Then f (i) = i6 + 3i2 + 4 = 0, and long division of
f (z) by z − i gives

f (z) = (z − i)
(
z5 + iz4 − z3 − iz2 + 4z + 4i

)
.

If we have g(α) , 0 in (4.1), we say that α is a simple root of f (z). On the other
hand, if g(α) = 0, we can apply (4.1) to g(z) to obtain g(z) = (z − α)h(z), where h(z) is a
polynomial of degree n − 2. Substituting this expression for g(z), we obtain

f (z) = (z − α)2h(z).

If h(α) , 0, we say that α is a double root of f (z). On the other hand, if h(α) = 0, we
can repeat the above procedure yet again. In general, if α is a root of f (z), we can find an
integer m such that

f (z) = (z − α)mg(z),

where g(z) is some polynomial of degree n −m such that g(α) , 0. The integer m is called
the multiplicity of α, and we say that α is a zero of multiplicity m.

Where roots are concerned, there is a significant difference between polynomials over
the real numbers and polynomials over the complex numbers. Recall that a polynomial
with real coefficients may have no real zeros. For example, f (z) = z2 + 1 has no real zeros,
because its value is at least 1 for all real values of the variable z. However, if we allow z to
take on complex values, then we have the following remarkable result.

Theorem 4.2 (Fundamental theorem of algebra). Let f (z) be a polynomial (with complex
coefficients) of degree n. Then f (z) has exactly n complex roots, counting multiplicities.

The phrase “counting multiplicities” means that if a polynomial of degree five has a
zero at z = 2 that is a zero of multiplicity 3 and another zero at z = −1 that has multiplicity
2, then the five zeros of f (z) are −1,−1, 2, 2, 2.

Note that Theorem 4.2 says that a polynomial of degree n has exactly n complex roots,
but it gives no clue how to find those. You know from high-school algebra the quadratic
formula: the roots of f (z) = az2 + bz + c are

α1,2 =
−b + (b2 − 4ac)1/2

2a
.

33
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There are similar formulas for polynomials of degrees 3 or 4. Those formulas resemble the
quadratic formula, except that they are much messier. For example, one of the solutions
(the “nicest” of them) of the cubic equation

z3 + pz + q = 0

is given by the formula

α1 =
3

√
−

q
2

+

√
q2

4
+

p3

27
+

3

√
−

q
2
−

√
q2

4
+

p3

27
.

When the degree is 5 or higher, the situation is even worse. Then we have a theorem that
says that, in fact, such a general formula does not exist. That is not to say that we cannot
solve any polynomial equation of degree 5, just that there is no way to express the solutions
in terms of the coefficients using only radicals and the basic arithmetic operations in C.

Although the fundamental theorem of algebra does not yield an algorithm for solving
polynomial equations, it does provide a great deal of valuable information about polyno-
mials.

Corollary 4.3. If f (z) = anzn + · · · + a1z + a0 and g(z) = bnzn + · · · + b1z + b0 are
polynomials of degree n such that f (α j) = g(α j) for n+1 distinct numbers α1,α2, . . . ,αn+1,
then f (z) = g(z): that is, a j = b j for j = 0, 1, . . . , n.

Corollary 4.4. If f (z) = anzn + · · ·+a1z+a0 is a polynomial of degree n and α1,α2, . . . ,αn

are its roots, listed according to their multiplicities, then

f (z) = an(z − α1)(z − α2) · · · (z − αn).

Corollary 4.5. Let f (z) = anzn + · · · and g(z) = anzn + · · · be two polynomials of degree n
with the same leading coefficient and with the same roots, then f (z) = g(z).

Corollary 4.6. Let f (z) = anzn + · · · and g(z) = anzn + · · · be two polynomials of degree
n with the same leading coefficient. If f (α j) = g(α j) for n distinct numbers α1,α2, . . . ,αn,
then f (z) = g(z).

Theorem 4.7. Let f (z) be a polynomial with real coefficients and suppose that α is a
complex root of f (z). Then ᾱ is also a root of f (z).

Proof. Let f (z) = anzn + · · · + a1z + a0, where a0, a1, . . . , an ∈ R. Note that since
the a j’s are real, we have a j = ā j for all j = 0, 1, . . . , n. Then, on using the identities in
Exercise 3.15,

f (ᾱ) = an(ᾱ)n + an−1(ᾱ)n−1 + · · · + a1ᾱ + a0

= ān(ᾱ)n + ān−1(ᾱ)n−1 + · · · + ā1ᾱ + ā0

= anα
n + an−1α

n−1 + · · · + a1α + ā0

= anα
n + an−1α

n−1 + · · · + a1α + a0 = f (α) = 0̄ = 0.

That is, ᾱ is also a root of f (z). �

In particular, the non-real roots of a polynomial with real coefficients come in pairs
a ± bi.

Example 4.8. Let f (z) = z5 − 2z3 + 2z2 − 3z + 2. Then f (i) = 0, so it follows from
Theorem 4.7 that −i is also a root of f (z). Hence, by Corollary 4.4, we have

f (z) = (z − i)(z + i)(z − α3)(z − α4)(z − α5) = (z2 + 1)g(z), say,
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where α3,α4 and α5 are the remaining three complex roots of f (z). Using long division,
we find that g(z) = z3−3z+2. Since g(1) = 0, we have g(z) = (z−1)h(z), and long division
gives

h(z) = z2 + z − 2 = (z + 2)(z − 1).
Hence,

f (z) = (z2 + 1)(z − 1)2(z + 2).

The idea behind the above example can be used to give an inductive proof of the
following result.

Theorem 4.9. Let f (x) = anxn + · · · + a1x + a0 be a polynomial with real coefficients of
degree n. Then f (x) can be expressed in the form

f (x) = an(x − r1) · · · (x − rk)(x2 + p1x + q1) · · · (x2 + pmx + qm),

where r1, . . . , rk are the real roots of f (x) listed according to their multiplicities and p1, q1,
p2, q2, . . . , pm, qm are real numbers such that p2

j − 4q j < 0 for all j = 1, . . . ,m. Also,
k + 2m = n.

4.2. Linear algebra over the complex numbers

In linear algebra too, working with complex vectors and matrices sometimes has ad-
vantages. Recall that a (complex) number λ is called an eigenvalue of an n × n matrix A
if there exists a nonzero n-dimensional vector x such that Ax = λx; any such vector x is
called an eigenvector for λ. We recall the following theorem from linear algebra.

Theorem 4.10. Let A be an n× n matrix. A complex number λ is an eigenvalue of A if and
only if det(A − λI) = 0, where I is the n × n identity matrix. If λ is an eigenvalue of A, the
eigenvectors of A for λ are the nonzero solutions of the linear system (A − λI)x = 0.

The determinant det(A − zI) is called the characteristic polynomial of A. Expanding
this determinant yields

det(A − zI) = (−1)nzn + b1zn−1 + · · · + bn, (4.2)

where

b1 = (−1)n−1
n∑

k=1

akk, bn = det A, (4.3)

ai j being the (i, j)-th entry of the matrix A. In particular, A has exactly n complex eigen-
values, counting multiplicities, because the polynomial (4.2) has exactly n roots, by the
fundamental theorem of algebra. Let λ1, λ2, . . . , λn be the eigenvalues of A. By Corol-
lary 4.4,

det(A − zI) = (−1)n(z − λ1)(z − λ2) · · · (z − λn).
Multiplying out the right side of this identity, we obtain alternative expressions for the
coefficients b1 and bn in (4.2):

b1 = (−1)n+1
n∑

k=1

λk, bn = (−1)2n
n∏

k=1

λk.

Comparing these expressions with (4.3), we obtain

tr A =

n∑
k=1

akk =

n∑
k=1

λk, det A =

n∏
k=1

λk. (4.4)
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(The sum of the diagonal entries of a square matrix A is called the trace of A and is denoted
tr A.)

Example 4.11. Compute the eigenvalues and eigenvectors of the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is∣∣∣∣−λ −1
1 −λ

∣∣∣∣ = λ
2 + 1,

so the eigenvalues are i and −i. Since[
−i −1 0

1 −i 0

]
∼

[
1 −i 0
−i −1 0

]
∼

[
1 −i 0
0 0 0

]
,

the eigenspace for λ = i contains the solutions x of

x1 − ix2 = 0 ⇐⇒ x = x2

[
i
1

]
⇐⇒ x ∈ Span

{[
i
1

]}
.

Similarly, the eigenspace for λ = −i is Span
{[
−i

1

]}
.

Notice that [
0 −1
1 0

] [
i
1

]
=

[
−1

i

]
= i
[

i
1

]
and [

0 −1
1 0

] [
−i

1

]
=

[
−1
−i

]
= (−i)

[
−i

1

]
,

so the vectors
[

i
1

]
and

[
−i

1

]
are indeed eigenvectors for λ = i and λ = −i. �

Recall from linear algebra that if A is an n × n real matrix with n real eigenvalues
λ1, . . . , λn (listed according to their multiplicities) and n linearly independent eigenvectors
x1, x2, . . . , xn such that Ax j = λ jx j, then A is diagonalizable, i.e., there exist an invertible
matrix P and a diagonal matrix D such that A = PDP−1. Moreover,

P =
[
x1 x2 · · · xn

]
, D =

λ1 · · · 0
...

. . .
...

0 · · · λn

 .
The same is true for complex matrices, except the eigenvalues, eigenvectors and the matri-
ces P and D are allowed to be complex numbers, vectors and matrices.

Example 4.12. Diagonalize (over C) the matrix A from Example 4.11.

Solution. We have A = PDP−1, where

P =

[
i −i
1 1

]
and D =

[
i 0
0 −i

]
.

�

Recall that an n×n real matrix A may fail to be diagonalizable over R for two reasons:
it may have fewer than n real eigenvalues (even counting multiplicities); or it may have
n eigenvalues, but fewer than n linearly independent eigenvectors. Because of the funda-
mental theorem of algebra, the former scenario never occurs for complex matrices: every
n × n matrix has n complex eigenvalues. In particular, a real matrix that has fewer than n
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real eigenvalues must have some nonreal eigenvalues. Since the characteristic polynomial
of A has real coefficients, by Theorem 4.7, the nonreal eigenvalues of A come in complex-
conjugate pairs a ± ib. It turns out that the same holds for the complex eigenvectors of A.
We extend the definitions of complex conjugate, real part and imaginary part of a complex
number to vectors in Cn (i.e., n-dimensional vectors with complex entries):

for z =


x1 + iy1
x2 + iy2

...
xn + iyn

 : z̄ =


x1 − iy1
x2 − iy2

...
xn − iyn

 , Re z =


x1
x2
...

xn

 , Im z =


y1
y2
...

yn

 .
With these definitions, we have the following result.

Theorem 4.13. Let A be an n×n matrix with real entries. If λ and λ̄ are a pair of complex-
conjugate eigenvalues of A and z is an eigenvector for λ, then z̄ is an eigenvector for λ̄.

Notice that this is consistent with Example 4.11: we found the complex conjugate
eigenvalues ±i, whose respective eigenvectors were also complex conjugate:

[
i
1

]
=

[
−i

1

]
.

Consider a real matrix A that is diagonalizable over C, but not over R. That is,
there exist an invertible matrix P and a diagonal matrix D with complex entries such
that A = PDP−1, but no such matrices with real entries. Is it possible to represent A as
A = QCQ−1, where Q and C are real matrices and C, though not diagonal, is still pretty
simple to work with? Not only is the answer to this question “yes”, but the matrices Q
and C in this representation can be easily derived from the matrices P and D in the diago-
nalization of A over the complex numbers. Since A is diagonalizable over C, we can find
real eigenvalues λ1, . . . , λk and pairs of complex conjugate eigenvalues µ1, µ̄1, . . . , µm, µ̄m,
altogether n = k + 2m of them. We can also find k linearly independent real eigenvectors
x1, . . . , xk corresponding to the eigenvalues λ1, . . . , λk and m linearly independent pairs of
complex eigenvectors z1, z̄1, . . . , zm, z̄m corresponding to the pairs of complex eigenvalues
µ1, µ̄1, . . . , µm, µ̄m. Then the matrix Q in the desired representation has columns x1, . . . , xk,
Re z1, Im z1, . . . ,Re zm, Im zm, and the matrix C is a block matrix of the form (a block-
diagonal matrix) 

λ1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · λk 0 · · · 0
0 · · · 0 C1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · Cm


, (4.5)

where C1, . . . ,Cm are 2 × 2 blocks of the form

C j =

[
Re µ j Im µ j

− Im µ j Re µ j

]
.
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Example 4.14. If possible, represent the matrix

A =


2 0 0 0 0
0 2 0 0 0
0 1 1 0 0
2 0 1 2 −1
1 3 0 1 2


as A = QCQ−1, where Q and C are real matrices and C is either diagonal or block-diagonal
of the form (4.5) above.

Solution. The characteristic polynomial of A is∣∣∣∣∣∣∣∣∣∣
2 − λ 0 0 0 0

0 2 − λ 0 0 0
0 1 1 − λ 0 0
2 0 1 2 − λ −1
1 3 0 1 2 − λ

∣∣∣∣∣∣∣∣∣∣
= (2 − λ)2(1 − λ)

∣∣∣∣2 − λ −1
1 2 − λ

∣∣∣∣
= (2 − λ)2(1 − λ)

[
(2 − λ)2 + 1

]
,

so the eigenvalues of A are 1, 2, 2, and the two roots of (2 − λ)2 + 1 = 0:

(2 − λ)2 = −1 ⇐⇒ 2 − λ = ±i ⇐⇒ λ = 2 ± i.

To find the eigenvectors for λ = 2 − i, we solve (A − (2 − i)I)x = 0:

[
A − (2 − i)I 0

]
=


i 0 0 0 0 0
0 i 0 0 0 0
0 1 −1 + i 0 0 0
2 0 1 i −1 0
1 3 0 1 i 0

 ∼


1 0 0 0 0 0
0 i 0 0 0 0
0 1 −1 + i 0 0 0
2 0 1 i −1 0
1 3 0 1 i 0



∼


1 0 0 0 0 0
0 i 0 0 0 0
0 1 −1 + i 0 0 0
0 0 1 i −1 0
0 3 0 1 i 0

 ∼


1 0 0 0 0 0
0 1 0 0 0 0
0 1 −1 + i 0 0 0
0 0 1 i −1 0
0 3 0 1 i 0



∼


1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 + i 0 0 0
0 0 1 i −1 0
0 0 0 1 i 0

 ∼


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 i −1 0
0 0 0 1 i 0



∼


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 i −1 0
0 0 0 1 i 0

 ∼


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 i 0
0 0 0 0 0 0

 .
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Hence, the vector form of the solution of (A − (2 − i)I)x = 0 and a basis for the eigenspace
for λ = 2 − i are

x =


0
0
0
−ix5

x5

 = x5


0
0
0
−i

1

 ,



0
0
0
−i

1


 .

By Theorem 4.13, a basis for this eigenspace λ = 2 + i is


0
0
0
i
1


 .

Furthermore, computations similar to the above with λ = 2 and λ = 1 yield the bases


1
−2
−2

5
0

 ,


3
−1
−1

0
5


 and




0
0
2
−1

1




for the eigenspaces for λ = 2 and λ = 1, respectively.
It follows that A is diagonalizable (over C) and A = PDP−1, where

P =


1 3 0 0 0
−2 −1 0 0 0
−2 −1 2 0 0

5 0 −1 −i i
0 5 1 1 1

 , D =


2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 2 − i 0
0 0 0 0 2 + i

 .
Since A has nonreal eigenvalues, it is not diagonalizable over R, but it can be represented
as A = QCQ−1, where

Q =


1 3 0 0 0
−2 −1 0 0 0
−2 −1 2 0 0

5 0 −1 0 −1
0 5 1 1 0

 , C =


2 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 2 −1
0 0 0 1 2

 .
�

Theorem 4.15. If λ1, λ2, . . . , λn are the eigenvalues of the n × n matrix A, then the eigen-
values of A2 are the numbers λ2

1, λ
2
2, . . . , λ

2
n.

Proof. Let f (z) denote the characteristic polynomial of A, and let g(z) denote the
characteristic polynomial of A2. By Corollary 4.4,

f (z) = (−1)n(z − λ1)(z − λ2) · · · (z − λn) =

n∏
j=1

(λ j − z).

We shall show that

g(z) =

n∏
j=1

(
λ

2
j − z

)
. (4.6)
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Let m be an integer. Since

A2 − m2I = (A − mI)(A + mI),

we have

g(m2) = det(A2 − m2I) = det(A − mI) det(A + mI) = f (m) f (−m)

=

n∏
j=1

(λ j − m)
n∏

j=1

(λ j + m) =

n∏
j=1

(λ2
j − m2).

This establishes that the two sides of (4.6) are equal when z is replaced by the square of any
integer m. Since the two sides of (4.6) are polynomials of degree n, the identity follows
from Corollary 4.3. �

4.3. Review of determinants

You should be familiar with the definition and properties of determinants from linear
algebra. However, the focus of linear algebra courses is rarely on the computation of
determinants, and hence, it is likely that you have a limited experience with proofs of
formulas for special n × n determinants.

Definition 4.16. Let A be an n × n matrix, whose (i, j)th entry is denoted by ai j. The
determinant of A, denoted det A, is defined by the following recursive procedure:

1. If n = 1 and A = [a11], then det A = a11.
2. If n ≥ 2, for each i and j, we introduce the matrix Ai j, which is the (n−1)×(n−1)

matrix obtained from A by deleting its ith row and jth column. Then

det A = a11 det A11 − a12 det A12 + · · · + (−1)1+na1n det A1n. (4.7)

Formula (4.7) is known as the expansion of det A along the first row.

Example 4.17. Let A =

[
a b
c d

]
. Then

a11 = a, a12 = b, a21 = c, a22 = d, A11 =
[
d
]
, A12 =

[
c
]
,

so (4.7) with n = 2 gives

det A = a11 det A11 − a12 det A12 = ad − bc.

Notice that this is the usual expression for the determinant of a 2 × 2 matrix.

Recall from linear algebra that (4.7) is a special case of a more general formula known
as the cofactor expansion of a determinant. Given an n × n matrix A with entries ai j, the
(i, j)th cofactor of A is the number

Ci j = (−1)i+ j det Ai j.

That is, up to a sign, the cofactor is the determinant det Ai j. The sign (−1)i+ j depends on
the position of the entry ai j in the following way:

+ − + · · ·

− + − · · ·

+ − + · · ·

...
...

...
. . .

 .
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In particular, the right side of (4.7) is just the sum of the products of the numbers in the
first row of A and their respective cofactors:

det A = a11C11 + a12C12 + · · · + a1nC1n.

It turns out that we can replace the first row by any row or column of A.

Theorem 4.18. The determinant of an n × n matrix A can be computed by a cofactor
expansion across any row or down any column of A. More precisely, for any i, 1 ≤ i ≤ n,
we have

det A = ai1Ci1 + ai2Ci2 + · · · + ainCin, (4.8)
and for any j, 1 ≤ j ≤ n, we have

det A = a1 jC1 j + a2 jC2 j + · · · + an jCn j. (4.9)

Formulas (4.8) and (4.9) are called the cofactor expansion across the ith row and the
cofactor expansion down the jth column, respectively. We now show how to use these
formulas to take advantage of possible zero entries.

Corollary 4.19. If A is a triangular matrix, then det A is the product of the entries on the
main diagonal.

Proof. We will prove the corollary for upper triangular matrices. The proof for lower
triangular matrices is similar. We argue by induction on the size of A.

If A = [a11], then det A = a11, which is the product of the diagonal entries of A.
Suppose now that n ≥ 2 and the corollary holds for (n − 1) × (n − 1) upper diagonal

matrices. Consider an n × n diagonal matrix

A =


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

0 0 · · · ann

 .
Expanding det A across the last row, we get

det A = (−1)2nann

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1,n−1
0 a22 · · · a2,n−1
...

...
...

0 0 · · · an−1,n−1

∣∣∣∣∣∣∣∣∣ .
Since the last determinant is of order n − 1, it equals a11a22 · · · an−1,n−1, by the inductive
hypothesis. Hence, det A = a11a22 · · · an−1,n−1ann, which completes the induction. �

Having various cofactor expansions to play with is only useful if the matrix contains
many zeros. If there are no zero entries, no matter which cofactor expansion we use,
we will end up performing tons of arithmetic operations. We can avoid this by using
the properties of determinants to replace the given determinant by an equal one that does
contain many zeros. Here is a list of properties, which are useful in this context.

Proposition 4.20. Let A and B be square matrices. Then:
i) If B is obtained from A by a row replacement, then det B = det A.

ii) If B is obtained from A by the interchange of two rows, then det B = − det A.
iii) If B is obtained from A by multiplying one of its rows by a number k, then det B =

k det A.
iv) det At = det A.
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v) det(AB) = (det A)(det B).
vi) A is invertible if and only if det A , 0.

Corollary 4.21. If A is a square matrix that has two equal rows or two equal columns,
then det A = 0.

Next, we shall use the properties of determinants stated in Proposition 4.20 to evaluate
a special determinant. Let n ≥ 2 and let z1, z2, . . . , zn be complex numbers. The n × n
determinant

V(z1, z2, . . . , zn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn

z2
1 z2

2 · · · z2
n

...
...

...
zn−1

1 zn−1
2 · · · zn−1

n

∣∣∣∣∣∣∣∣∣∣∣
is called Vandermonde’s determinant of the variables z1, z2, . . . , zn.

Theorem 4.22. Let V(z1, . . . , zn) be Vandermonde’s determinant of the variables z1, . . . , zn.
Then

V(z1, . . . , zn) =
∏

1≤i< j≤n

(z j − zi). (4.10)

First proof of Theorem 4.22. If two of the numbers z1, z2, . . . , zn are equal, Vander-
monde’s determinant is zero by Corollary 4.21. The right side of (4.10) is also zero, be-
cause some of the differences in the product is zero.

Next, we consider the case when all n numbers are distinct and argue by induction on
n. When n = 2, we have

V(z1, z2) =

∣∣∣∣1 1
z1 z2

∣∣∣∣ = z2 − z1 =
∏

1≤i< j≤2

(z j − zi).

Suppose that n ≥ 3 and (4.10) holds for V(z1, . . . , zn−1). Expanding V(z1, . . . , zn) down its
last column, we get

V(z1, . . . , zn) = V(z1, . . . , zn−1)zn−1
n + D1zn−2

n + · · · + Dn−2zn + Dn−1,

where D1,D2, . . . ,Dn−1 are determinants with entries that depend only on z1, . . . , zn−1.
Therefore, as a function of zn, V(z1, . . . , zn) is a polynomial of degree n − 1 with lead-
ing coefficient

V(z1, . . . , zn−1) =
∏

1≤i< j≤n−1

(z j − zi).

Further, by Corollary 4.21, we have

V(z1, . . . , zn−1, z1) = 0, V(z1, . . . , zn−1, z2) = 0, . . . , V(z1, . . . , zn−1, zn−1) = 0,

because in each of these determinants the last column equals one of the other columns.
These equations show that the numbers z1, z2, . . . , zn−1 are roots of V(z1, . . . , zn) (as a poly-
nomial in zn). That is, V(z1, . . . , zn) is a polynomial of degree n − 1 with roots z1, . . . , zn−1
and leading coefficient V(z1, . . . , zn−1). On the other hand, the right side of (4.10) is∏

1≤i< j≤n−1

(z j − zi)(zn − z1) · · · (zn − zn−1),

that is, the right side of (4.10) is also a polynomial of degree n − 1 with roots z1, . . . , zn−1
and leading coefficient V(z1, . . . , zn−1). By Corollary 4.5, these two polynomials are equal.
This completes the induction and establishes (4.10). �



4.3. REVIEW OF DETERMINANTS 43

Second proof of Theorem 4.22. We argue by induction on n. When n = 2, we have

V(z1, z2) =

∣∣∣∣1 1
z1 z2

∣∣∣∣ = z2 − z1 =
∏

1≤i< j≤2

(z j − zi).

Suppose that n ≥ 3 and (4.10) holds for V(z2, . . . , zn). By parts i) and iv) of Proposi-
tion 4.20, we can subtract the first column of Vandermonde’s determinant from each of the
remaining n − 1 columns to get

V(z1, . . . , zn) =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0
z1 z2 − z1 · · · zn − z1
z2

1 z2
2 − z2

1 · · · z2
n − z2

1
...

...
...

zn−1
1 zn−1

2 − zn−1
1 · · · zn−1

n − zn−1
1

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the last determinant across the first row, we obtain

V(z1, . . . , zn) =

∣∣∣∣∣∣∣∣∣
z2 − z1 z3 − z1 · · · zn − z1
z2

2 − z2
1 z2

3 − z2
1 · · · z2

n − z2
1

...
...

...
zn−1

2 − zn−1
1 zn−1

3 − zn−1
1 · · · zn−1

n − zn−1
1

∣∣∣∣∣∣∣∣∣ . (4.11)

Define S 0(x, y) = 1 and

S k(x, y) = xk + xk−1y + · · · + xyk−1 + yk (k ≥ 1).

Using the identity xk − yk = (x − y)S k−1(x, y), we can rewrite the right side of (4.11) as

V(z1, . . . , zn) =

∣∣∣∣∣∣∣∣∣
z2 − z1 z3 − z1 · · · zn − z1

(z2 − z1)S 1(z1, z2) (z3 − z1)S 1(z1, z3) · · · (zn − z1)S 1(z1, zn)
...

...
...

(z2 − z1)S n−2(z1, z2) (z3 − z1)S n−2(z1, z3) · · · (zn − z1)S n−2(z1, zn)

∣∣∣∣∣∣∣∣∣ .
We factor out z2 − z1 from the first column of the latter determinant, z3 − z1 from its second
column, etc. to get

V(z1, . . . , zn) =

n∏
j=2

(z j − z1) ×

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

S 1(z1, z2) S 1(z1, z3) · · · S 1(z1, zn)
...

...
...

S n−2(z1, z2) S n−2(z1, z3) · · · S n−2(z1, zn)

∣∣∣∣∣∣∣∣∣ . (4.12)

Note that

S k(x, z) − xS k−1(x, z) = xk + xk−1z + · · · + zk − x
(

xk−1 + xk−2z + · · · + zk−1) = zk. (4.13)

We now subtract (in this order):

z1 times the second-to-last row of the determinant in (4.12) from its last row;
z1 times the third-to-last row of the determinant in (4.12) from its second-to-last
row;

...
z1 times the second row of the determinant in (4.12) from its third row;
z1 times the first row of the determinant in (4.12) from its second row.
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After multiple applications of (4.13), we obtain

V(z1, . . . , zn) =

n∏
j=2

(z j − z1) ×

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
z2 z3 · · · zn
...

...
...

zn−2
2 zn−2

3 · · · zn−2
n

∣∣∣∣∣∣∣∣∣ =

n∏
j=2

(z j − z1) × V(z2, . . . , zn).

Hence, (4.10) follows by applying the inductive hypothesis to V(z2, . . . , zn). �

4.4. The resultant of two polynomials

Sometimes, one wants to determine whether two polynomials have a common root
without actually finding all the roots of the two polynomials. It turns out that this question
can be answered by calculating a special quantity, the “resultant” of the two polynomials,
which can be expressed solely in terms of the coefficients of the polynomials.

Definition 4.23. Let f (z) and g(z) be two polynomials with complex coefficients, and
suppose that they can be factored over C as

f (z) = a(z − α1)(z − α2) · · · (z − αn), g(z) = b(z − β1)(z − β2) · · · (z − βm), (4.14)

respectively. The resultant of f and g, denoted res( f , g), is the number

res( f , g) = ambn
n∏

i=1

m∏
j=1

(αi − β j).

Corollary 4.24. Let f (z) and g(z) be two polynomials with complex coefficients. Then f (z)
and g(z) have a common root if and only if res( f , g) = 0.

Proposition 4.25. Let f (z), g(z) and h(z) be polynomials, and suppose that f (z) and g(z)
are of the form (4.14). Then:

i) res( f , g) = amg(α1)g(α2) · · · g(αn).
ii) res(g, f ) = (−1)mn res( f , g).

iii) res( f g, h) = res( f , h) res(g, h).
iv) res( f , f h + g) = res( f , g).

The definition of the resultant ties it nicely to the roots of the two polynomials, but it is
not particularly convenient for evaluation purposes. The next result expresses the resultant
of two polynomials solely in terms of the coefficients of the polynomials.

Theorem 4.26. Let

f (z) = anzn + · · · + a1z + a0, g(z) = bmzm + · · · + b1z + b0

be two polynomials with complex coefficients. Then res( f , g) equals the (n + m) × (n + m)
determinant where:

• if 1 ≤ j ≤ m, the jth row is
[

0 0 · · · 0︸     ︷︷     ︸
j−1

an an−1 · · · a1 a0 0 · · · 0
]
;

• if m + 1 ≤ j ≤ m + n, the jth row is
[

0 0 · · · 0︸     ︷︷     ︸
j−m−1

bm bm−1 · · · b1 b0 0 · · · 0
]
.
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For example, when f (z) = a2z2+a1z+a0 and g(z) = b3z3+b2z2+b1z+b0, Theorem 4.26
says that

res( f , g) =

∣∣∣∣∣∣∣∣∣∣
a2 a1 a0 0 0
0 a2 a1 a0 0
0 0 a2 a1 a0
b3 b2 b1 b0 0
0 b3 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣
.

Corollary 4.27. If f (z) and g(z) have integer (or rational, or real) coefficients, then the
resultant res( f , g) is an integer (or a rational, or a real number).

4.5. Symmetric polynomials in several variables

Definition 4.28. Let n ≥ 2. A polynomial f (z1, . . . , zn) of n variables with complex co-
efficients is said to be symmetric if for any permutation z j1 , z j2 , . . . , z jn of the variables
z1, z2, . . . , zn, one has

f (z j1 , z j2 , . . . , z jn ) = f (z1, z2, . . . , zn).

Example 4.29. Let n = 2 and denote the variables by x and y instead of z1 and z2. Then
the polynomials

σ1 = x + y and σ2 = xy
are symmetric. Indeed, in this case, the only possible permutations of the variables are the
trivial permutation x, y and the transposition y, x, and neither of those changes σ1 and σ2.

Example 4.30. Let n = 3 and denote the variables by x, y and z. Then the polynomials

σ1 = x + y + z, σ2 = xy + yz + zx, and σ3 = xyz

are symmetric, because a permutation of x, y, z simply changes the order of terms and/or
factors in the σ’s.

Example 4.31. Let n ≥ 2 and 1 ≤ k ≤ n. Then the polynomial

σk =
∑

1≤i1<i2<···<ik≤n

zi1 zi2 · · · zik (4.15)

is symmetric. Here, the summation is over all k-element subsets of {1, 2, . . . , n}, so we are
adding all the possible product of k distinct variables. Thus,

σ1 =

n∑
i=1

zi, σ2 =
∑

1≤i< j≤n

ziz j, and σn = z1z2 · · · zn.

Note that Examples 4.29 and 4.30 are just the special cases n = 2 and n = 3 of the present
example.

Definition 4.32. Let n ≥ 2. The symmetric polynomials σ1, . . . , σn defined by (4.15) are
called the elementary symmetric polynomials in the variables z1, . . . , zn.

It turns out that every symmetric polynomial in z1, . . . , zn can be rewritten (via substi-
tutions) as a polynomial in σ1, . . . , σn, (treated as independent variables). More precisely,
we have the following result.

Theorem 4.33 (Fundamental theorem for symmetric polynomials). Let f (z1, . . . , zn) be a
symmetric polynomial. Then there exists a polynomial g(w1, . . . ,wn) such that

f (z1, . . . , zn) = g(σ1, . . . , σn),
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where σ1, . . . , σn are the elementary symmetric polynomials (4.15). Furthermore, if f has
integer (or rational, or real) coefficients, then so does g.

The proof of this theorem goes beyond the scope of these notes, but we can illustrate
the idea of the proof by an example.

Example 4.34. Let n = 2 and consider the polynomial f (x, y) = x5 + y5, which is clearly
a symmetric polynomial in x and y. Then

f1(x, y) = f (x, y) − (x + y)5 = f (x, y) − σ5
1

is also symmetric in x and y, and (by the binomial theorem)

f1(x, y) = −5x4y − 10x3y2 − 10x2y3 − 5xy4.

Note that the highest power of x in f1(x, y) is smaller than that in f (x, y). Next, consider

f2(x, y) = f1(x, y) + 5xy(x + y)3 = f1(x, y) + 5σ2σ
3
1.

This polynomial is also symmetric, and we have

f2(x, y) = 5x3y2 + 5x2y3,

so the highest power of x in f2(x, y) is smaller than that in f1(x, y) (which, in turn, was
smaller than that in f (x, y)). Next, we consider

f3(x, y) = f2(x, y) − 5x2y2(x + y) = f2(x, y) − 5σ2
2σ1.

Since f3(x, y) = 0, we have f2(x, y) = 5σ2
2σ1. Hence,

f (x, y) = σ5
1 + f1(x, y)

= σ5
1 − 5σ2σ

3
1 + f2(x, y)

= σ5
1 − 5σ2σ

3
1 + 5σ2

2σ1

= g(σ1, σ2), where g(u, v) = u5 − 5u3v + 5uv2.

4.6. Exercises
Exercise 4.1. Observe that 2i is a root of the equation z10 +4z8 +4z6 +16z4 +4z2 +16 = 0 and use this information
to find its remaining nine roots.

Exercise 4.2. Write the polynomial x10+4x8+4x6+16x4+4x2+16 as a product of the form stated in Theorem 4.9.

Exercise 4.3. Prove Corollary 4.3.

Exercise 4.4. Prove Corollary 4.4.

Exercise 4.5. Prove Corollary 4.5.

Exercise 4.6. Prove Corollary 4.6.

Exercise 4.7. Prove Theorem 4.13.

Exercise 4.8. If possible, diagonalize the given matrices. If a real matrix is diagonalizable over C but not over
R, then represent it as QCQ−1, where Q and C are real matrices and C is block-diagonal.

A =


4 1 0 1
2 3 0 1
−2 1 2 −3

2 −1 0 5

 ; B =


1 1 1

2 −1
−2 1 −1 0

0 2 0 2
2 1 − 3

2 2

 .
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Exercise 4.9. The matrix A below has a double real eigenvalue and a pair of complex eigenvalues. Furthermore,
it is known that the real eigenvalue is an integer. Represent A in the form A = QCQ−1, where Q and C are real
matrices and C is block-diagonal.

A =


18.5 10 −2.5 −45
−6.5 −3 1.5 17
8.5 6 −2.5 −23
5.5 3 −0.5 −13

 .
Exercise 4.10. Let A be a 7 × 7 real matrix with eigenvalues 1, 1,−2, 1 + i, 1 + i, 1 − i, 1 − i, and respective
eigenvectors 

1
0
2
0
0
1
3


,



−1
0
0
−2
−1

0
−3


,



0
0
0
1
0
4
2


,



2
1 + i

0
1
0
−1
2


,



0
0
2i

3 − i
0
0
−5


,



2
1 − i

0
1
0
−1
2


,



0
0
−2i
3 + i

0
0
−5


.

Represent A in the form A = QCQ−1, where Q and C are real matrices and C is block-diagonal.

Exercise 4.11. Prove Theorem 4.9.

Exercise 4.12. Evaluate the determinants:∣∣∣∣∣∣∣∣
2 1 0 2
4 2 7 −2
0 2 1 1
0 2 3 0

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
1 1 1 1
1 1 1 2
1 1 3 1
1 4 1 1

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣∣
4 8 8 8 5
0 1 0 0 0
6 8 8 8 7
0 8 8 3 0
0 8 2 0 0

∣∣∣∣∣∣∣∣∣∣
.

Exercise 4.13. Use induction on n to prove that∣∣∣∣∣∣∣∣∣
0 · · · 0 c1
0 · · · c2 0
.
.
.

.

.

.
.
.
.

cn · · · 0 0

∣∣∣∣∣∣∣∣∣ = (−1)n(n−1)/2c1c2 · · · cn.

Exercise 4.14. Let Dn be the n × n determinant

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · 2 −1
0 0 0 · · · −1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

That is, the diagonal entries of Dn are all equal to 2, the entries one position off the diagonal are all equal to −1,
and all the remaining entries are zeros.

(a) Use expansions across the first row to prove that Dn = 2Dn−1 − Dn−2.
(b) Use part (a) and induction on n to prove that Dn = n + 1.

Exercise 4.15. Let

R(λ; a0, a1, . . . , an−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 0 0 · · · 0 a0
−1 λ 0 · · · 0 a1

0 −1 λ · · · 0 a2
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · λ an−2
0 0 0 · · · −1 λ + an−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(a) Use an expansion across the first row to prove that R(λ; a0, a1, . . . , an−1) = a0+λR(λ; a1, a2, . . . , an−1).
(b) Use part (a) and induction on n to prove that R(λ; a0, a1, . . . , an−1) = λn + an−1λ

n−1 + · · · + a1λ + a0.
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Exercise 4.16. Let

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 + b1 b1 b1 · · · b1
b2 a2 + b2 b2 · · · b2
b3 b3 a3 + b3 · · · b3
.
.
.

.

.

.
.
.
.

. . .
.
.
.

bn bn bn · · · an + bn

∣∣∣∣∣∣∣∣∣∣∣∣
.

(a) Use the properties of determinants to prove that

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 + b1 −a1 −a1 · · · −a1
b2 a2 0 · · · 0
b3 0 a3 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

bn 0 0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
.

(b) Expand the determinant in part (a) across the last row to show that Dn = anDn−1 + (−1)n+1bnEn−1,
where En−1 is an (n − 1) × (n − 1) determinant.

(c) Show that in part (b), En−1 = (−1)n+1a1a2 · · · an−1.
(d) Use parts (b) and (c) and induction on n to compute Dn.

Exercise 4.17. A square matrix A = [ai j] is called antisymmetric if ai j + a ji = 0 for all pairs of indices i, j. Prove
that if n is odd and A is an n × n antisymmetric matrix, then det A = 0. [Hint. Use the properties of determinants
to show that det At = (−1)n det A.]

Exercise 4.18. Let n be an even integer n and a, b be complex numbers. Define

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a 0 0 · · · 0 b
0 a 0 · · · b 0
0 0 a · · · 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 b 0 · · · a 0
b 0 0 · · · 0 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(a) Expand Dn across the first row to show that Dn = aE′n − bE′′n , where E′n and E′′n are (n − 1) × (n − 1)
determinants.

(b) Show that in part (a), E′n = aDn−2 and E′′n = bDn−2.
(d) Use parts (a) and (b) and induction on n to show that Dn = (a2 − b2)n/2.

Exercise 4.19. Let f (z) = anzn + · · · + a1z + a0 and let α1,α2, . . . ,αn+1 be n + 1 distinct complex numbers.

(a) Consider the equations

f (α1) = 0, f (α2) = 0, . . . , f (αn+1) = 0

as a homogeneous linear system for the coefficients a0, a1, . . . , an. Prove that this system has a unique
solution. [Hint. This has something to do with Vandermonde’s determinant.]

(b) Use part (a) to prove that if f (α j) = 0 for j = 1, 2, . . . , n + 1, then f (z) = 0.

Exercise 4.20. Let f (z) = akzk + · · ·+a1z+a0 and A be an n×n matrix with eigenvalues λ1, λ2, . . . , λn. Generalize
the proof of Theorem 4.15 given above to establish that the matrix f (A) = akAk + · · · + a1A + a0 has eigenvalues
f (λ1), f (λ2), . . . , f (λn).

Exercise 4.21. Prove Corollary 4.24.

Exercise 4.22. Prove Proposition 4.25.

Exercise 4.23. Compute res(zn, f (z)), where f (z) is a polynomial of degree m.

Exercise 4.24. Prove Corollary 4.27.

Exercise 4.25. Show that if f (z1, . . . , zn) and g(z1, . . . , zn) are symmetric polynomials, then so are

a f (z1, . . . , zn) + bg(z1, . . . , zn) and f (z1, . . . , zn)g(z1, . . . , zn).

Exercise 4.26. Which of the following polynomials are symmetric polynomials in x and y: x3 − y3, x2y + xy2,
x4 + xy + y4, x + 2y + 3xy2?
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Exercise 4.27. Which of the following polynomials are symmetric polynomials in x, y and z:

x3 + y3 + z3, x2y + y2z + z2 x, x3 + y3?

Exercise 4.28. Express the following symmetric polynomials as polynomials of the elementary symmetric poly-
nomials σ1, σ2, . . . :

x2 + y2 + z2, x2y2 + y2z2 + x2z2, x4 + y4 + z4, z2
1 + z2

2 + · · · + z2
n.

Exercise 4.29. A polynomial f (x, y) of the form

f (x, y) = an xn + an−1 xn−1y + · · · + a1 xyn−1 + a0yn,

where at least one of the coefficients a0, a1, . . . , an is nonzero is called a homogeneous polynomial of degree n.
(a) Show that if f (x, y) and g(x, y) are two homogeneous polynomials of degree n, then f (x, y) + g(x, y)

is either a homogeneous polynomial of degree n, or identically 0.
(b) Show that if f (x, y) and g(x, y) are two homogeneous polynomials of degrees n and m, respectively,

then f (x, y)g(x, y) is a homogeneous polynomial of degree n + m.
(c) Show that if f (x, y) is a homogeneous polynomial of degree n with real coefficients, then either the

equation f (x, y) = 0 has the unique solution x = y = 0, or it has infinitely many solutions, given by
the points on k lines through the origin, where 1 ≤ k ≤ n. [Hint. The solutions of f (x, y) = 0 are
related to the solutions of the equation g(z) = 0, where g(z) = f (z, 1).]





CHAPTER 5

Fourier Series

In this chapter, we provide a brief introduction to Fourier series, a topic which may be
new to many of you. Moreover, even those who have encountered Fourier series in earlier
courses are likely to be familiar mainly with Fourier sine and cosine series, whereas we
shall focus on complex Fourier series, in which the sine and cosine functions are replaced
by complex exponentials.

5.1. Definition

The usual definition of Fourier series starts with a p-periodic real function f (often
p = 2π for convenience). The Fourier series of f then is

a0

2
+

∞∑
n=1

(
an cos(2πnx/p) + bn sin(2πnx/p)

)
, (5.1)

where the coefficients a0, a1, b1, . . . , an, bn, . . . are given by the formulas

an =
2
p

∫ p

0
f (t) cos(2πnt/p) dt, bn =

2
p

∫ p

0
f (t) sin(2πnt/p) dt. (5.2)

In these notes, we shall give preference to an alternative definition that uses complex ex-
ponentials instead of sines and cosines. Also, we shall allow our functions to be complex-
valued.

Definition 5.1. Let f : R→ C be a 1-periodic function. The Fourier series of f is

S ( f ; x) =

∞∑
n=−∞

cne2πinx = lim
N→∞

N∑
n=−N

cne2πinx, (5.3)

where the coefficients cn are given by the formula

cn =

∫ 1

0
f (t)e−2πint dt (n ∈ Z). (5.4)

5.2. Calculus of complex-valued functions

In order to make sense of the formulas in (5.3) and (5.4), we need to extend some
definitions from calculus to complex-valued functions. Let {zn}

∞
n=1, zn = xn + iyn, be a

sequence of complex numbers. We say that this sequence converges to the complex number
c = a + ib, and write lim

n→∞
zn = c, if the two real sequences {xn}

∞
n=1 and {yn}

∞
n=1 converge to

a and b, respectively:

lim
n→∞

(xn + iyn) = a + ib ⇐⇒ lim
n→∞

xn = a, lim
n→∞

yn = b.

51
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Similarly, the series
∑∞

n=1 zn if the two real series
∑∞

n=1 xn and
∑∞

n=1 yn converge, and
∞∑

n=1

zn =

∞∑
n=1

xn + i
∞∑

n=1

yn.

Furthermore, if f : D → C is a complex-valued function of a real argument, then it
can be expressed in the form f (t) = u(t) + iv(t), where u and v are real functions defined
in the same domain D as the function f . We say that f is differentiable (resp., integrable)
if both u and v are differentiable (resp., integrable), and define the derivative f ′(t) and the
integral

∫ b
a f (t) dt of f by

f ′(t) = u′(t) + iv′(t),
∫ b

a
f (t) dt =

∫ b

a
u(t) dt + i

∫ b

a
v(t) dt.

With these definitions, most integration and differentiation rules from calculus remain true
for complex-valued functions. Below, we list some integration formulas for complex-
valued functions, which will be useful later.

Theorem 5.2 (Newton–Leibnitz). Let a, b ∈ R and f : [a, b] → C have a continuous
derivative on [a, b]. Then ∫ b

a
f ′(t) dt = f (b) − f (a).

Proof. Let f (t) = u(t) + iv(t). Then∫ b

a
f ′(t) dt =

∫ b

a
(u′(t) + iv′(t)) dt =

∫ b

a
u′(t) dt + i

∫ b

a
v′(t) dt.

Since u and v are real-valued functions, we can evaluate the two integrals on the right side
of the above identity by the fundamental theorem of calculus. We get∫ b

a
f ′(t) dt =

(
u(b) − u(a)

)
+ i
(
v(b) − v(a)

)
= f (b) − f (a). �

Theorem 5.3. Suppose that a, b ∈ R, α ∈ C and f , g : [a, b]→ C are continuous on [a, b].
Then:

i)
∫ b

a α f (t) dt = α
∫ b

a f (t) dt;
ii)
∫ b

a

(
f (t) + g(t)

)
dt =

∫ b
a f (t) dt +

∫ b
a g(t) dt;

iii) if a ≤ c ≤ b, then
∫ b

a f (t) dt =
∫ c

a f (t) dt +
∫ b

c f (t) dt;
iv) if f is p-periodic and b − a = p, then

∫ b
a f (t) dt =

∫ p
0 f (t) dt.

Theorem 5.4 (Integration by parts). Suppose that a, b ∈ R and f , g : [a, b] → C have
continuous derivatives on [a, b]. Then∫ b

a
f (t)g′(t) dt = f (b)g(b) − f (a)g(a) −

∫ b

a
f ′(t)g(t) dt.

Example 5.5. Let α = p + iq be a nonzero complex number and f (t) = eαt. Then

f ′(t) =
(
ept cos qt + iept sin qt

)′
=
(
ept cos qt

)′
+ i
(
ept sin qt

)′
=
(

pept cos qt − qept sin qt
)

+ i
(

pept sin qt + qept cos qt
)

= (p + iq)ept cos qt + (−q + ip)ept sin qt

= (p + iq)ept cos qt + i(p + iq)ept sin qt

= (p + iq)ept(cos qt + i sin qt) = αepteiqt = αeαt.
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Hence, by Theorem 5.2 and part i) of Theorem 5.3,∫ b

a
eαt dt = α

−1
∫ b

a
f ′(t) dt = α

−1( f (b) − f (a)
)

= α
−1(eαb − eαa). (5.5)

Taking α = 2πim, a = 0 and b = 1, we obtain the following important formula.

Lemma 5.6. Let m ∈ Z. Then∫ 1

0
e2πimt dt =

{
1 if m = 0,
0 if m , 0.

5.3. An example

Example 5.7. Let f (x) be the 1-periodic function (see Figure 5.1) defined by

f (x) = x2 (|x| ≤ 1/2), f (x + 1) = f (x).

Let us compute the Fourier series of this function. When n , 0, we have

cn =

∫ 1

0
f (t)e−2πint dt =

∫ 1/2

−1/2
f (t)e−2πint dt

=

∫ 1/2

−1/2
t2e−2πint dt =

−1
2πin

∫ 1/2

−1/2
t2 d
(
e−2πint)

=
−1

2πin
[
t2e−2πint]1/2

−1/2 +
1

2πin

∫ 1/2

−1/2
e−2πint d

(
t2)

=

1
4 eπin − 1

4 e−πin

2πin
+

1
πin

∫ 1/2

−1/2
te−2πint dt

=
1
πin

∫ 1/2

−1/2
te−2πint dt =

−1
2(πin)2

∫ 1/2

−1/2
t d
(
e−2πint)

=
1

2π2n2

[
te−2πint]1/2

−1/2 −
1

2π2n2

∫ 1/2

−1/2
e−2πint dt

=

1
2 e−πin + 1

2 eπin

2π2n2 −
1

2π2n2

∫ 1

0
e−2πint dt =

(−1)n

2π2n2 .

Also,

c0 =

∫ 1

0
f (t) dt =

∫ 1/2

−1/2
f (t) dt =

∫ 1/2

−1/2
t2 dt =

1
12
.

Hence,

S ( f ; x) =
1

12
+

1
2π2

∑
n,0

(−1)ne2πinx

n2 .

1
2− 1

2

Figure 5.1. 1-periodic extension of f (x) = x2, |x| ≤ 1/2
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Note that the above series is absolutely convergent: the series whose terms are the moduli
of the terms of S ( f ; x) is

1
12

+ lim
N→∞

1
2π2

N∑
n=1

(
1
n2 +

1
(−n)2

)
=

1
12

+
1
π2

∞∑
n=1

1
n2 ,

which is a convergent p-series (p = 2).

5.4. Representing functions by Fourier series

The question now arises: Is there a relation between f (x) and the sum S ( f ; x) of its
Fourier series? The next theorem establishes the connection between them. However,
before we state the theorem, we need to introduce some notation. We shall write

f (a − 0) = lim
x→a−

f (x) and f (a + 0) = lim
x→a+

f (x)

for the left and right limits of f (x) as x → a. Also, we say that f has at most a jump
discontinuity at x = a, if both of the above limits exist. Note that this means that: either f
is continuous at x = a (then f (a−0) = f (a+0) = f (a)); or f has a removable discontinuity
at x = a (then f (a − 0) = f (a + 0) , f (a)); or f has a jump discontinuity at x = a (then
f (a − 0) , f (a + 0)). If f : R → C is a function such that every real number is at most a
jump discontinuity of f , then we define the function f̃ : R→ C by

f̃ (x) =
f (x − 0) + f (x + 0)

2
. (5.6)

When f is continuous at x = a, f̃ is also continuous at x = a and f̃ (a) = f (a). When f has
a removable discontinuity at x = a, f̃ is continuous at x = a and f̃ (a) equals the common
value of f (a + 0) and f (a − 0). And when f has a jump discontinuity at x = a, f̃ also has a
jump discontinuity at x = a and f̃ (a) is the midpoint between f (a + 0) and f (a − 0).

Theorem 5.8. Suppose that f : R → C is a 1-periodic function that is continuous on
[0, 1], with the possible exception of a finite number of points a1, a2, . . . , an at which f has
at most jump discontinuities. Then the Fourier series of f converges for all x ∈ R and
S ( f ; x) = f̃ (x), where f̃ is the function defined by (5.6).

Example 5.9. Returning to the Fourier series from Example 5.7, we can now say that

x2 =
1
12

+
1

2π2

∑
n,0

(−1)ne2πinx

n2 (|x| ≤ 1/2). (5.7)

Indeed, because the function f in Example 5.7 is continuous at all real numbers, we have
f̃ (x) = f (x) for all x ∈ R. Hence, Theorem 5.8 gives S ( f ; x) = f (x) for all x ∈ R.

When x = 1
2 , equation (5.7) gives

1
4

=
1

12
+

1
2π2

∑
n,0

(−1)neπin

n2 =
1
12

+
1

2π2

∑
n,0

1
n2 =

1
12

+
1
π2

∞∑
n=1

1
n2 ,

whence
∞∑

n=1

1
n2 =

π2

6
.

This formula was first proved by L. Euler in 1735. At the time, the question of com-
puting

∑∞

n=1 n−2 was an open problem known as the Basel problem. Before Euler, many
mathematicians had tried and failed to compute the sum of this series. Not only did Euler
succeed, but he was in fact able to find a method for computing the sums

∑∞

n=1 n−2k for all
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k ∈ N. His solution of the Basel problem brought Euler instant fame and established him
as the premier mathematician of the day.

Example 5.10. Let f (x) be the 1-periodic function (see Figure 5.2) defined by

f (x) = x (−1/2 ≤ x < 1/2), f (x + 1) = f (x).

When n , 0, we have

cn =

∫ 1

0
f (t)e−2πint dt =

∫ 1/2

−1/2
f (t)e−2πint dt

=

∫ 1/2

−1/2
te−2πint dt =

−1
2πin

∫ 1/2

−1/2
t d
(
e−2πint)

=
−1

2πin
[
te−2πint]1/2

−1/2 +
1

2πin

∫ 1/2

−1/2
e−2πint dt

=

1
2 e−πin + 1

2 eπin

−2πin
+

1
2πin

∫ 1

0
e−2πint dt =

(−1)n+1

2πin
.

Also,

c0 =

∫ 1

0
f (t) dt =

∫ 1/2

−1/2
f (t) dt =

∫ 1/2

−1/2
t dt = 0.

Hence, the Fourier series of f is

S ( f ; x) =
−1
2πi

∑
n,0

(−1)ne2πinx

n
.

Note that the above series is not absolutely convergent: the series whose terms are
the moduli of the terms of S ( f ; x) is essentially the harmonic series, which is divergent.
Nonetheless, the series S ( f ; x) converges and S ( f ; x) = f (x) for all real numbers except
for ± 1

2 ,±
3
2 ,±

5
2 , . . . . When x is one of these values, we have

S ( f ; 1
2 + k) = lim

N→∞

−1
2πi

N∑
n=−N
n,0

(−1)neπin

n
= lim

N→∞

−1
2πi

N∑
n=−N
n,0

1
n

= 0,

because the terms with opposite values of n in the last sum cancel each other. Notice that
this is consistent with Theorem 5.8: at the points of discontinuity of f , the Fourier series
converges not to f (x) (which equals − 1

2 ) but to f̃ (x) (which equals 0).

•

◦

•

◦

1
2− 1

2

Figure 5.2. The saw-tooth function
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5.5. Poisson’s summation formula

We start this section by defining the Fourier transform of a function.

Definition 5.11. Let f : R → C be a continuous function such that the improper integral∫ ∞
−∞
| f (x)| dx is convergent. The Fourier transform of f , denoted f̂ (y), is defined by

f̂ (y) =

∫ ∞
−∞

f (x)e−2πixy dx.

The main result of the section is the following theorem.

Theorem 5.12 (Poisson’s summation formula). Let the function f : R→ C be continuous
everywhere, except possibly for a finite number of points a1, a2, . . . , an at which f has at
most jump discontinuities. Suppose also that at the points a1, a2, . . . , an, we have

f (a j) = 1
2

(
f (a j − 0) + f (a j + 0)

)
,

and that the improper integral
∫ ∞
−∞
| f (x)| dx converges. Then

∞∑
n=−∞

f (n) =

∞∑
n=−∞

f̂ (n),

where f̂ (y) is the Fourier transform of f .

We do not prove Theorem 5.12 in these notes, but we do sketch the main idea of its
proof in a special case. Our next example is essentially the proof of the theorem when
f (x) = e−πx2t for some t > 0.

Example 5.13. Let t > 0 and define the function

θ(x) = θ(x; t) =

∞∑
m=−∞

e−π(m+x)2t (−∞ < x < ∞).

By Exercise 5.8, the above series converges. Moreover, we have θ(x + 1) = θ(x), because
the mth term in the sum defining θ(x + 1) is the same as the (m + 1)th term in the sum
defining θ(x). Let us compute the nth Fourier coefficient of θ(x).

Suppose that |x| ≤ 1
2 . If M ∈ N, we have

θ(x) = θ1(x; M) + θ2(x; M),

where

θ1(x; M) =

M∑
m=−M

e−π(m+x)2t, θ2(x; M) =
∑
|m|>M

e−π(m+x)2t.

The nth Fourier coefficient of θ(x) is

cn =

∫ 1/2

−1/2
θ(x)e−2πinx dx = I1(n,M) + I2(n,M), (5.8)

where

I1(n,M) =

∫ 1/2

−1/2
θ1(x; M)e−2πinx dx, I2(n,M) =

∫ 1/2

−1/2
θ2(x; M)e−2πinx dx.



5.6. EXERCISES 57

We find that

θ2(x; M) =

∞∑
m=M+1

(
e−π(m+x)2t + e−π(x−m)2t) ≤ 2

∞∑
m=M+1

e−π(m−1/2)2t

= 2
∞∑

k=M

e−π(k+1/2)2t ≤ 2
∞∑

k=M

e−πkt = εM , say.

Hence, Exercise 5.7 gives

|I2(n; M)| ≤
∫ 1/2

−1/2

∣∣θ2(x; M)e−2πinx
∣∣ dx ≤

∫ 1/2

−1/2
εM dx = εM . (5.9)

On the other hand,

I1(n,M) =

M∑
m=−M

∫ 1/2

−1/2
e−π(m+x)2te−2πinx dx

=

M∑
m=−M

∫ m+1/2

m−1/2
e−πu2te−2πin(u−m) du (u = x + m)

=

M∑
m=−M

∫ m+1/2

m−1/2
e−πu2te−2πinu e2πinm︸  ︷︷  ︸

=1

du

=

∫ M+1/2

−M−1/2
e−πu2te−2πinu du. (5.10)

Combining (5.9) and (5.10), we conclude that

lim
M→∞

(
I1(n,M) + I2(n,M)

)
=

∫ ∞
−∞

e−πu2te−2πinu du = φ̂(n),

where φ̂ is the Fourier transform of φ(u) = φ(u; t) = e−πu2t.
Since the left side of (5.8) is independent of M, by letting M → ∞ in (5.8), we deduce

that cn = φ̂(n). Therefore, the Fourier series of θ(x) is

S (θ; x) =

∞∑
n=−∞

φ̂(n)e2πinx.

As it can be shown (see Exercise 5.9) that θ(x) is continuous at all real x, it follows that

θ(x; t) =

∞∑
n=−∞

φ(n + x; t) =

∞∑
n=−∞

φ̂(n; t)e−2πinx, φ(u; t) = e−πu2t.

5.6. Exercises
Exercise 5.1. Let f (x) be the 1-periodic function defined by

f (x) = x4 (|x| ≤ 1/2), f (x + 1) = f (x).

(a) Find the Fourier series of f (x).
(b) Use part (a) to prove that

∑∞
n=1 n−4 = 1

90π
4.

Exercise 5.2. Let f (x) be the 1-periodic function defined by

f (x) = x6 (|x| ≤ 1/2), f (x + 1) = f (x).

Use the Fourier series of f (x) to obtain a formula for
∑∞

n=1 n−6.
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Exercise 5.3. Let fk(x) be the 1-periodic function defined by

fk(x) = x2k (|x| ≤ 1/2), fk(x + 1) = fk(x).

Use the Fourier series of fk(x) and mathematical induction to prove that
∑∞

n=1 n−2k = Akπ
2k , where Ak is a

rational number.

Exercise 5.4. Prove Theorem 5.3.

Exercise 5.5. Prove Theorem 5.4.

Exercise 5.6. Use equation (5.5) to prove the formulas∫ b

a
ept cos qt dt =

epb(q sin qb + p cos qb) − epa(q sin qa + p cos qa)
p2 + q2 ,∫ b

a
ept sin qt dt =

epb(p sin qb − q cos qb) − epa(p sin qa − q cos qa)
p2 + q2 .

[Hint. Compare the real and imaginary parts of the two sides of (5.5).]

Remark. Let g : [a, b]→ R. For each n ∈ N, define a sequence of Riemann sums

S n(g) =

n∑
k=1

g(a + k∆n)∆n, ∆n = (b − a)/n.

Recall from calculus that if g is continuous, then∫ b

a
g(x) dx = lim

n→∞
S n(g).

Exercise 5.7. Let a, b ∈ R and f : [a, b]→ C be continuous. Prove that∣∣∣∣ ∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
| f (x)| dx.

[Hint. Let f (x) = u(x)+iv(x). Use the above remark to write the left side of the inequality as | lim
n→∞

(S n(u)+iS n(v))|.

Then use the triangle inequality to show that the last limit is ≤ lim
n→∞

S n(| f |). Complete the proof by using the

remark one more time.]

Exercise 5.8. Let t > 0 and x ∈ R. Prove that the series
∑∞

m=1 e−π(m+x)2t and the series
∑∞

m=1 e−π(x−m)2t both
converge. Deduce that the series used to define the function θ(x; t) in Example 5.13 also converges.

Exercise 5.9. The purpose of this exercise is to establish that the function θ(x) in Example 5.13 is continuous at
all real numbers. Let a be an arbitrary real number with |a| ≤ 1. Since θ(x) is a 1-periodic function, it suffices to
show that it is continuous at any such a.

(a) Fix an ε > 0. Prove that there exists an integer N such that for all x in the range a − 1 < x < a + 1,
we have ∣∣∣∣θ(x) −

N∑
n=−N

e−π(n+x)2t
∣∣∣∣ < ε

3
.

(b) Prove that the function
∑N

n=−N e−π(n+x)2t is continuous at x = a.
(c) Use parts (a) and (b) to prove that there exists a number δ > 0 such that

|x − a| < δ =⇒ |θ(x) − θ(a)| < ε.

Deduce that θ(x) is continuous at x = a.

Exercise 5.10. The purpose of this exercise is to establish the connection between the Fourier sine and cosine
series of a function and its complex Fourier series. Let f : R→ R be a 1-periodic function. For n ∈ Z, we define
the sequences

an = 2
∫ 1

0
f (t) cos(2πnt) dt, bn = 2

∫ 1

0
f (t) sin(2πnt) dt, cn =

∫ 1

0
f (t)e−2πint dt.

(a) Show that a0 = 2c0 and that, for n ≥ 1, an = cn + c−n and bn = i(cn − c−n).
(b) Use Euler’s formulas and part (a) to show that

a0

2
+

N∑
n=1

(
an cos(2πnx) + bn sin(2πnx)

)
=

N∑
n=−N

cne2πinx.
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Exercise 5.11. Let f : R→ C be a continuous function such that
∫ ∞
−∞

x2 | f (x)| dx converges.

(a) Let x, y ∈ R. Show that

eixy − 1
y

− ix = −yx2
(

1 − cos(xy)
(xy)2 + i

xy − sin(xy)
(xy)2

)
.

Observe that the functions (1 − cos t)/t2 and (t − sin t)/t2 are bounded to deduce that

eixy − 1
y

= ix + yx2g(x, y),

where g(x, y) is a complex-valued function such that |g(x, y)| ≤ C for some constant C > 0.
(b) Let f̂ (y) be the Fourier transform of f , and let h ∈ R. Use part (a) to show that

f̂ (y + h) − f̂ (y)
h

=

∫ ∞
−∞

f (x)e−2πiyx((−2πix) + 4π2hx2g(−2πx, h)
)

dx,

where g is the function from part (a).
(c) Use part (b) and the bound for g from part (a) to prove that f̂ (y) is differentiable and

f̂ ′(y) = −2πi
∫ ∞
−∞

x f (x)e−2πiyx dx.

Exercise 5.12. The purpose of this exercise is to compute the Fourier transform of the Gaussian density function
φ(x) = e−x2/2.

(a) Show that
∫ ∞
−∞

x2e−x2/2 dx converges.
(b) Use part (a) and Exercise 5.11 to show that

φ̂
′(y) = −2πi

∫ ∞
−∞

xe−x2/2e−2πiyx dx.

(c) Note that xe−x2/2 dx = −d
(
e−x2/2) and use integration by parts to show that∫ ∞

−∞

xe−x2/2e−2πiyx dx = −2πiy
∫ ∞
−∞

e−x2/2e−2πiyx dx.

(d) Combine parts (b) and (c) to show that φ̂(y) satisfies the differential equation φ̂′ = −4π2yφ̂. Deduce
that φ̂(y) = ce−2π2y2

for some constant c > 0.
(e) By part (d), φ̂(0) = c. On the other hand, it is known from calculus and probability theory that

φ̂(0) =

∫ ∞
−∞

e−x2/2 dx =
√

2π.

Deduce that φ̂(y) =
√

2πe−2π2y2
.

Exercise 5.13. Let φ(x; t) = e−πx2t . In Example 5.13, we showed that∑
n∈Z

φ(n; t) =
∑
n∈Z

φ̂(n; t). (∗)

(a) Use Exercise 5.12 and a change of variables to show that φ̂(y; t) = e−πy2/t/
√

t.
(b) Use part (a) and (∗) above to show that the function

θ(t) =
∑
n∈Z

e−πn2t (t > 0)

satisfies the identity θ(1/t) =
√

tθ(t). The function θ(t) is a special case of Jacobi’s theta-function;
the identity is known as its transformation formula.

Exercise 5.14. Recall the Maclaurin series expansions of the sine and cosine functions: for all real x,

sin x = x −
x3

3!
+

x5

5!
− · · · + (−1)n x2n+1

(2n + 1)!
+ · · · , cos x = 1 −

x2

2!
+

x4

4!
− · · · + (−1)n x2n

(2n)!
+ · · · .

(a) Use the definition of eix and the above Maclaurin expansions to prove that

eix =

∞∑
n=0

(ix)n

n!
= 1 + (ix) +

(ix)2

2!
+ · · · (x ∈ R).

This shows that the Maclaurin expansion of the real exponential ex can be extended to the the case
of complex exponentials eix.
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(b) Recall that if
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent series with real terms, then( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
n=0

( n∑
k=0

akbn−k

)
.

Show that this identity remain true for the series with complex terms.
(c) Use parts (a) and (b), the Maclaurin expansion of ex and the binomial formula to prove that

ez =

∞∑
n=0

zn

n!
= 1 + z +

z2

2!
+ · · · (z ∈ C).



CHAPTER 6

Algebraic Numbers And Algebraic Integers

6.1. Definition

Definition 6.1. An algebraic number is a complex number α that is a root of a polynomial
f (x) = anxn + · · · + a1x + a0, where a0, a1, . . . , an ∈ Q. An algebraic integer is a complex
number ω that is a root of a polynomial f (x) = xn + bn−1xn−1 + · · · + b1x + b0, where
b0, b1, . . . , bn−1 ∈ Z. In this context, we refer to the elements of Z as rational integers.

Example 6.2. Every rational number m/n is algebraic, because it is the root of f (x) =

mx − n.
Every rational integer n is an algebraic integer, because it is root of f (x) = x − n.
Every root of unity ζ = e2πik/n, where k, n ∈ Z, is an algebraic integer, because it is

root of f (x) = xn − 1.

Theorem 6.3. If a rational number r ∈ Q is an algebraic integer, then r ∈ Z.

Proof. Let r = p/q, where p, q ∈ Z and (p, q) = 1. Since r is an algebraic integer,
there exist integers b0, b1, . . . , bn−1 such that

(p/q)n + bn−1(p/q)n−1 + · · · + b1(p/q) + b0 = 0

=⇒ pn + bn−1 pn−1q + · · · + b1 pqn−1 + b0qn = 0

=⇒ pn = q
(
− bn−1 pn−1 − · · · − b1 pqn−2 − b0qn−1).

It follows that q | pn, whence (q, pn) = |q|. On the other hand, since (p, q) = 1, Corol-
lary 1.12 gives (q, pn) = 1. We conclude that q = ±1, and hence, r ∈ Z. �

6.2. The ring of algebraic integers

In this section, we shall show that the set of all algebraic complex numbers is a field
and the set of algebraic integers is a commutative ring.

Lemma 6.4. Let θ1, θ2, . . . , θn be complex numbers, not all equal to 0, and define the set

M = M(θ1, θ2, . . . , θn) =
{

c1θ1 + c2θ2 + · · · + cnθn | c1, c2, . . . , cn ∈ Q
}
.

If α ∈ C is such that αθ j ∈ M for j = 1, 2, . . . , n, then α is an algebraic number.

Proof. Since αθi ∈ M, we have

αθi = ci1θ1 + ci2θ2 + · · · + cinθn for some ci j ∈ Q.

Combining these identities, we find that θ1, θ2, . . . , θn is a nontrivial solution of the homo-
geneous linear system

Ax = αx ⇐⇒ (A − αI)x = 0,
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where A is the square matrix A = [ci j]. The above system has nontrivial solutions if and
only if ∣∣∣∣∣∣∣∣∣

c11 − α c12 · · · c1n

c21 c22 − α · · · c2n
...

...
...

cn1 cn2 · · · cnn − α

∣∣∣∣∣∣∣∣∣ = 0.

The value of the determinant is an expression of the form

(−1)n
α

n + an−1α
n−1 + · · · + a1α + a0,

where each ak is a rational number, because it is a finite sum of products of ci j’s. Therefore,
α is a root of a polynomial with rational coefficients. �

Theorem 6.5. Let α and β be nonzero algebraic numbers. Then so are α ± β, αβ, β−1 and
α/β.

Of course, if α or β is zero, α ± β and αβ are also algebraic.

Proof. Suppose that

anα
n + · · · + a1α + a0 = 0, bmβ

m + · · · + b1β + b0 = 0,

where a0, a1, . . . , an, b0, b1, . . . , bm ∈ Q, an , 0, and bm , 0. It follows that

α
n = a′n−1α

n−1 + · · · + a′1α + a′0, β
m = b′m−1β

m−1 + · · · + b′1β + b′0, (6.1)

where a′k = −ak/an and b′k = −bk/bm. Let M be the set of all sums of the form
n−1∑
i=0

m−1∑
j=0

ci jα
i
β

j, (6.2)

with coefficients ci j ∈ Q. Note that M is a set of the type considered in Lemma 6.4.
To prove that α+β is algebraic, we show that (α+β)αiβ j ∈ M for all i = 0, 1, . . . , n−1

and j = 0, 1, . . . ,m − 1, and then we apply the lemma. We have

(α + β)αi
β

j = α
i+1
β

j + αi
β

j+1.

When i < n−1 and j < m−1, the sum on the right is of the form (6.2) with ci+1, j = ci, j+1 = 1
and all the other coefficients equal to 0. When i = n − 1 and j < m − 1, we use (6.1) to
obtain

α
n
β

j + αn−1
β

j+1 = a′n−1α
n−1
β

j + · · · + a′1αβ
j + a′0β

j + αi
β

j+1,

and the sum on the right is again of the form (6.2). Similarly, when i < n− 1 and j = m− 1
or i = n− 1 and j = m− 1, we can use (6.1) to express the sum αnβ j +αn−1β j+1 in the form
(6.2). This proves that α + β is algebraic.

The proofs that α − β and αβ are algebraic are similar; β−1 is algebraic, because it is
a root of the polynomial b0xn + b1xn−1 + · · · + bn, which has rational coefficients. Finally,
to show that α/β is algebraic, we observe that it is the product of α and β−1, both of which
are algebraic. �

The proofs of the next two results are similar to those of Lemma 6.4 and Theorem 6.5,
so we leave them as exercises.

Lemma 6.6. Let θ1, θ2, . . . , θn be complex numbers, not all equal to 0, and define the set

M = M(θ1, θ2, . . . , θn) =
{

c1θ1 + c2θ2 + · · · + cnθn | c1, c2, . . . , cn ∈ Z
}
.

If α ∈ C is such that αθ j ∈ M for j = 1, 2, . . . , n, then α is an algebraic integer.
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Theorem 6.7. Let α and β be algebraic integers. Then so are α ± β and αβ.

Remark. In the terminology of abstract algebra, Theorems 6.5 and 6.7 establish that the
set of algebraic numbers and the set of algebraic integers are, respectively, a subfield and a
subring of the field of complex numbers.

6.3. Congruences between algebraic integers

Let Ω denote the ring of all algebraic integers.

Definition 6.8. Let ω ∈ Ω, with ω , 0, and let α, β ∈ Ω. We say that α is congruent to β
modulo ω, and write α ≡ β (mod ω), if α − β = ωη for some η ∈ Ω.

Remark. Suppose that a, b ∈ Z and m ∈ N. Then a, b and m belong also to Ω, so the
notation a ≡ b (mod m) now has a double meaning: according to Theorem 1.20, it means
that a − b = mk for some k ∈ Z; and according to the above definition, it means that
a − b = mη for some η ∈ Ω. The ambiguity is, however, superficial. Indeed, if a − b = mη,
with a, b,m ∈ Z, m , 0 and η ∈ Ω, then

η = (a − b)/m ∈ Q ∩Ω.

Therefore, it follows from Theorem 6.3 that if a − b = mη, with η ∈ Ω, then in fact, η ∈ Z.

The next theorem summarizes some basic properties of congruences between alge-
braic integers. Note the similarities between the properties below and the properties of
congruence modulo a rational integer m listed in Theorem 1.21. The proof of the theorem
is also similar to the proof of Theorem 1.21, so we leave it as an exercise.

Theorem 6.9. Let ω ∈ Ω, with ω , 0, and α, β, γ, δ ∈ Ω. Then:

i) α ≡ α (mod ω);
ii) if α ≡ β (mod ω), then β ≡ α (mod ω);

iii) if α ≡ β (mod ω) and β ≡ γ (mod ω), then α ≡ γ (mod ω);
iv) if α ≡ β (mod ω) and γ ≡ δ (mod ω), then α + γ ≡ β + δ (mod ω);
v) if α ≡ β (mod ω) and γ ≡ δ (mod ω), then αγ ≡ βδ (mod ω).

Lemma 6.10. Let p be a prime number and let α, β ∈ Ω. Then

(α + β)p ≡ αp + βp (mod p).

Proof. By the binomial theorem,

(α + β)p = α
p + βp +

p−1∑
k=1

(
p
k

)
α

k
β

p−k.

By Exercise 1.10,
(p

k

)
≡ 0 (mod p) for all k = 1, 2, . . . , p − 1, so multiple applications of

parts iv) and v) of Theorem 6.9 show that

p−1∑
k=1

(
p
k

)
α

k
β

p−k ≡ 0 (mod p) =⇒ (α + β)p ≡ αp + βp (mod p).

�
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6.4. A proof of Theorem 2.17

Let ζ = e2πi/8 and τ = ζ + ζ−1. Note that ζ and ζ−1 are algebraic integers, since both
are roots of the polynomial x4 + 1. Also, τ ∈ Ω by Theorem 6.7. Furthermore, we have

τ2 = ζ2 + 2 + ζ−2 = eπi/2 + 2 + e−πi/2 = i + 2 − i = 2.

Raising both sides of the above identity to the (p − 1)/2 power and using Euler’s criterion,
we obtain

τp−1 = (τ2)(p−1)/2 = 2(p−1)/2 ≡

(
2
p

)
(mod p),

whence

τp+1 ≡

(
2
p

)
τ2 =

(
2
p

)
2 (mod p). (6.3)

Next, we make use of congruences between algebraic integers. By Lemma 6.10,

τp =
(
ζ + ζ−1)p

≡ ζ p + ζ−p (mod p),

whence,

τp+1 ≡
(
ζ p + ζ−p)τ (mod p).

Note that the value of the sum ζ p + ζ−p depends only on the residue class of p modulo 8:

ζ p + ζ−p =

{
ζ + ζ−1 if p ≡ ±1 (mod 8),
ζ3 + ζ−3 if p ≡ ±3 (mod 8).

Thus, when p ≡ ±1 (mod 8), we have

τp+1 ≡ τ2 = 2 (mod p);

and when p ≡ ±3 (mod 8), we have

τp+1 ≡
(
ζ3 + ζ−3)(ζ + ζ−1) = ζ4 + ζ2 + ζ−2 + ζ−4 = −2 (mod p).

Since the expression (p2 − 1)/8 is even when p ≡ ±1 (mod 8) and odd when p ≡ ±3
(mod 8), we can summarize the above computation as

τp+1 ≡ (−1)(p2−1)/82 (mod p).

Comparing this congruence with (6.3), we deduce that(
2
p

)
2 ≡ (−1)(p2−1)/82 (mod p).

We proved this congruence as a congruence between algebraic integers, but since both
sides and the modulus are in Z, our earlier remark shows that the same congruence holds
modulo p. Since (2, p) = 1, we can now cancel the 2’s from the last congruence to obtain(

2
p

)
≡ (−1)(p2−1)/8 (mod p).

Since both sides of this congruence are equal to 1 or −1, their difference is ±2 or 0. Since
that difference must be divisible by p > 2, it can only equal 0 and Theorem 2.17 follows.

�
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6.5. Exercises
Exercise 6.1. Let m, n ∈ N. Show that n√m is an algebraic integer.

Exercise 6.2. Show that 3√2 +
3√7 is an algebraic integer without using Theorem 6.7.

Exercise 6.3. Show that
√

6 +
3√4 −

√
6 − 3√2 is an algebraic integer without using Theorem 6.7.

Exercise 6.4. Provide the details of the proof of Theorem 6.5 for αβ.

Exercise 6.5. Prove Lemma 6.6.

Exercise 6.6. Prove Theorem 6.7.

Exercise 6.7. Prove Theorem 6.9.

Recall that a set X is called countable if either X is finite, or there exists a bijection from X onto N, the set
of natural numbers. Recall also the following fact.

If X1, X2, . . . , Xn, . . . are countable sets, then their union ∪∞n=1Xn is also countable.

Exercise 6.8. The purpose of this exercise is to show that the set Ξ of all algebraic numbers is countable.
(a) Let Ξn be the set of algebraic numbers α that satisfy polynomial equations over Q of degrees ≤ n,

anα
n + · · · + a1α + a0 = 0 (ai ∈ Q).

Show that Ξn is countable.
(b) Use part (a) and the above fact to show that Ξ is countable.
(c) Use part (b) to show that there exist complex numbers that are not algebraic (such numbers are called

transcendental).

Exercise 6.9. Let α ∈ C be algebraic, and let p(x) ∈ Q[x] be a non-zero polynomial with rational coefficients
that has the least degree among all polynomials that have α as a root. Then any polynomial f (x) ∈ Q[x] such that
f (α) = 0 is divisible by p(x).

Exercise 6.10. Consider Cwith the operation of addition of complex numbers and the operation of multiplication
of complex numbers by rationals.

(a) Show that C, with the above operations, is a linear space over Q.
(b) Show that the set Ξ of all algebraic numbers is a linear subspace of the linear space from part (a).

The purpose of the remainder of the exercise is to show that Ξ is an infinite-dimensional subspace.
(c) Show if the linear subspace Ξ from part (b) is n-dimensional, then every algebraic number α satisfies

a polynomial equation with rational coefficients and of degree at most n.
(d) Let ζ = e2πi/m, m ∈ N, and let p(x) = xk + ak−1 xk−1 + · · ·+ a1 x + a0 ∈ Q[x] be the monic polynomial

of least degree that has ζ as its root. Use Exercise 6.9 to show that p(x) divides xm − 1. Deduce that
all the roots of p(x) are of the form ζl, l ∈ N.

(e) Use part (d) to show that |a j | ≤
(k

j

)
for all j = 0, 1, . . . , k − 1.

(f) Use parts (c) and (e) to show that if Ξ is an n-dimensional subspace of C, then there are only a finite
number of distinct numbers of the form ζ = e2πi/m, m ∈ N. Observe that the numbers of this form
are, in fact, pairwise distinct, and deduce that Ξ must be an infinite-dimensional subspace of C.





CHAPTER 7

Proofs Of The Law Of Quadratic Reciprocity

This chapter consists of a series of exercises that develop six proofs of the law of
quadratic reciprocity.

7.1. S.Y. Kim’s elementary proof

Our first proof is a relatively recent one: it was published by S.Y. Kim in 20041. It uses
only elementary properties of congruences and some basic combinatorics. It also uses the
results of Exercises 2.7 and 2.9.

Exercise 7.1 (First proof of the law of quadratic reciprocity). Let p and q be distinct odd
primes and define

R =
{

a ∈ N | 1 ≤ a ≤ 1
2 (pq − 1), (a, pq) = 1

}
, Π =

∏
a∈R

a.

(a) Prove that T ⊆ S and that R = S − T , where

S =
{

a ∈ N | 1 ≤ a ≤ 1
2 (pq − 1), (a, p) = 1

}
, T =

{
q, 2q, . . . , 1

2 (p − 1)q
}
.

(b) Use part (a), Wilson’s theorem (Exercise 2.9) and Euler’s criterion to prove that
Π ≡ (−1)(q−1)/2

( q
p

)
(mod p).

(c) By switching the roles of p and q in part (b), show that Π ≡ (−1)(p−1)/2
( p

q

)
(mod q).

(d) Use parts (b) and (c) to prove that (−1)(q−1)/2
( q

p

)
= (−1)(p−1)/2

( p
q

)
if and only if

Π ≡ ±1 (mod pq).
(e) Let U =

{
a ∈ R | a2 ≡ ±1 (mod pq)

}
. Prove that Π ≡ ±

∏
a∈U

a (mod pq).

[Hint. For any a ∈ R, exactly one of ā or pq − ā is also an element of R. Denote
that element of R by a∗. Then aa∗ ≡ ±1 (mod pq) for all a ∈ R. Pair the elements
of R − U into pairs a, a∗.]

(f) By Exercise 2.7, the congruence x2 ≡ 1 (mod pq) has four solutions: ±1 and ±α
for some integer α. Show that only two of these four solutions are congruent to
integers in U: 1 and one of α and −α.

(g) Use Exercise 2.7 and Corollary 2.13 to prove that when p ≡ 3 (mod 4) or q ≡ 3
(mod 4), the congruence x2 ≡ −1 (mod pq) has no solution.

(h) Use Exercise 2.7 and Corollary 2.13 to prove that when p ≡ q ≡ 1 (mod 4), the
congruence x2 ≡ −1 (mod pq) has four solutions.

(i) Let p ≡ q ≡ 1 (mod 4) and let β be one of the four solutions of x2 ≡ −1
(mod pq). Prove that the other three solutions are −β and ±αβ, where α is the
integer from part (f). Show that only two of these four solutions are congruent to
integers in U: one of β and −β and one of αβ or −αβ.

1An Elementary Proof of the Quadratic Reciprocity Law, Amer. Math. Monthly 111 (2004), 48–50.
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(j) Use parts (e)–(i) to prove that Π ≡ ±1 (mod pq) if and only if p ≡ q ≡ 1
(mod 4).
[Hint. The set U is either {1, ∗α} or {1, ∗α, ∗β, ∗αβ}, where each ∗ denotes either
+ or − sign.]

(k) Use parts (d) and (j) to prove that (−1)(q−1)/2
( q

p

)
= (−1)(p−1)/2

( p
q

)
if and only if

p ≡ q ≡ 1 (mod 4).
(l) Deduce the law of quadratic reciprocity from part (k).

7.2. Eisenstein’s lemma and counting lattice points

Our second proof of the law of quadratic reciprocity is a variant of one of Gauss’s
proofs. It uses a lemma of the German mathematician Eisenstein and a counting argument
for lattice points in the plane.

Exercise 7.2 (Eisenstein’s lemma). Let p be an odd prime and a an odd integer with
(a, p) = 1, and define

T (a, p) =

(p−1)/2∑
j=1

[ ja/p].

(a) For j = 1, 2, . . . , 1
2 (p−1), let ja = pq j+r j with 0 ≤ r j < p. Show that q j = [ ja/p]

and r j , 0.
(b) Define

u j =

{
r j if 0 < r j < p/2,
p − r j if p/2 < r j < p.

Prove that u1, u2, . . . , u(p−1)/2 are pairwise distinct. Deduce that

u1 + u2 + · · · + u(p−1)/2 = 1 + 2 + · · · + 1
2 (p − 1).

(c) Let µ be the number from the statement of Gauss’ lemma. Prove that

r1 + r2 + · · · + r(p−1)/2 ≡ u1 + u2 + · · · + u(p−1)/2 + µ (mod 2).

[Hint. p − u j ≡ u j + 1 (mod 2).]
(d) Use parts (a), (b) and (c) to prove that

a
(p−1)/2∑

j=1

j ≡ pT (a, p) +

(p−1)/2∑
j=1

j + µ (mod 2).

Deduce that T (a, p) ≡ µ (mod 2).
(e) Use part (d) and Gauss’ lemma to prove that

(
a
p

)
= (−1)T (a,p).

Exercise 7.3 (Second proof of the law of quadratic reciprocity). Let p and q be dis-
tinct odd primes and let R be the rectangle with vertices O(0, 0), A(p/2, 0), B(0, q/2) and
C(p/2, q/2).

(a) Prove that the number of lattice points (that is, points (x, y) with integer coordi-
nates) inside R is 1

2 (p − 1) · 1
2 (q − 1).

(b) Prove that there are no lattice points on the diagonal OC of R.
(c) Let T (a, p) be the quantity defined in Exercise 7.2. Prove that the number of

lattice points inside the triangle T1 with vertices O, A and C is T (q, p).
(d) Prove that the number of lattice points inside the triangle T2 with vertices O, B

and C is T (p, q).
(e) Use parts (a)–(d) to prove that T (p, q) + T (q, p) = 1

2 (p − 1) · 1
2 (q − 1).

(f) Deduce the law of quadratic reciprocity from part (e) and Exercise 7.2(e).
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7.3. Another proof of Eisenstein’s

In this section, we present a proof published by Eisenstein in 18452.

Exercise 7.4 (Third proof of the law of quadratic reciprocity). Let p and q be distinct odd
primes. Define the function f (z) = e2πiz − e−2πiz = 2i sin(2πz), where i =

√
−1.

(a) Prove that if n ∈ N is odd, then xn − yn =
∏n−1

k=0

(
ζk x − ζ−ky

)
, where ζ = e2πi/n.

[Hint. Consider both sides of the identity as polynomials in x. Show that those
polynomials have the same roots and the same leading coefficients.]

(b) Use part (a) to prove that if n ∈ N is odd, then

xn − yn = (x − y)
(n−1)/2∏

k=1

(
ζk x − ζ−ky

) (
ζ−k x − ζky

)
.

[Hint. If k > n/2, then j = n − k < n/2 and ζk x − ζ−ky = ζ− jx − ζ jy.]
(c) Prove that f (z + 1) = f (z) and f (−z) = − f (z), and that the only real zeros of f (z)

are the numbers n/2, where n is an integer.
(d) Prove that if n ∈ N is odd, then

f (nz)
f (z)

=

(n−1)/2∏
k=1

f
(

z +
k
n

)
f
(

z −
k
n

)
.

[Hint. Use the identity from part (b) with x = e2πiz and y = e−2πiz.]
(e) Prove that if (a, p) = 1, then

(p−1)/2∏
j=1

f
(

ja
p

)
=

(
a
p

) (p−1)/2∏
j=1

f
(

j
p

)
.

[Hint. For j = 1, 2, . . . , 1
2 (p−1), define r j ∈ {1, 2, . . . , 1

2 (p−1)} and ε j = ±1 as in
Exercise 2.8(a). Prove that f ( ja/p) = f (ε jr j/p) = ε j f (r j/p). Take the product
of these identities, then use Exercise 2.8(a, b) and Gauss’ lemma.]

(f) Prove that (
q
p

)
=

(q−1)/2∏
k=1

(p−1)/2∏
j=1

f
(

j
p

+
k
q

)
f
(

j
p
−

k
q

)
.

[Hint. By part (e) with a = q,
( q

p

)
=
∏(p−1)/2

j=1 f ( jq/p)/ f ( j/p). Apply the identity
in part (d) with n = q and z = j/p to the jth factor of the last product.]

(g) Use part (f) and the analogous expression for
( p

q

)
to prove the law of quadratic

reciprocity.

7.4. An algebraic proof: Gauss sums are algebraic integers

Recall that the Gauss sum is defined for m ∈ N and a ∈ Z by

G(m, a) =

m∑
n=1

e2πian2/m. (7.1)

In this section, we present a proof that uses some algebraic properties of G(m, a). In par-
ticular, we use that G(m, a) is an algebraic integer.

2Application de l’algèbre à l’arithmétique transcendante, J. Reine Angew. Math. 29 (1845), 177-184.
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Exercise 7.5 (Fourth proof of the law of quadratic reciprocity). Let p and q be distinct odd
primes and let G(m, a) be the sum defined in (7.1). Also, set p∗ = (−1)(p−1)/2 p.

(a) Use Exercise 1.14 to show that the numbers

e2πin2/pq (1 ≤ n ≤ pq)

are the same as

e2πi(qx+py)2/pq (1 ≤ x ≤ p, 1 ≤ y ≤ q).

(b) Use part (a) to prove that G(pq, 1) = G(p, q)G(q, p).
(c) Let (a, p) = 1. Prove that

G(p, a) =

p−1∑
x=1

(
x
p

)
e2πiax/p.

[Hint. Show that G(p, a) = 1 + 2
∑

r e2πiar/p, where r runs through the quadratic
residues modulo p. Then show that

(
x
p

)
+1 equals 2 when x is a quadratic residue

and 0 when x is a quadratic nonresidue. Deduce that G(p, a) = 1 +
∑p−1

x=1

((
x
p

)
+

1
)
e2πiax/p. Use Lemma 3.25 to complete the proof.]

(d) Let (a, p) = 1. Use part (c) to prove that G(p, a) =
(

a
p

)
G(p, 1).

[Hint. By Theorem 1.31, as x runs through 1, 2, . . . , p − 1, the products ax also
run through a reduced residue system modulo p.]

(e) Show that G(p, 1) = G(p,−1) (the bar denotes complex conjugation). Use this
identity and part (d) to prove that |G(p, 1)|2 =

(
−1
p

)
G(p, 1)2.

(f) Use part (e), Corollary 2.13 and Theorem 3.24 to prove that G(p, 1)2 = p∗.
(g) Use part (f) and Euler’s criterion to prove that G(p, 1)q−1 ≡

( p∗

q

)
(mod q).

(h) Prove that G(p, 1) is an algebraic integer.
(i) Prove that G(p, 1)q ≡ G(p, q) (mod q). Use this congruence and part (d) to

deduce that G(p, 1)q ≡
( q

p

)
G(p, 1) (mod q).

(j) Use parts (f), (g) and (i) to prove that G(p, 1)q+1 ≡
( p∗

q

)
p∗ ≡

( q
p

)
p∗ (mod q).

(k) Observe that (p∗, q) = 1 and deduce from part (j) that
( p∗

q

)
≡
( q

p

)
(mod q).

(l) Use part (k) to prove that
( p∗

q

)
=
( q

p

)
.

(m) Deduce the law of quadratic reciprocity from part (l).

7.5. A proof using the formula for the Gauss sum

In this section, we demonstrate that the law of quadratic reciprocity follows from a
closed formula for the Gauss sum (7.1). The idea goes back to Gauss. Note that there is
some overlap between this proof and the previous one, but this proof requires the exact
formula in Theorem 2.21. In the following two sections, we present two different proofs
of that formula.

Exercise 7.6 (Fifth proof of the law of quadratic reciprocity). Let p and q be distinct odd
primes. For m ∈ N and a ∈ Z, define

G(m, a) =

m∑
n=1

e2πian2/m.

(a) Use Exercise 1.14 to show that the numbers

e2πin2/pq (1 ≤ n ≤ pq)
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are the same as

e2πi(qx+py)2/pq (1 ≤ x ≤ p, 1 ≤ y ≤ q).

(b) Use part (a) to prove that G(pq, 1) = G(p, q)G(q, p).
(c) Let (a, p) = 1. Prove that

G(p, a) =

p−1∑
x=1

(
x
p

)
e2πiax/p.

[Hint. Show that G(p, a) = 1 + 2
∑

r e2πiar/p, where r runs through the quadratic
residues modulo p. Then show that

(
x
p

)
+1 equals 2 when x is a quadratic residue

and 0 when x is a quadratic nonresidue. Deduce that G(p, a) = 1 +
∑p−1

x=1

((
x
p

)
+

1
)
e2πiax/p. Use Lemma 3.25 to complete the proof.]

(d) Let (a, p) = 1. Use part (c) to prove that G(p, a) =
(

a
p

)
G(p, 1).

[Hint. By Theorem 1.31, as x runs through 1, 2, . . . , p − 1, the products ax also
run through a reduced residue system modulo p.]

(e) Use parts (b) and (d) to prove that G(pq, 1) =
( p

q

)( q
p

)
G(p, 1)G(q, 1).

(f) Deduce the law of quadratic reciprocity from part (e) and the explicit formula for
G(m, 1) in Theorem 2.21.

7.6. An evaluation of the Gauss sum using Fourier series

In this section, we deduce Theorem 2.21 from Poisson’s summation formula (Theo-
rem 5.12).

Exercise 7.7 (First evaluation of the Gauss sum). Suppose that m is a positive integer.

(a) Define the function f : R→ C by

f (x) =
f0(x − 0) + f0(x + 0)

2
, f0(x) =

{
e2πix2/m if 0 ≤ x ≤ m,
0 otherwise.

Apply Poisson’s summation formula to f to prove that

G(m) = m
∑
n∈Z

e−πimn2/2
∫ −n/2+1

−n/2
e2πimy2

dy. (∗)

(b) Show that the improper integral γ =
∫ ∞
−∞

e2πit2
dt is convergent if and only if the

improper integrals∫ ∞
1

sin(2πu)
√

u
du and

∫ ∞
1

cos(2πu)
√

u
du

are both convergent.
(c) The following test for convergence of improper integrals is due to Dirichlet:

Let f and g be functions continuous on the interval [a,∞) and such that:
i) there is a number K > 0 such that

∣∣ ∫ b
a f (x) dx

∣∣ ≤ K for all b > a;
ii) g is a decreasing function and lim

x→∞
g(x) = 0.

Then the improper integral
∫ ∞

a f (x)g(x) dx is convergent.

Use Dirichlet’s test and part (b) to show that the improper integral γ is conver-
gent.
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(d) Use part (a) to prove that G(m) = γ(1 + i−m)
√

m. [Hint. The contribution to the
sum in (∗) from the even values of n is

∑
k

∫ −k+1
−k e2πimy2

dy, and the contribution
from the odd values of n is i−m∑

k

∫ −k+1/2
−k−1/2 e2πimy2

dy.]
(e) Deduce Theorem 2.21 from part (d).

7.7. An evaluation of the Gauss sum using matrices

Note that our fifth proof of the quadratic reciprocity law requires Theorem 2.21 only
in the special cases m = p, m = q and m = pq. In this section, we give another proof
of Theorem 2.21 in those special cases. This proof uses linear algebra over the complex
numbers.

Exercise 7.8 (Second evaluation of the Gauss sum). Let m be an odd integer, and A be the
m × m matrix with entries e2πi jk/m, 0 ≤ j, k ≤ m − 1: that is, the entry in the ( j + 1, k + 1)
position of A is e2πi jk/m.

(a) Show that G(m, 1) =
∑m

j=1 λ j, where λ1, λ2, . . . , λm are the eigenvalues of A.
(b) Use Lemma 3.25 to prove that

A2 =


m 0 · · · 0
0
... B
0

 , where B =


0 · · · 0 m
0 · · · m 0
...

...
...

m · · · 0 0

 .
(c) Prove that the characteristic polynomial of A2 is −(x − m)(m+1)/2(x + m)(m−1)/2.

[Hint. See Exercise 4.18.]
(d) Show that among the eigenvalues λ2

1, λ
2
2, . . . , λ

2
m of A2 there are (m + 1)/2 equal

to m and (m − 1)/2 equal to −m. Deduce that all the eigenvalues of A are of the
forms ±

√
m or ±i

√
m and use part (a) to show that

G(m, 1) = ((a − b) + (c − d)i)
√

m, (∗)

where a, b, c and d are the numbers of eigenvalues of A equal to
√

m,−
√

m, i
√

m
and −i

√
m, respectively.

(e) Show that a + b = (m + 1)/2 and c + d = (m− 1)/2 and that det A = λ1λ2 · · · λm =

i2b+c−dmm/2.
(f) Use part (c) to show that det A2 = (−1)m(m−1)/2mm. Deduce that

det A = ±im(m−1)/2
√

mm.

(g) Use Theorem 4.22 to evaluate det A. Then use the identity

e2πik/m − e2πi j/m = (−1)(k+ j)/m2i sin
(
π(k − j)/m

)
to obtain that

det A = im(m−1)/2
∏

0≤ j<k≤m−1

(
2 sin

(
π(k − j)/m

)
.

(h) Combine parts (f) and (g) to show that det A = im(m−1)/2
√

mm.
(i) Let p be an odd prime. Show that G(p, 1) = G(p,−1) (the bar denotes complex

conjugation). Use this identity and Exercise 7.6(d) to prove that |G(p, 1)|2 =(
−1
p

)
G(p, 1)2.
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(j) Use part (i), Corollary 2.13 and Theorem 3.24 to show that G(p, 1)2 = (−1)(p−1)/2 p.
Deduce that

G(p, 1) =

{
±
√

p if p ≡ 1 (mod 4),
±i
√

p if p ≡ 3 (mod 4).

(k) For m = p, use parts (d) and (j) to prove that:

a = b ± 1, c = d when p ≡ 1 (mod 4);
a = b, c = d ± 1 when p ≡ 3 (mod 4).

(l) Use parts (e), (h) and (k) to deduce from (∗) that

G(p, 1) = i(p−1)2/4√p =

{√
p if p ≡ 1 (mod 4),

i
√

p if p ≡ 3 (mod 4).

(m) Let p and q be two distinct odd primes. Use part (j) and Exercise 7.6(e) to prove
that G(pq, 1)2 = (−1)(p−1)/2+(q−1)/2 pq. Deduce that

G(pq, 1) =

{
±
√

pq if p ≡ q (mod 4),
±i
√

pq if p . q (mod 4).

(n) For m = pq, use parts (d) and (m) to prove that

a = b ± 1, c = d when p ≡ q (mod 4),
a = b, c = d ± 1 when p . q (mod 4).

(o) Use parts (e), (h) and (n) to deduce from (∗) that

G(pq, 1) = i(pq−1)2/4√pq =

{√
pq if p ≡ q (mod 4),

i
√

pq if p . q (mod 4).

7.8. A proof using polynomials and resultants

Exercise 7.9 (Sixth proof of the quadratic reciprocity law). Given variables x, y and an
integer k ≥ 1, define the polynomials

σ1 = x + y, σ2 = xy, S k = xk + yk.

Throughout this exercise, m and n denote odd positive integers and p an odd prime.
(a) Show that S n = σ1Tn, where

Tn = xn−1 − xn−2y + · · · − xyn−2 + yn−1.

Use the fundamental theorem for symmetric polynomials to deduce that

S n = σ1 fn(σ2
1, σ2),

where fn(u, v) is a homogeneous polynomial with integer coefficients of degree
(n − 1)/2.

(b) Let fn(u, v) be the homogeneous polynomial from part (a), and define fn(z) by
fn(z) = fn(z, 1). Show that fn(z) is a monic polynomial with integer coefficients
of degree (n− 1)/2 and fn(0) = (−1)(n−1)/2n. [Hint. Use S n(x, 0) and S n(x,−x).]

(c) Use the binomial theorem to show that S p = σ
p
1 + pG(x, y), where G(x, y) is

a homogeneous polynomial with integer coefficients of degree p which is also
symmetric in x and y.
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(d) Let fp(z) be the polynomial from part (b). Write

fp(z) = z(p−1)/2 +

(p−3)/2∑
k=0

cp,kzk (cp,k ∈ Z).

Use part (c) and the fundamental theorem for symmetric polynomials to show
that p divides all the coefficient cp,k, 0 ≤ k < (p − 1)/2. Deduce that

res( fn, fp) ≡ res
(

fn, z(p−1)/2) (mod p).

(e) Use part (b), Exercise 4.23 and the properties of resultants to show that

res
(

fn, z(p−1)/2) = n(p−1)/2.

(f) Use parts (d) and (e) and Euler’s criterion to show that if (n, p) = 1, then

res( fn, fp) ≡
(

n
p

)
(mod p).

(g) Show that if (m, n) = 1, then 1 is the only common root of the polynomials zm−1
and zn − 1. Deduce that gcd(zm − 1, zn − 1) = z − 1.

(h) Let (m, n) = 1. Use part (g) and the analog of Theorem 1.10 for polynomials
to show that there exist polynomials P(z) and Q(z) with integer coefficients such
that z − 1 = P(z)(zm − 1) + Q(z)(zn − 1).

(i) Let (m, n) = 1. Apply the result of part (h) with z = −x/y to show that there exist
an integer k and homogeneous polynomials with integer coefficients H(x, y) and
K(x, y) such that σ1yk = H(x, y)S m + K(x, y)S n.

(j) Let (m, n) = 1. Use the result of part (i) to derive the identities

σ1xk+1yk = xk+1(H(x, y)S m + K(x, y)S n
)
,

σ1xkyk+1 = yk+1(H(y, x)S m + K(y, x)S n
)
.

Use these identities to show that there exist homogeneous symmetric polynomi-
als with integer coefficients M(x, y) and N(x, y) such that

σ2
1σ

k
2 = M(x, y)S m + N(x, y)S n.

(k) Use the fundamental theorem for symmetric polynomials to show that the poly-
nomials M(x, y) and N(x, y) in part (j) can be rewritten as σ1U(σ2

1, σ2) and
σ1V(σ2

1, σ2), respectively, where U(u, v) and V(u, v) are also homogeneous poly-
nomials with integer coefficients. Deduce that

σk
2 = U(σ2

1, σ2) fm(σ2
1, σ2) + V(σ2

1, σ2) fn(σ2
1, σ2).

(l) Use part (k) to show that if (m, n) = 1, then there exist polynomials U(z) and
V(z) with integer coefficients such that U(z) fm(z) + V(z) fn(z) = 1.

(m) Use part (l) and Proposition 4.25 to show that if (m, n) = 1, then

res( fm, fn) res( fm,V) = 1.

Since both resultants are integers, deduce that res( fm, fn) = ±1. [Hint. Start
from res( fm, 1) = 1.]

(n) Combine parts (f) and (m) to show that if (n, p) = 1, then
(

n
p

)
= res( fn, fp).

(o) Deduce the law of quadratic reciprocity from part (n) and Proposition 4.25.
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