# Cryptography Notes

#### Samuel LaPree

#### September 21, 2023

### 1 2 Goals of Block Ciphers

There are 2 goals of block ciphers according to Shannon (founder of information theory)

- Confusion: The key and the ciphertext should be related in a complicated way. You can't "solve for the key" in some equation.
- Diffusion: Every bit of the ciphertext depends on every bit of plaintext
  - Small changes to plaintext  $\longrightarrow$  big change to ciphertext

Hill Ciphers have good diffusion but essentially no confusion

Modern ciphers achieve confusion using an S-Box (S stands for substitution)

### 2 S-Boxes

S-Box is a function that scrambles the input in a way that doesn't resemble any simple arithmetic function

S-Boxes are not secret

- Everyone uses the same S-Boxes
- S-Boxes never change

#### 2.1 History of S-Boxes

In 1972 the NBS (National Bureau of Standards) now called NIST (National Institute of Standards and Technology), put out a call for proposals for a national encryption standard

IBM submitted a cipher called L.U.C.I.F.E.R.

The NSA made a bunch of changes

- Increased the number of rounds
- Changed the S-Boxes
- Added a weird permutation at the beginning

The result was called DES (Digital Encryption Standard) - the standard from 1970s - 1999

## 3 DES

DES is based on a system called a <u>feistel</u> cipher

Idea: Bunch of rounds

Each round split block into 2 halves

| L <sub>0</sub> | R <sub>0</sub> |
|----------------|----------------|
|                |                |

## 3.1 Example



Encryption: Do this a bunch of times

Decryption: Swap of Left/Right. Do all rounds in reverse order.

#### **3.2 DES Specifics**

All the security rests on a good f-function

DES uses the following

- DES uses 16 rounds
- The blocksize is 64
- Key size is 56 bits
- Main flow of DES is "only  $2^{56}$ " keys

### 3.3 3-DES and AES

In DES double encryption with two different keys is not the same as single encryption with a different key

Double encryption of any cipher is vulnerable to a <u>meet-in-the-middle</u> attack

For a long time (up until 2017), <u>3-DES</u> was still used (Triple encryption DES)

<u>AES</u> which is the successor to DES uses finite fields

## 4 Rings

A Ring is a collection of things you can add/subtract or multiply

Examples:

- $\bullet$  Integers  $\mathbbm{Z}$
- Matrices

- $\bullet$  Real numbers  $\mathbb R$
- Polynomials
- Rational numbers  $\mathbb Q$
- $\bullet$  Complex Numbers  $\mathbb C$
- Residules (mod n)  $\mathbb{Z}_n$

A ring where every element other than 0 has an inverse is called a <u>field</u>.

## 5 Fields

 $\mathbb{R}, \mathbb{Q}, \mathbb{C}$  are all fields

A finite field is a field that is finite

 $\mathbb{Z}_{26}$  is finite but not a field

For any integer n, there is at most 1 field having n elements

Write  $\mathbb F$  or  $\mathrm{Gf}(n)$  for the field with n elements

If p is prime, then every residue (mod p) has an inverse so

$$\mathbb{Z}_p = \mathbb{F}_p$$
 is a finite field

If n is not prime (called composite) then,

$$\mathbb{Z}_n \neq \mathbb{F}_n \text{ (not a field!)}$$

AES uses  $\mathbb{F}_{256}$  (not  $\mathbb{Z}_{256}$ )

#### 5.1 Warm up

## $\mathbb{F}_4 \neq \mathbb{Z}_4$

Write down addition/multiplication tables for  $\mathbb{Z}_4$ 

| + | 0 | 1 | 2 | 3 | * | 0 | 1 | 2 |  |
|---|---|---|---|---|---|---|---|---|--|
| 0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 |  |
| 1 | 1 | 2 | 3 | 0 | 1 | 0 | 1 | 2 |  |
| 2 | 2 | 3 | 0 | 1 | 2 | 0 | 2 | 0 |  |
| 3 | 3 | 0 | 1 | 2 | 3 | 0 | 3 | 2 |  |

The row highlighted in blue shows that it is not a field

This is because 2x = 2 has two solutions meaning we can't solve for x

Use polynomials

 $\mathbb{F}_2[x] \leftarrow Ring$ 

All polynomials with coefficients in

$$\mathbb{F}_{2}[x] = \mathbb{Z}_{2}[x] = \{0, 1\}$$

## 5.2 Example

Let  $f(x) = x^2 + 1$  $g(x) = x^2 + x + 1$  both be in  $\mathbb{F}_2[x]$ 

What is f(x) + g(x)?

$$(\mathbf{x}^{\mathbf{Z}} + \mathbf{1}) + (\mathbf{x}^{\mathbf{Z}} + x + \mathbf{1}) = x$$

What is f(x) \* g(x)?

$$= (x^{2} + 1)(x^{2} + x + 1)$$
$$= (x^{4} + x^{3} + x^{2})(x^{2} + x + 1)$$
$$= x^{4} + x^{3} + x + 1$$

Fun fact! : Euclid's Algorithm works in  $\mathbb{F}_2[x]$