Crypto Notes

Jaelyn McCracken

Septemer 26th, 2023

1 Finite Fields

Goal: Find fields with 2^k elements (\mathbb{F}_{2^k}) .

- AES uses \mathbb{F}_{256}
- Find $\mathbb{F}_4 \neq 2_4$ (not a field).
- Trick: use polynomials $\mathbb{F}_2[x]$
 - polynomials whose coefficients are 0,1 in \mathbb{F}_2
- Can do division with remainder has degree smaller (not the same) than thing you're dividing by.

1.1 Warm up

```
What is x^5 + x^2 + 1 \pmod{x^3 + x}?

x^2 + 1 \frac{R(x^2 + x + 1)}{x^3 + x x^5 + x^2 + 1}

- \frac{(x^5 + x^3)}{x^3 + x^2 + 1}

- \frac{-(x^3 + x)}{x^2 + x + 1}

Answer: x^5 + x^2 + 1 \equiv x^2 + x + 1 \pmod{x^3 + x}
```

1.2 Irreducible

- If f(x) has degree k $(f(x) = x^k + ...)$ how many remainders are there? 2^k
- To get a field our modulus needs to not be factorable into smaller polynomials. These polynomials are called irreducible (Think like prime but for polynomials)
- If f(x) is irredicuble in $\mathbb{F}_2[x]$ then the polynomials (mod f(x)) are a field.

• To find \mathbb{F}_{2^k} need an irredicuble polynomial of degree k.

Find $\mathbb{F}_4 = \mathbb{F}_{2^k}$ (need irreducible polynomial of degree 2). Possible degree of 2 polynomials. $x^2 = x * x$: (not irredicuble) $x^2 + x = x(x+1)$: (not irredicuble) $x^2 + 1$: (not irredicuble) $x^2 + x + 1$: (irredicuble)!!!)

- \mathbb{F}_4 is polynomials in $\mathbb{F}_2[x] \pmod{x^2 + x + 1}$
- $\mathbb{F}_4 = \{0, 1, x, x+1\}$

+	0	1	х	x+1		*	0	1
0	0	1	х	x+1		0	0	0
1	1	0	x+1	x		1	0	1
х	х	x+1	0	1		х	0	х
x+1	x+1	x	1	0		x+1	0	x+1

1.3 Addition/multiplication tables (mod $x^2 + x + 1$)

x+1

 $\begin{array}{c} 0\\ x+1 \end{array}$

1

х

x 0

 $_{x+1}^{x}$

1

Light blue= Field!

1.4 Uses

- AES uses $\mathbb{F}_{256} = \mathbb{F}_{2^4}$.
- SAES uses $\mathbb{F}_{16} = \mathbb{F}_{2^4}$.

1.5 Example

Pick x^4+x+1 as our degree 4 irredicuble polynomial for \mathbb{F}_{16} \mathbb{F}_{16} is polynomials modulo x^4+x+1

Ex: Multiply
$$(x^3 + 1)(x^2 + x)$$
 in \mathbb{F}_{16} .
 $(x^3 + 1)(x^2 + x) = x^5 + x^4 + x^2 + x$.
 $x + 1 R(x + 1)$
 $x^4 + x + 1)\overline{x^5 + x^4 + x^2 + x}$
 $- (x^5 + x^2 + x)$
 x^4
 $- (x^4 + x + 1)$
 $x + 1$
Answer $x^5 + x^4 + x^2 + x = x + 1 \pmod{x^4}$

Answer: $x^5 + x^4 + x^2 + x \equiv x + 1 \pmod{x^4 + x + 1}$

1.6 Euclid's Algorithm

Euclid's Algorithm work identically for polynomials as integers. Find $(x^2)^{-1} \pmod{x^4 + x + 1}$

• Find GCD (a,m)=1

•
$$x^4 + x + 1 = (x^2)(x^2) + (x + 1)$$

 $x^2 \frac{x^2 R(x + 1)}{x^2 x^4 + x + 1}$
 $- \frac{-(x^4)}{x + 1}$
 $x + 1 \frac{R(1)}{x^2}$
 $- \frac{-(x^2 + x)}{x}$
 $- \frac{-(x + 1)}{1}$

- Keep track of x^2 and $x^4 + x + 1$.
- Backwards

$$\begin{split} 1 &\equiv x^2 + (x+1)(x+1) \\ x+1 &\equiv (x^4+x+1) + (x^2)(x^2) \\ 1 &\equiv x^2 + (x+1)((x^4+x+1) + (x^2)(x^2)) \\ 1 &\equiv 1x^2 + (x+1)(x^4+x+1) + (x^3+x^2)(x^2) \\ 1 &\equiv (x^3+x^2+1)(x^2) + (x+1)(x^4+x+1) \text{ Linear Combination} \\ 1 &\equiv (x^3+x^2+1)(x^2) + (x+1)(x^4+x+1) \pmod{x^4+x+1} \\ 1 &\equiv (x^3+x^2+1)(x^2) \pmod{x^4+x+1} \\ (x^2)^{-1} &\equiv (x^3+x^2+1) \pmod{x^4+x+1} \end{split}$$