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Abstract. Building on Hrushovski’s work in [5], we study definable group-
oids in stable theories and their relationship with 3-uniqueness and finite
internal covers. We introduce the notion of retractability of a definable
groupoid (which is slightly stronger than Hrushovski’s notion of eliminabil-
ity), give some criteria for when groupoids are retractable, and show how
retractability relates to both 3-uniqueness and the splitness of finite internal
covers. One application we give is a new direct method of constructing non-
eliminable groupoids from witnesses to the failure of 3-uniqueness. Another
application is a proof that any finite internal cover of a stable theory with
a centerless liaison groupoid is almost split.

Introduction

This paper explores connections between the uniqueness of a solution to a 3-
amalgamation problem in a stable theory, finite internal covers, and groupoids
definable in models of the theory.

A groupoid is a category in which every morphism is invertible. A good ex-
ample to keep in mind is that of a fundamental groupoid of a topological space.
In such groupoids, objects are points in the topological space and morphisms
are homotopy classes of paths connecting the points. In particular, morphisms
from a point to itself are homotopy classes of loops; they form a group under
the operation of composition. If the space is path-connected, then the groups
of loops are isomorphic. The groupoids constructed in this paper are very
similar in nature, but with one important distinction: all the automorphism
groups of objects are finite.

For a stable theory, the uniqueness of a solution to a 3-amalgamation problem
(we abbreviate this as 3-uniqueness) means the following. Let {a0, a1, a2} be
algebraically closed sets, independent over a common subset A. Denote by aij

the algebraic closure of aiaj, for i < j < 3, considered as an infinite tuple with
some (arbitrary) well-ordering. Let σij be an automorphism of the monster
model that fixes ai ∪ aj pointwise (so σij fixes A), but does not necessarily fix
aij pointwise. We say that 3-uniqueness holds if for all such {a0, a1, a2} and A
we have

tp(a01a12a02) = tp(σ01(a01)σ12(a12)σ02(a02)).
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Stationarity implies that we may take all but one of the σij to be the identity
maps.

The property of 3-uniqueness is one of the properties in the family of gen-
eralized amalgamation properties: n-existence and n-uniqueness for n ≥ 2.
For first-order theories, the 2-existence property is the extension property of
non-forking and 2-uniqueness is stationarity. So 2-uniqueness holds in stable
theories. However, 3-uniqueness need not hold in a stable theory. In fact, we
present a family of examples of almost strongly minimal theories that fail to
have 3-uniqueness.

Our paper builds on the work of Hrushovski [5]. In that manuscript, Hrushov-
ski shows, among many other things, that a stable theory T has the 3-unique-
ness property if and only if every groupoid definable in the models of T is elim-
inable. The precise definition of eliminability is given in Definition 1.24; essen-
tially it means that there is a definable full faithful functor from the groupoid
to a (possibly, larger) groupoid that contains a definable object. Hrushovski
shows that failure of 3-uniqueness implies that T has a finite internal cover
which is not split. A separate construction connects any internal cover with
its liaison groupoid ; and it is shown that a liaison groupoid is equivalent to a
group if and only if the corresponding cover is split. However, internality of
the cover is shown by an indirect argument, so it is not clear how to obtain a
definable groupoid from failure of 3-uniqueness.

In this paper, we present a direct construction of a non-eliminable groupoid
witnessing failure of 3-uniqueness. Our idea is to construct these groupoids
from “paths” in close analogy to fundamental groupoids from algebraic topol-
ogy, and we show that any sufficiently symmetric witness to the failure of
3-uniqueness can be embedded into such a groupoid. We are optimistic that
this construction may be generalizable to higher dimensions, so that failures of
n-uniqueness would correspond to “non-eliminable (n − 2)-groupoids” (which
would be certain kinds of (n− 2)-categories).

We introduce the notion of retractability for definable groupoids. The notion
is closely related to, but is stronger than, eliminability. Essentially, a groupoid
is retractable over a set A if there is an A-definable functor F from the groupoid
to a groupoid with a single object. Alternatively, a groupoid is retractable if
there exists an A-definable commuting system of morphisms between all the
objects. One can think of the commuting system as the inverse image of the
identity morphism under the functor F , and we show how to construct such a
functor from a commuting system of morphisms in Lemma 1.25.

We find that retractability of a groupoid is somewhat easier to visualize
than eliminability. Retractability of a finitary groupoid gives rise to a finite
equivalence relation on the set of morphisms. This is a key property used in
the proof of Theorem 3.11.

We obtain the following characterizations of eliminability and retractability
that help to connect the notions. If G is a finitary groupoid defined over an
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algebraically closed set A then:

G is retractable over A ⇐⇒ ∀a^
A
b, Mor(a, b) ∩ dclA(a, b) 6= ∅,

G is eliminable over A ⇐⇒ ∀a^
A
b, Mor(a, b) ∩ dclA(acl A(a), acl A(b)) 6= ∅,

where a and b are objects of G.
We show in Section 4 that not every eliminable groupoid is retractable; but

the characterizations suggest that an eliminable groupoid can be “covered” by
a family of retractable ones if we add a finite number of points to objects. This
is the motivation behind our definition of a partial sentient cover of a groupoid
(Definition 1.29).

Using our analysis of retractable groupoids in stable theories, we derive sev-
eral new results. If G is a groupoid and a is an object of G, let Ga be the
automorphism group of a in G. We show that if G is any connected type-
definable groupoid such that for any object a, Ga is finite and contained in
dcl(a), then the quotient of G by its center is almost retractable (i.e. re-
tractable over algebraic parameters). An immediate corollary of this is that if
G is a finitary groupoid as above such that Ga is centerless, then G itself is al-
most retractable (Corollary 1.21). In particular, the non-eliminable groupoids
arising from a failure of 3-uniqueness have nontrivial centers. We also show
that if M is a model of a stable theory and N is a finite internal cover of M
such that the kernel Aut(N/M) is centerless, then N is an almost split cover
of M (Theorem 3.11).

The paper is organized as follows. Section 1 is about the general theory of
definable groupoids, and here we define key notions such as retractability, elim-
inability, and sentience. We give several criteria for retractability (especially
in a stable theory), show how it is related to Hrushovski’s eliminability, and
prove that retractability can often be obtained by quotienting by the center.

In Section 2 we give an explicit construction of a non-eliminable groupoid
that witnesses the failure of 3-uniqueness in a stable theory. This is done in
several stages: first we show that the failure of 3-uniqueness property gives rise
to a certain configuration of elements in the monster model of the theory called
here symmetric witness to the failure. The symmetric witness is then used to
define the set of objects and the notion of a path between objects. Certain
equivalence classes of paths form the morphisms of the groupoid. We show
that the groupoid is not eliminable; combining with results from Section 1, we
see that the automorphism group of objects of such a groupoid has to have a
non-trivial center.

The main result of Section 3 is Theorem 3.11 mentioned above. This theorem
appears to be similar to Lemma 1.2 of [3]; we point out the differences between
the results in Section 3. We state the definitions of a finite internal cover,
notions of a split cover and a liaison groupoid of a cover. All these definitions
are taken from Hrushovski’s [5].
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Finally, Section 4 gives some examples of groupoids. For instance, we show
that eliminability is strictly weaker than retractability, and give a general
scheme for building non-retractable groupoids. For any finite group G, we
build a totally categorical almost strongly minimal theory with a connected
definable groupoid G such that Ga

∼= G for any a ∈ Ob(G). Moreover, the
groupoid G can be chosen so that Ga ⊆ dcl(a). We show that if G has nontriv-
ial center, then G is non-retractable, establishing that Corollary 1.21 is optimal
in a certain sense.

We use standard notation and terminology from model theory and stability
theory; see [6] for background in stability theory. Throughout, “definable”
means “definable over ∅,” unless otherwise specified. All of our definability
results have obvious generalizations to the case where “∅” is replaced by “A”
in both the hypothesis and the conclusion, where A is any small subset of
the monster model C. We assume that we are dealing with a stable theory T
(the few exceptions at the beginning of Section 1 are explicitly noted); we also
assume that T = T eq throughout.

We would like to thank the anonymous referee for many helpful comments
and suggestions which helped to substantially improve the original version of
this paper.

1. Retractability of definable groupoids

In this section, we develop the general theory of retractable and eliminable
groupoids in a stable theory. We prove some characterizations of retractability
in Lemma 1.12, Proposition 1.14, and Proposition 1.16 and new characteriza-
tions of eliminability in Lemma 1.26 and Theorem 1.32. In particular, the last
result shows that any almost eliminable groupoid can be modified cosmetically
to make it almost retractable by taking a finite cover of its objects – this is
the role of sentient cover described in Definition 1.30. Aside from these basic
results, the most striking new result here is that any connected finitary sen-
tient groupoid can be made almost retractable by quotienting by the center
(Proposition 1.18).

We start with some basic definitions. The definitions make sense in an
arbitrary first-order theory.

Definition 1.1 (Groupoid). A groupoid G = (Ob(G),Mor(G)) is a non-empty
category in which every morphism is invertible. In addition to the set of objects
Ob(G) and the set of morphisms Mor(G), groupoids come equipped with the
following structure: the (partial) composition operation on morphisms, the
domain and range maps (for each morphism, giving its domain and the range),
and the identity map which, for each a ∈ Ob(G), gives the identity morphism
id(a) : a→ a.

Definition 1.2 (Subgroupoid). A subgroupoid of a groupoid G is a subcategory
which is also a groupoid. A full subgroupoid is a subgroupoid G0 such that for
any a, b ∈ Ob(G0), MorG0(a, b) = MorG(a, b).
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Definition 1.3 (Connected groupoid). A groupoid is connected if for any two
of its objects it contains a morphism that goes between those objects. (In other
words, any two objects are isomorphic.)

If G is a groupoid and a ∈ Ob(G), then Ga denotes the group MorG(a, a).

Definition 1.4 (Finitary groupoid). A connected groupoid G is called finitary
if every (equivalently, some) set Ga is finite.

Next we consider definability properties of groupoids. From this point on,
we assume that we are working in some fixed complete theory T (so “definable”
means “definable in T”).

Definition 1.5 (Definable groupoid). (1) Let G = (Ob(G),Mor(G)) be a
groupoid. We say that G is definable if the sets Ob(G) and Mor(G) are
definable, as well as the composition operation “◦” and the domain,
range and identity maps (respectively denoted by i0, i1, and id).

(2) More generally, G is type-definable if these sets and maps are type-
definable.

Remark 1.6. In a type-definable groupoid G, the operations ◦, −1 (inversion
of morphisms), id, i0, and i1 are relatively definable, by a simple compactness
argument. If in addition the groupoid G is connected and finitary, then the
morphisms are relatively definable. That is, there is a formula θ(z;x, y) such
that for all a, b ∈ Ob(G), we have f ∈ Mor(a, b) if and only if f |= θ(z; a, b).

The following modification of Lemma 1.4 from [5] is often useful:

Fact 1.7. Suppose that G0 is a connected finitary type-definable groupoid. Then
there is a connected definable groupoid G such that G0 is a full subgroupoid of G.

1.1. Retractable groupoids. The results of this section hold in an arbitrary
first order theory T .

Definition 1.8. If G is a type-definable connected groupoid, then G is re-
tractable (over A) if there is a relatively (A-)definable set {fab : a, b ∈ Ob(G)}
such that fab ∈ MorG(a, b) and fbc ◦ fab = fac for all a, b, c ∈ Ob(G).

We say that G is almost retractable over A if there is such a system definable
over acl (A).

Remark 1.9. Connected groupoids seem to be the ones that are relevant
to amalgamation problems, but one could define a groupoid with multiple
isomorphism classes to be “locally retractable” if and only if each isomorphism
class is retractable.

The condition fbc ◦ fab = fac implies in particular that each morphism faa is
the identity.

An easy modification of the argument in Lemma 1.4 from [5] shows that the
property of being retractable can be passed from a type-definable groupoid to
a definable groupoid:



6 JOHN GOODRICK AND ALEXEI KOLESNIKOV

Proposition 1.10. Suppose that G0 is a connected finitary type-definable group-
oid. Suppose in addition that G0 is retractable. Then there is a connected
definable retractable groupoid G such that G0 is a full subgroupoid of G.

Proof. If G is retractable by the relatively definable system of maps fab, then
we can pick S0 in the proof of Lemma 1.4 in [5] so that S0(x1)∧S0(x2) implies
that fx1x2 is well-defined and {fab : |= S0(a) ∧ S0(b)} satisfies the three axioms
of being a witness to retractability. �

Proposition 1.11. Let G be a type-definable connected finitary groupoid. Then
the following are equivalent:

(1) G is retractable;
(2) There is a definable groupoid G ′ with a single object and a full, faithful,

relatively definable functor F : G → G ′;
(3) There is a definable groupoid G ′ with a single object and a faithful,

relatively definable functor F : G → G ′.

Proof. 1 ⇒ 2: First, note that we can use Proposition 1.10 to find a definable
groupoid G1 which is still retractable, and if we can obtain the desired F for
G1, then F � G is the relatively definable functor we want. So without loss of
generality, G is definable.

Let
X = {(a, f) : a ∈ Ob(G) and f ∈ MorG(a, a)} ,

and let E be the equivalence relation on X defined by

(a, f)E(b, g)⇔ g = fab ◦ f ◦ fba,

where fab and fba are in the commuting system of morphisms given by re-
tractability.

Pick some definable point ∗ in a single-element sort (in T eq). Then we define
G ′ so that Ob(G′) = {∗} and MorG′(∗, ∗) is the set X/E with the natural notion
of composition. The desired functor F : G → G ′ simply collapses all objects to
∗ and quotients arrows by E.

2 ⇒ 3: Trivial.
3 ⇒ 1: Given the functor F , faithfulness implies that for any a, b ∈ Ob(G),

there is a unique arrow fab ∈ MorG(a, b) such that F (fab) is the identity map;
then the system {fab : a, b ∈ Ob(G)} witnesses retractability. �

The next lemma will be useful in proving retractability from “generic re-
tractability.”

Lemma 1.12. Suppose the finitary connected groupoid G is type-definable and
that G is covered by a family {Gi : i ∈ I} of type-definable retractable groupoids;
that is,

(1) each Gi is type-definable and retractable;
(2) each Gi is a full subgroupoid of G; and
(3) Ob(G) =

⋃
i∈I Ob(Gi).
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Then G is almost retractable.

Proof. For each i ∈ I, let pi(x) be a partial type (over ∅) that defines Ob(Gi),
and let ϕi(y;x0x1) be a formula witnessing the retractability of Gi, so that
{ϕi(y; a, b) : a, b |= pi} defines a commuting family of morphisms in Gi. By
compactness and the fact that G is finitary, we may assume that the sets
MorG(a, b) are uniformly definable by some formula ψ(y; ab). Furthermore, we
can find formulas θi(x) implied by pi(x) such that:

(1) θi(x0) ∧ θi(x1) ` ∃!y [ϕi(y;x0x1)];
(2) θi(x0) ∧ θi(x1) ∧ ϕi(y;x0x1) ` ψ(y;x0x1);
(3) θi(x0) ∧ ϕi(y;x0x0) ` y = id(x0); and
(4) θi(x0) ∧ θi(x1) ∧ θi(x2) ∧ ϕi(y0;x0x1) ∧ ϕi(y1;x1x2) ` ϕi(y1 ◦ y0;x0x2).

By compactness again, p(C) is equal to the union of a finite number of the
sets θi(C), say θ0(C), . . . , θn−1(C), and we may further assume that these sets
are nonempty and pairwise disjoint.

Next, let S = {a0, . . . , an−1} be a finite set of points in dcleq(∅), and let
F0 : Ob(G) → S be the function that sends a ∈ θi(C) to ai. Then there is a
definable groupoid G ′ such that Ob(G ′) = S and F0 is extendable to a faithful
functor F : G → G ′, where F sends any c realizing ϕi(y; ab) to idai

. Finally, note
that since G ′ is definable and has only finitely many objects and morphisms,
there is a faithful, acl (∅)-definable functor F ′ : G ′ → G ′′ onto a groupoid G ′′
with only one object. Thus F ′ ◦ F : G → G ′′ is faithful and acl (∅)-definable,
and by Proposition 1.11, G is retractable over acl (∅). �

1.2. Characterization of retractability. Throughout this section (and in
fact everywhere from this point on), we assume that we are working in a stable
theory T . If p(x) is a complete, stationary type over A, by p(2)(x, y) we denote
the type in S(A) such that for all (a, b) |= p(2)(x, y) we have a, b |= p and a^

A
b.

Definition 1.13 (Generic retractability). A type-definable groupoid G is gener-
ically retractable if G is connected and for every non-algebraic type p(x) ∈
S(acl (∅)) that extends the type defining Ob(G), there is a relatively definable
system of morphisms

{
fp

ab ∈ MorG(a, b) : (a, b) |= p(2)
}

that “commutes gener-

ically:” that is, for any (a, b, c) |= p(3),

fp
bc ◦ f

p
ab = fp

ac.

Proposition 1.14. If G is type-definable, finitary, and generically retractable,
then G is almost retractable.

Proof. For any type p(x) ∈ S(acl (∅)) that extends the type defining Ob(G),
let Gp be G restricted to the set of objects satisfying p. Note that if p is
an algebraic type, then Gp has only finitely many objects and arrows and is
therefore trivially retractable over acl (∅). So by Lemma 1.12, we may assume
that G = Gp for some non-algebraic type p, and we will omit the superscript p
from the fab’s.
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Let φab(x) be a formula that defines fab for (a, b) |= p(2).

Claim 1.15. If (a, b) |= p(2), then fba = f−1
ab .

Proof. Pick c realizing p|(a, b). Then since tp(c/a) = tp(b/a),

fba ◦ fab = fca ◦ fac.

Therefore we can compute:

fab ◦ fba = fab ◦ fca ◦ fbc = fab ◦ fca ◦ fac ◦ fba

= fab ◦ fba ◦ fab ◦ fba = (fab ◦ fba)2 ,

so fab ◦ fba = ida. �

Now for arbitrary (not necessarily independent) a, b ∈ Ob(G), we define gab

to be the element fcb ◦ fac, where c is some (any) realization of p independent
from ab. Again, by definability of types, this is a well-defined, definable family
of morphisms, and the identity gaa = ida follows from the previous claim, so
all that remains is to check that gbc ◦ gab = gac.

So suppose that {a, b, c} is an arbitrary set of realizations of p. Pick d |=
p|(abc) and e |= p|(abcd). Then

gbc ◦ gab = gbc ◦ fdb ◦ fad = fec ◦ fbe ◦ fdb ◦ fad

= fec ◦ fde ◦ fad = fec ◦ fae = gac,

as required.
�

As an application of the last proposition, we have:

Proposition 1.16. Let G be a connected finitary type-definable groupoid. Then
G is almost retractable if and only if the following holds:

(†) For any independent a, b ∈ Ob(G), MorG(a, b) ∩ dcl(a, b) 6= ∅.

Proof. Suppose the condition (†) holds. We show that G is retractable. As
in Proposition 1.14, we may assume that the objects of G satisfy the same
complete type q over acl (∅).

By the assumption of our proposition and stationarity of q, for any two
independent a, b ∈ Ob(G), there are formulas {φi(x, a, b) : i < n} defining
all the morphisms in the set MorG(a, b) ∩ dcl(a, b), where n is the number of
elements in the set.

Claim 1.17. There is a number i∗ < n such that for all independent a, b, and
c, if fab |= φi∗(x, a, b) and fbc |= φi∗(x, b, c), then fbc ◦ fab |= φi∗(x, a, c).

Proof. By definability of types, whenever {a, b, c} is an independent set of
objects of G, if f ∈ Mor(a, b) is definable over ab and g ∈ Mor(b, c) is definable
over bc, then g ◦ f is definable over ac.
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Since the composition in G is (relatively) definable, the definability of mor-
phisms gives a well-defined function o : n× n→ n, where for i, j < n the func-
tion o(i, j) gives the index of the definable morphism given by the composition
of the ith definable morphism from a to b with the jth definable morphism
from b to c. For simplicity of notation, we will use multiplicative notation for
the function o and write i ∗ j = k if o(i, j) = k.

Pick i < n. Since the composition in G is associative, the “power” of i (i.e.,
the ∗-product of i with itself) is well-defined. Since Mor(a, b) is finite for all
a, b, there are natural numbers m and p such that im = im+p. Let k be such
that kp > m. Then (ikp)2 = ikp+kp = ikp. Thus, if i∗ := ikp, then we have that
the composition of the morphisms given by the formula φi∗ again satisfies the
formula φi∗ . �

So the formula φ := φi∗ witnesses the fact that G is generically retractable.
By Proposition 1.14, G is retractable over acl (∅).

Conversely, if G is retractable, then for all a, b ∈ Ob(G) we have fab ∈
Mor(a, b) ∩ dcl(a, b), so (†) holds. �

1.3. Quotienting by the center to obtain a retractable groupoid. Sup-
pose G is a connected groupoid, Ga is the group MorG(a, a). Since G is con-
nected, for any two objects a, b of G the groups Ga and Gb are isomorphic.
Let Z(Ga) be the center of Ga. Then for any f ∈ MorG(a, b), conjugation by
f gives an isomorphism between Z(Ga) and Z(Gb). This allows us to obtain a
quotient groupoid G/Z(G) (see the first section of [5] for more details).

Proposition 1.18. Let G be a type-definable connected finitary groupoid such
that for any a ∈ Ob(G), Ga ⊆ dcl(a). Then G/Z(G) is almost retractable.

Proof. By Lemma 1.12, it suffices to prove the proposition in the case where
any two a, b ∈ Ob(G) satisfy the same type p ∈ S(acl (∅)). Pick an arbitrary
a ∈ Ob(G); let n be the size of Ga. Since Ga ⊆ dcl(a), there are formu-
las {ϕa

i (x, a) : i < n} such that each ϕa
i (x, a) has a unique realization cai and

{cai : i < n} = Ga. Note that since any two objects a, b in G satisfy the same
complete type, we may assume that ϕa

i (x, y) = ϕb
i(x, y), and furthermore the

map ψab : Ga → Gb that sends cai to cbi is a group isomorphism.
For any f ∈ MorG(a, b), let f∗ : Ga → Gb be the group isomorphism defined

by f∗(x) = f ◦ x ◦ f−1.

Claim 1.19. For any two independent a, b ∈ Ob(G), there is an arrow f ∈
MorG(a, b) such that ψab = f∗.

Proof. First note that we can quotient the system of Ga’s by the maps ψab to
obtain a group G that is isomorphic to Ga by a system of maps ψa : Ga → G,

and ψb◦ψab = ψa. For any f ∈ MorG(a, b), let f̂ = ψb◦f∗◦ψ−1
a . So f̂ ∈ Aut(G),

and a simple calculation shows that f̂ ◦ g = f̂ ◦ ĝ.
Stationarity implies that for any (c, d) |= p(2) and any f ∈ MorG(a, b), there

is a g ∈ MorG(c, d) such that g∗cd ≡ f∗ab, and hence ĝ = f̂ . So if we pick any
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g ∈ MorG(a, b) and let k be the order of ĝ, we can pick morphisms g1, . . . , gk

over generic objects such that g1 ◦ . . . ◦ gk ∈ MorG(a, b) and ĝi = ĝ. Then

̂g1◦. . .◦gk = ĝ1 ◦ . . . ◦ ĝk = ĝk = 1.

Let f = g1 ◦ . . . ◦ gk. Then since ψb ◦ψab ◦ψ−1
a and ψb ◦ f∗ ◦ψ−1

a are both the
identity map, f∗ = ψab.

�

Fix (a, b) |= p(2). While the map ψab is certainly definable over ab, the arrow
f ∈ MorG(a, b) given by the claim above might not be, since there may be
g 6= f such that g∗ = f∗. But g∗ = f∗ if and only if g−1 ◦ f ∈ Za(G), so G/Z(G)
is generically retractable. By Proposition 1.14, G/Z(G) is almost retractable.

�

Remark 1.20. In the last proposition, the assumption that the theory is stable
can be weakened to: all the tuples in Ob(G) come from a collection of stable,
stably embedded sorts in T eq.

Corollary 1.21. Suppose that G is a type-definable connected finitary groupoid
such that

(1) the automorphism groups Ga of objects are centerless, and
(2) Ga ⊂ dcl(a) for all a ∈ Ob(G).

Then G is almost retractable.

Remark 1.22. In Section 4.2, we show how to construct a connected definable
groupoid with Ga

∼= G, where G is an arbitrary finite group. Moreover, the
groupoid G is chosen so that Ga ⊆ dcl(a) for each a ∈ Ob(G). We show
in Claim 4.3 that if G has nontrivial center, then G is not almost retractable.
Thus, no weaker condition on the groups Ga implies that the groupoid is almost
retractable.

1.4. Eliminability and retractability. Here we connect the notion of an
eliminable groupoid, introduced by Hrushovski in [5], with the notion of a
retractable groupoid. The next two definitions are from [5].

Definition 1.23. Two type-definable groupoids are equivalent if there is a
type-definable groupoid G and relatively definable functors Fi : Gi → G (i =
1, 2) such that Fi is full and faithful and its image intersects every isomorphism
class of G. (Without loss of generality, Ob(G) is a disjoint union of F1(Ob(G1))
and F2(Ob(G2)).)

Definition 1.24. The type-definable groupoid G is eliminable if it is equivalent
to a groupoid with a single object. G is almost eliminable if it is eliminable
over acl (∅).

Note that not every connected eliminable groupoid is retractable (see the
“simplest example” in Section 4.1), but we do have the converse:
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Lemma 1.25. If G is retractable, then it is eliminable.

Proof. Suppose {fab : a, b ∈ Ob(G)} is a commuting system witnessing the re-
tractability of G. We construct a definable functor from G to a groupoid G∗
that contains a single object. Let Ob(G∗) = {∗}, where ∗ is some definable
element in T eq, and let G∗∗ be Mor(G) modulo conjugation by the maps fab.
The functor F sends every object of G to ∗ and every morphism of G to the
equivalence class containing that morphism (in particular, F sends each fab to
the identity element of G∗∗). �

Eliminability of a groupoid is defined as a “global” concept, so it is useful
to note that in the cases we care about, it has a nice “local” characterization:

Lemma 1.26. If G is a type-definable connected finitary groupoid, then G is
almost eliminable if and only if:

(∗) For any two independent a, b ∈ Ob(G), MorG(a, b) ⊂ dcl(acl (a), acl (b)).

Remark 1.27. For a finitary groupoid, the condition (∗) is equivalent to the
following: for any two independent a, b ∈ Ob(G), we have

MorG(a, b) ∩ dcl(acl (a), acl (b)) 6= ∅.
Proof. ⇒: Say G∗ is an extension of G, type-definable over acl (∅), with a
single new object ∗ such that G is a full subgroupoid of G∗. Since G∗ is finitary,
for any a ∈ Ob(G), MorG∗(a, ∗) is a finite a-definable set (not just a type-
definable set). By composing maps, it follows that any element of MorG(a, b)
is in dcl(acl (a), acl (b)). (Note that this direction did not use the stability of
T .)
⇐: Without loss of generality, Ob(G) is infinite, since otherwise every object

and every morphism of G is definable over acl (∅) and it is trivial to extend G
by a formal object ∗.

Let p be a non-algebraic type in S(acl (∅)) that is realized in Ob(G). Let
q(x̄) ⊇ p(x) be a type in S(acl (∅)) in a larger set of variables (i.e., x ⊂ x̄)
such that any realization b̄ of q is in the algebraic closure of its subtuple b |= p,
and for any independent a |= p and b̄ |= q, both MorG(a, b) and MorG(b, a) are
contained in dcl(acl (a), b̄).

We will define a groupoid G∗ extending G with a single new object ∗, which
should be thought of as representing a generic realization of q. Fix any a |= p
and any b̄ |= q|a, where again b̄ is in the algebraic closure of b |= p. There are
elements c0, . . . , cn−1 ∈ acl (a) and formulas

{
θi(x; ci, b̄) : i < n

}
such that each

θi(x; ci, b̄) has a unique realization fi, the fi’s are all distinct, and {fi : i < n} =
MorG(a, b). Let ψ(y0, . . . , yn−1; a) isolate tp(c0, . . . , cn−1/a). Since p is complete
and stationary, for any a′ satisfying p,

(1) a′ ∈ Ob(G),
(2) ψ(y; a′) isolates an algebraic type with the same number of realizations

as ψ(y; a), and
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(3) For any b
′ |= q|a′ and for any (c′0, . . . , c

′
n−1) realizing ψ(y; a′), the for-

mulas θi(x; c′i, b
′
) define all the elements of MorG(a

′, b′).

Pick a set of distinct elements {∗i : i < n} from acl (∅), and for any a′ satis-
fying p, let

Ma′ =
{

(c′i, ∗i) : i < n and ∃ c′0, . . . , c′i−1, c
′
i+1, . . . , c

′
n−1 such that ψ(c′; a′)

}
.

If (c, ∗i), (d, ∗j) are in Ma′ , then we let (c, ∗i) ∼ (d, ∗j) just in case θi(x; c, b̄′)
and θj(x; d, b̄′) define the same element for some (any) b̄′ |= q|a′. If a′ realizes
p, we define MorG∗(a

′, ∗) to be Ma′/∼. Note that since G is connected, there is
only one way (up to interdefinability) to extend the definition of MorG∗(a

′, ∗)
to all a′ ∈ Ob(G). We define MorG∗(∗, a′) to be a set of formal inverses of
elements of MorG∗(a

′, ∗), and by definability of types it is straightforward to
define composition in G∗ so that MorG∗(∗, b′) ◦ MorG∗(a

′, ∗) = MorG(a
′, b′).

Finally, we define MorG∗(∗, ∗) to be the set⋃
a′∈ϕ(C)

MorG(a
′, ∗)×MorG∗(∗, a′)

modulo the equivalence relation defined by equality of composition. �

Question 1.28. Is the stability hypothesis necessary in the lemma above?

Propositions 1.16 and 1.26 show that the properties of retractability and
eliminability of a groupoid G depend on whether or not the set MorG(a, b)
can be “recovered” from the objects a and b or the algebraic closures of the
objects. The purpose of the following two definitions is to connect the notions
of eliminability and retractability by showing how to expand the objects of an
eliminable groupoid to obtain retractability.

Definition 1.29. Let G be a (type-)definable groupoid. We say that G is sen-
tient if for all independent a, b ∈ Ob(G), we have Mor(a, b)∩dcl(acl (a), acl (b)) =
Mor(a, b) ∩ dcl(a, b).

Definition 1.30. Suppose that G is a type-definable finitary groupoid, and
p1(x), . . . , pn(x) are strong types such that pi(C) ⊆ Ob(G). Then we can pick
a finite tuple x′ ⊇ x and types p′i(x

′) ⊇ pi(x) such that

(1) Any a′i realizing p′i is contained in the algebraic closure of the corre-
sponding realization ai of pi;

(2) If a ∈ pi(C), b ∈ pj(C), and a and b are independent, then a and b can
be extended to tuples a′, b′ realizing p′i and p′j respectively such that
MorG(a, b) ∩ dcl(acl (a), acl (b)) = MorG(a, b) ∩ dcl(a′, b′).

Given such types p′i, a sentient partial cover of G (generated by the types pi)
is the groupoid G ′ such that Ob(G ′) =

⋃
1≤i≤n p

′
i and MorG′(a

′, b′) = MorG(a, b)×
{(a′, b′)}. Note that G ′ is type-definable over acl (∅) and G ′ is sentient by con-
struction.
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Remark 1.31. Since the strong types pi, 1 ≤ i ≤ n are disjoint, the union⋃
1≤i≤n p

′
i is a disjoint union.

A sentient partial cover of a ∅-definable groupoid G is defined over a larger,
in general, set acl (∅). This difference disappears when we make the assumption
that acl (∅) = dcl(∅).

Note that if G ′ is a sentient partial cover of G, then we have a natural
relatively definable functor π : G ′ → G mapping a′i |= p′i to its corresponding
realization ai of pi, and π is full and faithful.

Theorem 1.32. In a stable theory T , if G is a type-definable finitary groupoid,
then G is almost eliminable if and only if any sentient partial cover G ′ of G is
almost retractable.

Proof. If G is almost eliminable, then it satisfies (∗) of Lemma 1.26, which
implies that any sentient cover G ′ satisfies (†) of Proposition 1.16. This, in turn,
implies that G ′ is almost retractable. Conversely, suppose that every sentient
cover of G is almost retractable. So for any independent pair of objects a, b ∈
Ob(G), the sentient cover G ′a,b generated by the types p1 = stp(a) and p2 =
stp(b) is almost retractable, hence connected, and therefore G is connected as
well. Furthermore, the almost-retractability of G ′a,b gives at least one morphism
f ∈ MorG(a, b)∩dcl(acl (a), acl (b)), and since G is finitary, in fact MorG(a, b) ⊆
dcl(acl (a), acl (b)). So by Lemma 1.26, G is almost eliminable. �

Theorem 1.33. A connected finitary sentient type-definable groupoid is almost
eliminable if and only if it is almost retractable.

Proof. Any almost retractable groupoid is almost eliminable by Lemma 1.25.
For the other direction, an eliminable groupoid G satisfies

Mor(a, b) ⊂ dcl(acl (a), acl (b))

by Lemma 1.26. Since G is sentient, we have Mor(a, b) ⊂ dcl(a, b), so G is
almost retractable by Proposition 1.16. �

Theorem 1.34. If T is stable, then the following are equivalent:

(1) Every type-definable over acl (∅) connected finitary sentient groupoid is
almost retractable;

(2) Every definable over acl (∅) connected finitary groupoid is almost elim-
inable.

Proof. 1⇒ 2: Suppose that G is an acl (∅)-definable connected finitary groupoid.
For any a, b ∈ Ob(G), let G ′a,b be a sentient partial cover of G generated by
p1 = stp(a) and p2 = stp(b). Then G ′a,b is almost retractable, so G satisfies con-
dition (∗) of Lemma 1.26 for a and b; so by that lemma, G is almost eliminable.

2 ⇒ 1: Suppose G0 is a type-definable over acl (∅) connected finitary sen-
tient groupoid. By Fact 1.7, G0 is a full subgroupoid of some acl (∅)-definable
connected finitary groupoid G. By assumption, G is almost eliminable, so con-
dition (∗) of Lemma 1.26 holds for G. So by sentience of G0, for any independent
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a, b ∈ Ob(G0), MorG0(a, b) ⊆ dcl(a, b), and by Proposition 1.16, G0 is almost
retractable. �

2. Retractable groupoids and 3-uniqueness

Existence of non-retractable groupoids in a stable theory that fails 3-unique-
ness logically follows from Hrushovski’s [5] and our results in Section 1. Hru-
shovski shows that failure of 3-uniqueness implies that T has a finite internal
cover which is not split (the unsplit cover is then linked to a certain groupoid
which has to be non-eliminable). However, the argument for internality of the
cover is indirect; in particular, there is no explicit definable bijection between
the new sort of the cover and the “old” sorts. So it is not clear what the non-
eliminable groupoid looks like, and what relation it has to the amalgamation
problem that fails to have a unique solution.

This section gives an explicit construction of a type-definable non-eliminable
(hence, non-retractable) finitary sentient groupoid in a stable theory that fails
3-uniqueness. To do this, we establish two new facts about the failure of 3-
uniqueness: we show that there is always a symmetric witness to such a failure,
and that a symmetric witness can be embedded into a non-retractable groupoid.
The morphisms of this groupoid will be finite paths modulo a homotopy-like
equivalence relation, and the key lemma that every path is equivalent to a
two-step path is essentially a form of the old result that germs of functions in
a stable theory generate a group in two steps (see [4]).

To set some notation, given a sequence 〈ai : i ∈ I〉, a parameter set A, and
S ⊆ I, the symbol aS denotes the algebraic closure acl (A ∪ {ai : i ∈ S}). We
regard aS as a (usually infinite) tuple. Without loss of generality, we may take
A to be algebraically closed. Thus, we assume A = acl (A) everywhere below
in this section.

If in addition the sequence 〈ai : i ∈ I〉 is indiscernible over the set A, then
we always assume that we have chosen the enumerations of these tuples aS so
that if |S| = |S ′| then aS ≡A aS′ . We write “ai” for a{i} and “aij” for a{i,j}.

Recall that in a stable theory 3-uniqueness fails if and only if for some (al-
gebraically closed) set A, there are tuples a1, a2, and a3 independent over A
and an automorphism σ of C that fixes a1a2 such that

tp(a12a23a31) 6= tp(σ(a12)a23a31)

(by our agreement A ⊂ ai, i = 1, 2, so σ fixes acl (Aa1) and acl (Aa2) but does
not fix the algebraic closure of Aa1a2).

The following fact appears in [2] and in the proof of Lemma 3.2 in [5].

Fact 2.1. Let T be a stable theory, and suppose that a1, a2, a3 are tuples which
form an independent set over an algebraically closed set A. Then the following
are equivalent:

(1) For any σ ∈ Auta1a2(C), tp(a12a23a31) = tp(σ(a12)a23a31);
(2) dcl(a1, a2) = dcl(a23, a31) ∩ a12.
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Throughout this section, T is assumed to be a stable theory.

2.1. Witnesses to non-3-uniqueness.

Definition 2.2. 1. A witness to non-3-uniqueness (in a stable theory) is
a finite sequence {a1, a2, a3} and an algebraically closed set A together with
elements f12, f23, and f31 such that:

(1) fij ∈ aij;
(2) f12 /∈ dcl(a1a2); and
(3) f12 ∈ dcl(f23, f31).

A witness to non-3-uniqueness is symmetric (over A) if a1, a2 ∈ dcl(f12),
a1, a2, a3 is a Morley sequence over a common subset A, and:

(4) a1a2f12 ≡A a2a3f23 ≡A a3a1f31;
(5) There is a formula θ(x, y, z) over A such that f12 is the unique realiza-

tion of θ(x, f23, f31), f23 is the unique realization of θ(f12, y, f31), and
f31 is the unique realization of θ(f12, f23, z).

Note that the symmetry condition (5) implies in particular that each fij is
in the definable closure of the other two.

The purpose of this section is to construct a symmetric witness to non-3-
uniqueness, given any T which does not have 3-uniqueness.

Lemma 2.3. The following are equivalent:

(1) T does not have 3-uniqueness property;
(2) there is an algebraically closed set A and a Morley sequence {a1, a2, a3}

over A which is a witness to non-3-uniqueness.

Proof. The implication (2)⇒ (1) follows from Fact 2.1. So suppose 3-unique-
ness fails and let {b1, b2, b3} be an independent set over A (but not necessarily
a Morley sequence) witnessing the failure of 3-uniqueness: that is, there is
σ ∈ Autb1b2

(C) such that

tp(b12b23b31) 6= tp(σ(b12)b23b31).

Pick a Morley sequence {ai : 1 ≤ i ≤ 3} over A such that for i = 1, 2, 3, the
element ai is the triple ai[1]ai[2]ai[3], and

tp(acl (ai[1]ai[2]ai[3])) = tp(b123).

Without loss of generality, we may assume that a1[1] = b1, a2[2] = b2, and
a3[3] = b3.

Stationarity guarantees that the map σ � b12 extends to an automorphism
σ̂ ∈ Aut(C) that fixes a1∪a2 pointwise. Then tp(a12a23a31) 6= tp(σ̂(a12)a23a31),
so by Fact 2.1 and compactness, we obtain fij’s as in Definition 2.2.

�

Theorem 2.4. If T does not have 3-uniqueness, then there is a set A and a
symmetric witness to non-3-uniqueness over A.
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Proof. By Lemma 2.3, we may assume that a1, a2, a3 is a Morley sequence
over A witnessing the failure of 3-uniqueness. Thus, the set D12 := a12 ∩
dcl(a13, a23))\dcl(a1, a2) is not empty. Adding the elements of the set A to the
language if necessary, we may assume that A = ∅.

Let c12 ∈ D12. Then there is a formula φ(x; a1, a2, a3; d23, e31) and formulas
χc(x; a1, a2), χd(y; a3, a1), and χe(z; a2, a3) such that

(1) c12 is the unique solution of φ(x; a1, a2, a3; d23, e31);
(2) the formulas χ isolate algebraic types over their parameters;
(3) φ(x; a1, a2, a3; d23, e31) ` χc(x; a1, a2);
(4) d23 |= χd(y; a1, a3), and similarly for e31.

Also, we assume for convenience that a1, a2 ∈ dcl(c12), a2, a3 ∈ dcl(d23), and
a1, a3 ∈ dcl(e31).

Claim 2.5. We may further assume that d23 ∈ dcl(c12, e31) and that e31 ∈
dcl(c12, d23).

Proof. First, replace d23 by the finite set d′23 of all conjugates of d23 over

{c12, e31}. Then since for any such conjugate d̃23 of d23, c12 ∈ dcl(d̃23, e31),
it follows that c12 ∈ dcl(d′23, e31). Also it is clear that d′23 ∈ a23 and d′23 ∈
dcl(c12, e31).

Next, replace e31 by the set e′31 of all conjugates of e31 over (c12, d
′
23). By

the same arguments as before, the new triple (c12, d
′
23, e

′
31) satisfies all the

conditions we want. �

Now pick finite tuples c̃12, d̃12, and ẽ12 enumerating the solution sets of
χc(C; a1, a2), χd(C; a1, a2), and χe(C; a1, a2) respectively, and let f12 be the tu-

ple (c̃12, d̃12, ẽ12). Similarly, we define tuples f23 and f31 such that a1a2f12 ≡
a2a3f23 ≡ a3a1f31.

It is not hard to check that {a1, a2, a3} with the three fij’s are a symmetric
witness to failure of 3-uniqueness.

�

2.2. Paths and the non-retractable groupoid. The goal here is to prove:

Theorem 2.6. If T is stable and does not have 3-uniqueness, then there is a
set A and an A-type-definable finitary connected groupoid in T which is not
eliminable over acl (A).

For ease of notation, we will assume for the remainder of this subsection that
dcl(∅) = acl (∅), by the previous section we may also assume (after naming
parameters):

Assumption 2.7. The set {a1, a2, a3} together with f12, f23, and f31 is a sym-
metric witness to failure of 3-uniqueness (over ∅).

Let p = stp(a1).
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Remark 2.8. If (a, b, c) |= p(3) and (a, b, f) ≡ (a1, a2, f12) ≡ (b, c, g), then
stationarity implies that there is a unique h such that

(a, b, c, f, g, h) ≡ (a1, a2, a3, f12, f23, f31),

which we call “g◦f .” Similarly, for any f and g as above, there is also a unique
h1 such that f ◦ h1 = g, and a unique h2 such that h2 ◦ f = g.

Definition 2.9. (1) If a realizes p, then an n-step path from a is a sequence
(b0, g1, b1, g2, . . . , bn) such that b0 = a and for every i < n, bibi+1gi+1 ≡
a1a2f12. The endpoint of this path is bn.

(2) P n(a) denotes the set of all n-step paths starting from a, and P n(a, b)
denotes the set of all n-step paths from a with endpoint b.

Definition 2.10. Suppose that (b0, g1, b1, g2, . . . , bn) and (d0, h1, d1, h2, . . . , dm)
are two paths with the same starting point and the same endpoint. Let a∗ be
a realization of p that is independent from all the parameters listed and pick
any g∗0 such that a∗b0g

∗
0 ≡ a1a2f12. Then we can define a sequence g∗1, . . . , g

∗
n

inductively so that for every i between 0 and n, g∗i+1 = gi+1 ◦ g∗i . From the
second path, we can define a sequence h∗1, . . . , h

∗
m similarly. Then we say that

the paths are equivalent if g∗n = h∗m, and we use ∼ to denote this equivalence
relation.

Remark 2.11. (1) By the stationarity of p, the choice of a∗ and g∗0 in the
previous definition does not matter: if g∗n = h∗m for one such choice,
then they are equal for every such choice.

(2) By the definability of types, the relation of ∼ restricted to P n(a) is
relatively definable.

Note that if the endpoint of the path α is the starting point of a path β,
then we can define the concatenation αβ of these paths, and if α ∼ α′ and
β ∼ β′, then αβ ∼ α′β′.

Lemma 2.12. If α and β are two paths starting from a such that the endpoint
of α is independent from the endpoint of β, then there is a 1-step path γ such
that α concatenated with γ is equivalent to β.

Proof. Let α = (b0, g1, b1, g2, . . . , bn) and β = (d0, h1, d1, h2, . . . , dm). Pick some
a∗ |= p|(a, bn, dm), and pick any f ∗ such that a∗af ∗ ≡ a1a2f12. Compute the
“edge” elements g∗n and h∗m as in Definition 2.10. Then a∗bng

∗
n ≡ a1a2f12 ≡

a∗dmh
∗
m, so there is a unique k such that k ◦ g∗n = h∗m. Then the path γ =

(bn, k, dm) is what we want. �

Finally, we define a type-definable groupoid which we will show to be non-
retractable and sentient, hence non-eliminable.

Definition 2.13. (1) If a and b realize p, then Ma,b is the type-definable
set P 2(a, b)/∼.
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(2) The operation ◦ on Mb,c × Ma,b is given by concatenation of paths.
Specifically: if α and β are paths representing arrows in Ma,b and Mb,c

respectively, then αβ is a 4-step path from a to c, which by Lemma 2.12
is equivalent to a 2-step path from a to c, which we call β ◦ α.

Lemma 2.14. There is an (a1, a2)-definable bijection between Ma1,a2 and
Xa1a2 := {f : f ≡a1a2 f12}.

Proof. The first step is to note that every f ∈ Xa1a2 definably encodes an
element of Ma1,a2 : namely, the ∼-class of all 2-step paths equivalent to the
1-step path (a1, f12, a2) (which is nonempty by Lemma 2.12). The next step is
to note that if f and f ′ are two distinct elements of Xa1a2 , then they encode
different elements of Ma1,a2 : this is by the final clause in the definition of
a symmetric failure to 3-uniqueness. Finally, the fact that every element of
Ma1,a2 is so coded follows by Lemma 2.12 again. �

Lemma 2.15. The sets p(C) and Ma,b(C) form the objects and morphisms of
a groupoid with ◦ as composition, which we will call G.

Proof. The associativity of ◦ is straightforward, so we explain how to construct
the identity morphism from a to a. Pick any b |= p|a, any a∗ |= p|(a, b), and
any elements f, f ∗0 , f

∗
1 such that abf ≡ a1a2f12 ≡ a∗af ∗0 and f ∗1 = f ◦ f ∗0 .

Then by Remark 2.8, we can pick an element g such that bag ≡ a1a2f12 and
f ∗0 = g ◦ f ∗1 . Then a routine calculation shows that the path (a, f, b, g, a) is an
identity element for Ma,a under ◦.

To show that G is a groupoid, suppose that α ∈ MorG(a, b) is represented by
the 2-step path (a, f1, c, f2, b), and suppose that we have picked a realization
a∗ of p|(a, b, c) and an element f ∗0 such that a∗af ∗0 ≡ a1a2f12. Then (as in
Definition 2.10) let f ∗1 = f1 ◦ f ∗0 and let f ∗2 = f2 ◦ f ∗1 . By Remark 2.8, there
are elements g1 and g2 such that f ∗1 = g2 ◦ f ∗2 and f ∗0 = g1 ◦ f ∗1 . The path
(b, g2, c, g1, a) represents an inverse to the path α. �

Claim 2.16. The groupoid G is not eliminable.

Proof. Otherwise, by Lemma 1.26, the set MorG(a1, a2) would be contained in
dcl(a1, a2), contradicting Lemma 2.14 and the choice of f12. �

This completes the proof of Theorem 2.6. �

2.3. Characterizing 3-uniqueness.

Proposition 2.17. Suppose that for all A-independent algebraically closed a,
b, c we have dclA(ab) = dclA(acl (ac), acl (bc)) ∩ acl A(ab). Then every A-type-
definable connected finitary sentient groupoid is retractable over acl (A).

Proof. Without loss of generality, A = ∅. Let G be such a type-definable
groupoid. By Lemma 1.12, we may assume that any two objects in G satisfy the
same complete type p over acl (∅). If p is an algebraic type, then every element
of Ob(G) and Mor(G) is in acl (∅), and G is trivially retractable over acl (∅). So
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without loss of generality, Ob(G) is an infinite set. Pick a, b, c ∈ Ob(G) that
form an independent set.

Since the sets of morphisms between any two objects are finite, the sets
Mor(a, c) and Mor(b, c) are contained in acl (ac) and acl (bc) respectively. Using
composition, we get that Mor(a, b) ⊂ dcl(acl (ac), acl (bc)) ∩ acl (ab).

By the assumption of our proposition, we then have Mor(a, b) ⊂ dcl(ab).
Since G is sentient, Mor(a, b) ⊂ dcl(a, b). So by Proposition 1.16, G is almost
retractable.

�

Putting together Theorem 1.34, Theorem 2.6, and Proposition 2.17, we get:

Theorem 2.18. If T is stable, then the following are equivalent:

(1) T has 3-uniqueness;
(2) For every algebraically closed set A, every connected finitary A-type-

definable sentient groupoid is retractable over A;
(3) For every algebraically closed set A, every connected finitary A-definable

groupoid is eliminable over A.

Note that we cannot weaken the second condition above to “Every connected
finitary A-type-definable sentient groupoid is retractable over A” for sets A that
fail to be algebraically closed. For instance, if there is a 2-element definable
set P in T whose elements have the same type, then we can construct a finite
groupoid as in section 4.2 which sentient but is not retractable over ∅.

3. Finite internal covers

In this section, we describe definable groupoids associated to finite internal
covers in a stable theory. Most of the definitions and basic results appear
in [5], but we found it useful to spell some things out more explicitly and
precisely. We use these results to translate a fact about retractable groupoids
from Section 1 into the following fact about finite internal covers: if N is a finite
internal cover of M such that Aut(N/M) is centerless, then the cover is almost
split (Theorem 3.11 below). This fact resembles Lemma 1.2 of [3]: that lemma
implies, in the terminology of our paper, that if Aut(N/M) is centerless and
dclN(∅) = acl N(∅), then the group Aut(N/M) is trivial. However, our result
is different since we make no assumption that dclN(∅) = acl N(∅).

We assume that all structures in this section are stable. We will further
assume that all structures M in this section have the property M ∼= M eq.
Recall that the eq-construction preserves everything that we care about: sta-
bility, what sets are definable in the sorts of the original language, and the
automorphism group of the structure. If L′ ⊇ L is an expansion of L with a
larger set of sorts and N is an L′-structure, then “N � L” denotes the natural
L-structure induced by N ; namely, for every L-sort S, S(N � L) = S(N), and
every basic relation and function in L has the same interpretation in S � L as
in N .
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Definition 3.1. ([5], Definition 2.2) If M and N are multisorted structures
in languages L0 and L1 respectively with L0 ⊆ L1, then N is a finite internal
cover over M if:

(1) M = N � L0;
(2) Every subset of M which is definable over ∅ in L1 is definable over ∅ in

L0;
(3) For any formula ϕ(x, y) in L1, where x is in a sort of L0, there is a

formula ψ(x, z) in L1, where z is in a sort of L0, with the following
property: for every a ∈ N , there is a b ∈M such that

∀x ∈M [ϕ(x, a)↔ ψ(x, b)] ;

(4) There is a finite tuple b ⊆ acl L1(M) such that N ⊆ dclL1(Mb).

Remark 3.2. Item (3) in the previous definition is essentially the property
that is usually called “stable embeddedness,” but adapted to the context of
two structures in different languages. This is essentially the same definition as
in the appendix of [1], adapted to a more general context.

Because of condition (2), we can require that the formula ψ(x, z) in condi-
tion (3) is an L0-formula instead of merely an L1-formula.

Remark 3.3. (1) Suppose that N is a finite internal cover of M , L1 is the
language of N , and L0 is the language of M . Condition (4) implies
that there is a finite set S of sorts in L1 \ L0 such that for any sort
S ∈ L1 \L0, N satisfies a sentence which implies that any element of S
is in the definable closure of the L0-sorts plus the sorts in S. It follows
that if N ′ is elementarily equivalent to N then N ′ is also a finite internal
cover of N ′ � L0.

(2) If N is a finite internal cover of M , then Aut(N/M) is finite. How-
ever, there are examples where N is an extension of M to new sorts,
Aut(N/M) = 1, and conditions (1) through (3) are satisfied, but not
(4). For example, suppose that in M there is a definable group G equal
to the direct product of ω-many copies of Z2, with each subgroup

Gi = {g ∈ G : the ith coordinate of g is 0}
also M -definable. Suppose also that N is generated by one new sort S
which is an affine copy of G, with definable subsets Si ⊆ S such that if
g ∈ G and a ∈ Si, then ga ∈ Si if and only if g ∈ Gi. Then any two
distinct points in S(N) realize different types, but at the same time,
no element of S(N) is in acl L1(M). However, the models M and N
are not saturated, and the binding group Aut(N ′/M ′) is infinite in a
saturated extension (N ′,M ′).

Definition 3.4. Suppose that N is a finite internal cover of M .

(1) N is an almost split cover if there is a finite ∅-definable set C ⊆ N such
that N ⊆ dcl(M ∪ C).
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(2) N is a split cover if C as above can be chosen so that any C-definable
subset of M is ∅-definable.

Lemma 3.5. (1) If N is a split [or almost split] finite internal cover of M
and (N ′;M ′) is elementarily equivalent to (N ;M), then N ′ is a split
[almost split] finite internal cover of M ′.

(2) The finite internal cover (N ;M) is split if and only if it is almost split
and for any saturated elementary extension (N ′;M ′) of (N ;M) with
|N | > |L1|+ ℵ0, the natural restriction map

Aut(N ′/C)→ Aut(M ′)

is surjective.

Proof. (1): Suppose that C ⊆ N is a finite, ∅-definable set witnessing that
N is a split cover of M , and say (N ′;M ′) ≡ (N ;M). Let C ′ ⊆ N ′ be the
interpretation of the formula defining C in N ′. Elementary equivalence implies
that N ′ ⊆ dcl(M ′∪C ′) (which takes care of proving the preservation of almost-
splitness). Suppose that X ⊆ M ′ definable in N ′ by a formula ϕ(x; b), where
b ⊆ C ′, and let θ(y) be the formula defining C and C ′. Then by the finiteness
of C plus the fact that N is a split cover of M , there is a finite collection of
formulas ψ1(x), . . . , ψm(x) (over ∅) such that

N ` ∀y1 . . . yk

[ ∧
1≤i≤k

θ(yi)→

( ∨
1≤j≤m

∀x [ϕ(x, y)↔ ψj(x)]

)]
.

Therefore, N ′ satisfies this sentence as well, so X is ∅-definable.
(2): By the same argument as [1], Appendix, Lemma 1, equivalence of (5)

and (6). (Note that the fact that N is a split cover of M implies that even after
expanding the language of N to include constants for the elements of C, the
sorts of M are, according to the terminology of that paper, stably embedded
in N , and therefore the argument of Lemma 1 applies.) �

Remark 3.6. As observed in [5], N is an almost split cover of M if and only
if it is split over acl (∅) – that is, if we add constants to the language naming
the elements of acl N(∅) and constants to M for the elements of acl M(∅), then
the cover becomes split.

3.1. Liaison groupoids.

Definition 3.7. Suppose that N is a finite internal cover of M . Then a liaison
groupoid of N over M is a connected groupoid G which is type-definable in M
and has the properties:

(1) There is a connected finitary groupoid G∗ such that G is a full sub-
groupoid of G∗, the groupoid G∗ is type-definable in N , and G∗ contains
a single new object ∗ (which is definable over ∅ in N);

(2) For any a ∈ Ob(G), all the elements of MorG∗(a, ∗) have the same type
over M ;
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(3) For any a ∈ Ob(G) and any f ∈ MorG∗(a, ∗), N ⊆ dclN(Mf).

Theorem 3.8. Any finite internal cover of M has a definable liaison groupoid.

Proof. This is a strengthening of a special case of Proposition 1.5 of [5]. The
proof is essentially the same, but we spell out some details to show how we can
ensure that the liaison groupoid is definable and not just ?-definable.

Let N be a finite internal cover of M , and let L1 and L0 be the respective
languages of N and M . Pick c ∈ acl L1(M) such that N ⊆ dclL1(Mc), and pick
b ∈M such that tp(c/b) ` tp(c/M). In fact, we can pick an L1-formula θ(x, y)
such that θ(x, b) ` tp(c/M).

Claim 3.9. For any c′ ∈ N realizing tp(c/b), there is a σ ∈ Aut(N/M) such
that σ(c) = c′.

Proof. For any sort S in N , S ⊂ dcl(Mc), so there is a set QS
c ⊆ M and a

surjective function fS
c : QS

c → S which are both definable in L1 over c. Note
that QS

c is definable in L1 over b by the formula ∀x
[
θ(x, b)→ z ∈ QS

x

]
, so from

now on we will write this set as “QS
b .”

Define σ on the sort S such that if d ∈ S and d = fc(a) for some a ∈M , then
σ(d) = fc′(a). To check that this is well-defined, note that if fc(a) = fc(a

′),
then the fact that tp(c′/M) = tp(c/M) implies that fc′(a) = fc′(a

′). By the
same argument, one can check that σ is surjective and that σ is an elementary
map.

�

Suppose Aut(N/M) = k < ω. Note that by Claim 3.9, tp(c/b) has no more
than k realizations in M , and the fact that N ⊆ dcl(Mc) means that it has
exactly k realizations.

Let S be the sort in N to which c belongs. Then N ⊆ dcl(MS), and since
S ⊆ dcl(Mc), there is a c-definable bijection fc : S → Q between S and some
subset Q of M which is definable in L1, possibly over extra parameters from M .
Without loss of generality (expanding the tuple b if necessary), we may assume
that Q is definable over b, and we will write Qb for Q below. By condition (2)
of Definition 3.1, Qb is L0-definable.

Pick some formula ϕ(x, y) in L1 that is satisfied by (b, c) such that for any
other (b′, c′) ∈ N satisfying ϕ(x, y),

1. fc′ defines a bijection between S and Qb′ , and
2. ϕ(b′, y) has exactly k realizations.
By condition (2) of Definition 3.1, the formula ∃yϕ(x, y) is equivalent (mod-

ulo Th(N)) to some formula θ(x) in the language of M .
Now we can let θ(x) define the set of objects of our liaison groupoid G, and for

any a ∈ Ob(G), the formula ϕ(a, y) will define MorG∗(a, ∗). Just as in the proof
of Proposition 1.5 of [5], we can use this data to define all other morphisms in
G∗ as formal pairs of morphisms to ∗ modulo a definable equivalence relation.

Condition (3) of the definition of a liaison groupoid is straightforward to
check, since any f ′ ∈ MorG∗(a

′, ∗) is interdefinable over M with an element
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f ∈ MorG∗(a, ∗). Once we have this, it follows that for any a′ ∈ Ob(G∗)
and any f ′, f ′′ ∈ MorG∗(a

′, ∗), there is at most one σ ∈ Aut(M/N) such that
σ(f ′) = f ′′; therefore by a counting argument, f ′ and f ′′ are in fact conjugate
over M , and condition (2) follows.

�

Lemma 3.10. If G is a liaison groupoid for N over M , then for any a ∈ Ob(G),
MorG(a, a) ∼= Aut(N/M).

Proof. Pick any f ∈ MorG∗(a, ∗). For any other g ∈ MorG∗(a, ∗), by the argu-
ment in the last paragraph of the previous proof, there is a unique map τf,g ∈
Aut(N/M) such that τf,g(f) = g. Thus, Aut(N/M) = {τf,g : g ∈ MorG∗(a, ∗)}.

If f ′ ∈ MorG∗(a, ∗), then

τf,g(f ′) = τf,g(f ◦ (f−1 ◦ f ′)) = g ◦ (f−1 ◦ f ′),
so τf,g acts on MorG∗(a, ∗) via left translation by g◦f−1, giving an isomorphism
MorG(a, a) ∼= Aut(N/M). �

Theorem 3.11. If N is a finite internal cover of M and Aut(N/M) is cen-
terless, then N is an almost split cover of M .

Proof. We will add constants for acl M(∅) to the language of M and constants
for acl N(∅) to the language of N , and then we will find a finite ∅-definable C
such that N ⊆ dcl(M ∪ C); this suffices, since any such C is contained in a
finite ∅-definable set in the original language. Also, by Lemma 3.5, we may
assume that N is saturated and |N | is greater than the size of its language.

By Theorem 3.8, the cover has a definable liaison groupoid G. Without loss
of generality, for any a ∈ Ob(G), Ga ⊆ dclM(a). If not, we can pick any object
a from Ob(G); then there is a formula ϕ(x) ∈ tp(a) and a formula ψ(x, y) such
that whenever M |= ϕ(a′), we have a′ ∈ Ob(G) and ψ(a′, y) defines the set
Ga′ . Let G ′ be the groupoid whose objects are all the tuples (a′, b) such that
M |= ϕ(a′) and b enumerates ψ(a′, y), and with the same morphisms as G.
Then G ′ is a definable liaison groupoid, and for any c ∈ Ob(G ′), G′c ⊆ dclM(c).

By Lemma 3.10, the automorphism groups of objects in G are finite and
centerless, and so by Corollary 1.21, G is almost retractable in M , hence re-
tractable in M (since acl M(∅) = dclM(∅)).

Let {fab : a, b ∈ Ob(G)} be a system which is ∅-definable in M and witnesses
the retractability of G, and let n = |Ga| for any a ∈ Ob(G).

Claim 3.12. There is a full subgroupoid G0 of G, definable in M over ∅, and
a collection of formulas ϕ1(x, y), . . . , ϕn(x, y) over ∅ such that

(1) For each a ∈ Ob(G0) and each i ≤ n, we have M |= ∃!xϕi(x, a);
(2) For any a ∈ Ob(G0), G0

a =
⋃

1≤i≤n ϕi(M,a);

(3) For any i and any a, b ∈ Ob(G0),

|= ϕi(g, a) ⇐⇒ |= ϕi(fab ◦ g ◦ fba, b).
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Proof. First, pick any a ∈ Ob(G), and note that there are formulas ϕi(x, y) for
1 ≤ i ≤ n satisfying the first two conditions just at the point a. Let

S =
{
a′ ∈ Ob(G) : (∀i ≤ n) |ϕi(M,a′)| = 1 and Ga′ =

⋃
1≤i≤n

ϕi(M,a′)
}
,

which is certainly a nonempty ∅-definable subset of Ob(G). Let Ê be the
equivalence relation on S given by

Ê(b, c) ⇐⇒ ∀i ≤ n∀x [ϕi(x, b)↔ ϕi(fbc ◦ x ◦ fcb, c)] .

The relation Ê is ∅-definable and has only finitely many classes, so there is
some acl (∅)-definable set S0 ⊆ S consisting of one of its nonempty classes. Let
Ob(G0) = S0, and property (3) follows immediately. �

Without loss of generality, G = G0 as in the Claim above, since any definable
full subgroupoid of a liaison groupoid is still a liaison groupoid.

Let G∗ be the extension of G in N with a single new object as in the def-
inition of a liaison groupoid. We define an equivalence relation E on the
set

⋃
a∈Ob(G) (MorG∗(a, ∗)× {a}) such that E((g, a), (h, b)) holds if and only

if h−1 ◦ g = fab. Note that E is definable (in N), and for each a ∈ Ob(G),
MorG∗(a, ∗) is in bijection with the set of all E-classes, so E has only finitely
many classes. Let C be the set of E-classes.

Then C is a finite ∅-definable set in N (since we are assuming N ∼= N eq).
It is easy to check that N ⊂ dclN(MC). Indeed, for any a ∈ Ob(G), any
f ∈ MorG∗(a, ∗) is definable from a, ∗, and the set C, and so all of N is
definable from M ∪ C by the third condition on a liaison groupoid. �

4. Examples

4.1. Simplest example. The example presented in this section shows that it
is possible to have a stable theory with 3-uniqueness property yet have a defin-
able groupoid which is not retractable. There are two points of this example:

(1) the notion of retractability is strictly stronger than that of eliminability;
(2) while sentience of a finitary groupoid implies Ga ⊂ dcl(a) for every

a ∈ Ob(G), the converse need not hold.

The structure M will have two sorts: I and G∗. The sort I is simply an
infinite set, and G∗ is a double-cover of I. That is, the elements of G∗ have the
form (a, δ), where a ∈ I and δ ∈ {0, 1}. On G∗, we have a projection π onto
the first coordinate.

The theory T of such a structure is totally categorical, and almost strongly
minimal. The theory T has 3-uniqueness (and therefore also 4-existence). We
explain how the relevant definable groupoid in T is not retractable.

Define a groupoid G in T as follows:
Let Ob(G) = I. The set of morphisms is defined by Mor(G) = (G∗ ×G∗)/ ∼,

where (x, y) ∼ (x′, y′) just in case either
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1. (x, y) = (x′, y′), or
2. π(x) = π(x′), π(y) = π(y′), x 6= x′, and y 6= y′.
For f ∈ Mor(G), the domain and range maps are given by the coordinate

projections.
We think of morphisms between a and b in Ob(G) as the bijections between

the fibers π−1(a) and π−1(b). Namely, if f = [(x, y)]∼, then we think of f as
the bijection that sends x to y, and sends the remaining element of π−1(a)
to the remaining element of π−1(b). Composition in G is determined by the
composition of bijections.

For convenience, we will keep using the groupoid language here, and refer to
a morphism f from a ∈ I to b ∈ I as if f is a member of M . (It is a member
of M eq.) Also, we’ll treat the composition ◦ as if it was a part of the language.

Note: there is a single isomorphism class in the groupoid; the automorphism
groups of each of the objects are Z2; so there are two morphisms between any
two objects. Thus both morphisms are in the algebraic closure of any pair of
points in I.

Claim 4.1. The groupoid G is not retractable.

Proof. If a and b are any two distinct elements of Ob(G), then there is a σ ∈
Aut(C) fixing a and b, fixing π−1(a) pointwise, and swapping the two elements
of π−1(b). Then σ swaps the two elements of MorG(a, b), and so dcl(a, b) ∩
MorG(a, b) = ∅. �

However:

Claim 4.2. The groupoid G is eliminable.

Proof. Pick any ∗ ∈ dcleq(∅). We define a groupoid G∗ extending G such that
Ob(G∗) = Ob(G) ∪ {∗} and for any a ∈ Ob(G), MorG∗(a, ∗) = π−1(a) × {∗}
and MorG∗(∗, a) = {∗}× π−1(a). MorG∗(∗, ∗) consists of two different elements
of dcleq(∅). We think of elements of MorG∗(a, ∗) and MorG∗(∗, a) as being
enumerations of π−1(a), where (x, ∗) represents the enumeration that begins
with x. If (x, ∗) ∈ MorG∗(a, ∗) and (∗, y) ∈ MorG∗(∗, b), then we let (∗, y) ◦
(x, ∗) = [(x, y)]∼, which we think of as the bijection between π−1(a) and π−1(b)
which sends x to y. The other compositions in G∗ are defined similarly.

�

Finally, note that for any a ∈ Ob(G), both morphisms from a to itself are
definable from a (one fixes π−1(a) and the other does not). So Ga ⊂ dcl(a) for
all a ∈ Ob(G). However, G is not sentient since for a 6= b ∈ Ob(G) we have
Mor(a, b) ⊂ dcl(acl (a), acl (b)), but Mor(a, b) ∩ dcl(a, b) = ∅.

4.2. Groupoids with arbitrary finite automorphism groups of objects.
In this subsection we address the question of which finite groups can be the
automorphism groups of objects in a definable, non-retractable groupoid in a
stable theory. We give a recipe for constructing examples of such groupoids
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whose object automorphism groups are arbitrary groups with nontrivial center.
We construct the groupoids in such a way that Ga ⊂ dcl(a) for each object a.

Fix some finite group G. Our language consists of unary predicates I and P ,
a ternary predicate Q, and unary functions π1 and π2. In the standard model
of our theory, I is an infinite set, P = I2×G, πi : P → I is the projection onto
the ith coordinate, and Q is the relation on P 3 defined by

|= Q((i1, i2, x), (j1, j2, y), (k1, k2, z))

⇔ i2 = j1 & j2 = k2 & i1 = k1 & z = y · x.
T is the complete theory of this structure.

We let π : P → I2 be the map π1 × π2. For any a ∈ I, let Ga be the group
π−1(a, a), and note that the identity element ea of Ga is definable from a. We
write “h = g◦f” if h is the unique element such that Q(f, g, h) holds. Also, for
any f ∈ π−1(a, b), there is a unique element g ∈ π−1(b, a) such that g ◦ f = ea,
and g is f -definable; we will call this g “f−1.”

For any finite set A ⊆ C which is closed under taking projections, any
permutation of I(C) \ A can be extended to an automorphism of C. It follows
that I is strongly minimal, so T is almost strongly minimal, hence stable.

Now we give a recipe for constructing automorphisms in Aut(C/I(C)). Let
{ai : i < κ} be some enumeration of I(C). Suppose we are also given one ele-
ment gi from each group Gai

. From this data, we construct an automorphism
σ ∈ Aut(C/I(C)) as follows:

(1) σ(ai) = ai;
(2) If i 6= 0 and x ∈ π−1(a0, ai), then σ(x) = gi ◦ x;
(3) If i 6= 0 and x ∈ π−1(ai, a0), then σ(x) = x ◦ g−1

i ;
(4) If x ∈ π−1(a0, a0), then σ(x) = x;
(5) If i, j 6= 0 and x ∈ π−1(ai, aj), then σ(x) = gj ◦ x ◦ g−1

i .

It is routine to check that the map σ preserves the Q relation, so σ is indeed
an automorphism of C.

Finally we define the groupoid G. Let Ob(G) be the set of all tuples of
the form (a, b) where a ∈ I and b is an enumeration of Ga. Note that b has
a definable group structure isomorphic to G. For any tuples x = (a, b) and
y = (c, d) in Ob(G), MorG(x, y) is the set π−1(a, c) × {(x, y)}. (The point of
taking a Cartesian product with {(x, y)} is to ensure that the domain and range
maps are definable.) If (f, (x, y)) and (g, (y, z)) are elements of Mor(G), then
their composition is defined to be (h, (x, z)), where h is the unique element
such that Q(f, g, h) holds.

Claim 4.3. If G has a nontrivial center, then G is not retractable over acl (∅),
or even over any bounded set of parameters.

Proof. Let A be any bounded subset of C. Note that any automorphism σ as
above will fix A pointwise as long as a certain (small) set of the gi’s are identity
elements. Pick such a σ such that every gi is central but at least one of the gi’s
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is not the identity. Then (by Clause 1) σ fixes Ob(G) pointwise. But σ induces
a permutation with no fixed points on at least one of the sets MorG(a0, ai), so
no element of this set is definable over A∪{a0, ai}, and G cannot be retractable
over A. �

4.3. 2-element definable sets yield unsplit covers. Here we explain a
general method for constructing finite internal covers that are unsplit (but
almost split) any time there is a 0-definable set P with two distinct elements
with the same type. At the same time, we construct a non-retractable groupoid
in such structures.

Let M be such a structure, and for concreteness let P (M) = {a0, a1}. We
build a model of a finite internal coverN ofM with one new sort S(N) with four
elements b0, b1, b2, and b3. L(N) contains a new function symbol π : S → M
and a new 4-ary predicate R. π(bi) = aj if i ≡ j mod 2, and R(bi, bj, bk, b`)
holds if and only if (i, j, k, `) is a cyclic permutation of (0, 1, 2, 3).

If σ ∈ Aut(N/M), then σ(b0) is b0 or b2, and because of the predicate R, the
values of σ(b1), σ(b2), and σ(b3) are determined by σ(b0); moreover, it is clear
that there is a σ ∈ Aut(N/M) switching b0 and b2. Thus, Aut(N/M) ∼= Z2.
Also, note that the cover (N/M) is trivially almost split, since S is finite and
∅-definable. On the other hand, if C ⊆ N eq is a finite, 0-definable set and
S(N) ⊆ dcl(M ∪ C), then it is straightforward to check that if σ ∈ Aut(M)
is an order-2 automorphism mapping a0 to a1, then there is no corresponding
σ′ ∈ Aut(N/C) such that σ′ � M = σ. So the cover is not split.

The structure M also has a corresponding ∅-definable groupoid G which is
not retractable: Ob(G) = P , every set Mor(ai, aj) is also equal to P (and
for i = 0, 1, ai represents the identity morphism from ai to ai, and the two
morphisms from a0 to a1 and from a1 to a0 represented by ai are inverses of
one another). Then G is retractable over acl (∅) (trivially, since it is finite) but
not over ∅: if the morphism fa0a1 in a retraction is equal to a0, for instance,
then fa1a0 must equal a1 (since a0 ≡ a1), but then fa1a0◦fa0a1 is not the identity,
a contradiction.
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