MATH 314 Fall 2023 - Class Notes

11/9/2023

Scribe: Name Courtney Pelkey

Summary: Learning RSA, Diffie Hellman, El Gamal Cryptosystem.

Notes:

RSA- Public-key-crypto-system-Hard-problem-factoring Discrete Log problem:

• If $y = x^k \pmod{p}$ and y, x, and p are known

Solving for k is hard.

Over the real numbers this is easy:

- $\log(y) = \log(x^k) = K \log(x)$
- $K = \log(y) / \log(x)$

Diffie-Hellman

- Key Exchange can't send message
- Alice and Bob agree on a secret random number (Key for AES)
- Alice picks a large prime P and a primative root α (We get all residues (mod p) as powers of α)
- Alice and Bob both pick secret exponents a, b1 < a < p 1, 1 < b < p 1
- Alice computes $A = \alpha^a \pmod{p}$ Sends to Bob
- Bob computes $B = \alpha^b \pmod{p}$
- Alice computes $K = B^a \pmod{p}$
- Bob computes $K = A^b \pmod{p}$
 - El Gamal Cryptosystem
 - Way to send a secret message using the discrete log problem
 - Alice picks a large prime P and a primitive root α and a secret exponent a
 - $-\beta = \alpha^a \pmod{p}$. key = (p, α, β) BobwantstosendamessagemtoAlice.Firsthepicksanephemeral b < p-1
 - Bob computes $r = \alpha^b \pmod{p}$
 - $-t = m\beta^b \pmod{p}$ To decrypt Alice
 - $-r^{-a} * t = m \pmod{p}$