Crypto Notes

Jaelyn McCracken

Septemer 26th, 2023

1 Finite Fields

Goal: Find fields with 2^{k} elements $\left(\mathbb{F}_{2^{k}}\right)$.

- AES uses \mathbb{F}_{256}
- Find $\mathbb{F}_{4} \neq 2_{4}$ (not a field).
- Trick: use polynomials $\mathbb{F}_{2}[x]$
- polynomials whose coefficients are 0,1 in \mathbb{F}_{2}
- Can do division with remainder has degree smaller (not the same) than thing you're dividing by.

1.1 Warm up

What is $x^{5}+x^{2}+1\left(\bmod x^{3}+x\right) ?$

$$
\begin{array}{r}
x^{2}+1 R\left(x^{2}+x+1\right) \\
x ^ { 3 } + x \longdiv { x ^ { 5 } + x ^ { 2 } + 1 } \\
-\frac{\left(x^{5}+x^{3}\right)}{x^{3}+x^{2}+1} \\
\frac{-\left(x^{3}+x\right)}{x^{2}+x+1}
\end{array}
$$

Answer: $x^{5}+x^{2}+1 \equiv \mathrm{x}^{2}+x+1\left(\bmod x^{3}+x\right)$

1.2 Irreducible

- If $\mathrm{f}(\mathrm{x})$ has degree $\mathrm{k}\left(\mathrm{f}(\mathrm{x})=x^{k}+\ldots\right)$ how many remainders are there? 2^{k}
- To get a field our modulus needs to not be factorable into smaller polynomials. These polynomials are called irreducible (Think like prime but for polynomials)
- If $\mathrm{f}(\mathrm{x})$ is irredicuble in $\mathbb{F}_{2}[x]$ then the polynomials $(\bmod \mathrm{f}(\mathrm{x}))$ are a field.
- To find $\mathbb{F}_{2^{k}}$ need an irredicuble polynomial of degree k .

Find $\mathbb{F}_{4}=\mathbb{F}_{2^{k}}$ (need irreducible polynomial of degree 2).
Possible degree of 2 polynomials.
$x^{2}=x * x$: (not irredicuble)
$x^{2}+x=x(x+1):($ not irredicuble)
$x^{2}+1:$ (not irredicuble)
$x^{2}+x+1$: (irredicuble!!!)

- \mathbb{F}_{4} is polynomials in $\mathbb{F}_{2}[x]\left(\bmod x^{2}+x+1\right)$
- $\mathbb{F}_{4}=\{0,1, \mathrm{x}, \mathrm{x}+1\}$

1.3 Addition/multiplication tables $\left(\bmod x^{2}+x+1\right)$

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0

$*$	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

1.4 Uses

- AES uses $\mathbb{F}_{256}=\mathbb{F}_{2^{4}}$.
- SAES uses $\mathbb{F}_{16}=\mathbb{F}_{2^{4}}$.

1.5 Example

Pick $x^{4}+x+1$ as our degree 4 irredicuble polynomial for $\mathbb{F}_{16} \mathbb{F}_{16}$ is polynomials modulo $x^{4}+x+1$

$$
\begin{gathered}
\text { Ex: Multiply }\left(x^{3}+1\right)\left(x^{2}+x\right) \text { in } \mathbb{F}_{16} . \\
\left(x^{3}+1\right)\left(x^{2}+x\right)=x^{5}+x^{4}+x^{2}+x . \\
x ^ { 4 } + x + 1 \longdiv { x + 1 R (x + 1) } \\
\frac{-\left(x^{5}+x^{4}+x^{2}+x\right)}{x^{4}} \\
\frac{-\left(x^{4}+x+1\right)}{x+1}
\end{gathered} .
$$

Answer: $x^{5}+x^{4}+x^{2}+x \equiv x+1\left(\bmod x^{4}+x+1\right)$

1.6 Euclid's Algorithm

Euclid's Algorithm work identically for polynomials as integers. Find $\left(x^{2}\right)^{-1}$ $\left(\bmod x^{4}+x+1\right)$

- Find GCD $(\mathrm{a}, \mathrm{m})=1$
- $x^{4}+x+1=\left(x^{2}\right)\left(x^{2}\right)+(x+1)$

$$
\begin{array}{r}
\begin{array}{r}
x^{2} R(x+1) \\
\left.x^{2}\right) \begin{array}{l}
x^{4}+x+1 \\
-\left(x^{4}\right)
\end{array} \\
\frac{x+1}{x+1 R(1)} \\
-\quad x+1) x^{2} \\
-\left(x^{2}+x\right) \\
\hline-\quad(x+1) \\
\hline
\end{array} \\
\hline
\end{array}
$$

- Keep track of x^{2} and $x^{4}+x+1$.
- Backwards

$$
\begin{aligned}
& 1 \equiv x^{2}+(x+1)(x+1) \\
& x+1 \equiv\left(x^{4}+x+1\right)+\left(x^{2}\right)\left(x^{2}\right) \\
& 1 \equiv x^{2}+(x+1)\left(\left(x^{4}+x+1\right)+\left(x^{2}\right)\left(x^{2}\right)\right) \\
& 1 \equiv 1 x^{2}+(x+1)\left(x^{4}+x+1\right)+\left(x^{3}+x^{2}\right)\left(x^{2}\right) \\
& 1 \equiv\left(x^{3}+x^{2}+1\right)\left(x^{2}\right)+(x+1)\left(x^{4}+x+1\right) \text { Linear Combination } \\
& 1 \equiv\left(x^{3}+x^{2}+1\right)\left(x^{2}\right)+(x+1)\left(x^{4}+x+1\right)\left(\bmod x^{4}+x+1\right) \\
& 1 \equiv\left(x^{3}+x^{2}+1\right)\left(x^{2}\right)\left(\bmod x^{4}+x+1\right) \\
& \left(x^{2}\right)^{-1} \equiv\left(x^{3}+x^{2}+1\right)\left(\bmod x^{4}+x+1\right)
\end{aligned}
$$

