Eliptic Curves Continued 12/5

Kayla Jurew

December 13, 2023

Last class we were working on the following example: Eliptic curve: $y^{2}=$ $x^{3}+2 x+4$ with the two points $p(0,2)$ and $\mathrm{q}(-1,1)$

To add $\mathrm{P}+\mathrm{Q}$ we do the following:

Since

$\mathrm{P} \neq Q$ we use the slope formula: $s=y_{2}-y_{1} /\left(x_{2}-x_{1}\right)$

$$
\begin{gathered}
s=1-2 /-1-0 \\
=-1 / 1 \\
=1
\end{gathered}
$$

The formula to find our x_{3} is: $\mathrm{s}^{2}-x_{1}-x_{2}$

$$
=1-0-(-1)=2
$$

The formula to find our y_{3} is: $s\left(x_{1}-x_{3}\right)-y_{1}$

$$
\begin{gathered}
=1(0-2)-2 \\
-4 \\
P+Q=(2,-4)
\end{gathered}
$$

In the next example, if we want to do $(P+Q)+P$ we have the points $(1,-4)+$ $(0,2)$ Step 1 is to find the slope using the regular slope formula since

$$
\begin{gathered}
P \neq Q \\
s=(-4-2) /(2-0)=-6 / 2=-3 \\
x_{3}=(-3)^{2}-2-0=7 \\
y_{3}={ }_{3}(2-7)-(-4) \\
=15+4=19
\end{gathered}
$$

$$
\left(x_{3}, y_{3}\right)=(7,-4)
$$

Then we add this new P to our original P to complete the formula:

$$
\begin{gathered}
(7,-4)+(1,-4): P \neq P \\
s=(-4-(-4)) /(1-7)=-8 /-6=-4 / 3 \\
x_{4}=(-4 / 3)^{2}-7-(-4)=(16 / 9)-3=(-11 / 9) \\
y_{4}=-4 / 3(7-(-11 / 9))-(-4)=-4 / 3(188 / 36)=-4 / 3(47 / 9)=(-188 / 27) \\
\left(x_{4}, y_{4}\right)=((11 / 9),(-188 / 27))
\end{gathered}
$$

For cryptography, we do all the same arithmetic $\bmod p$ Hasse's Theorem: if E is any elliptic curve $(\bmod p)$ the number of points on $\mathrm{E}(\# \mathrm{E})$ is between $\mathrm{p}+1-2 \sqrt{p}<\# E<p+1+2 \sqrt{p}$

